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Indeterministic Handling of Uncertain Decisions in Deduplication
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In current research and practice, deduplication is usually considered as a deterministic approach in which
database tuples are either declared to be duplicates or not. In ambiguous situations, however, it is often not
completely clear-cut, which tuples represent the same real-world entity. In deterministic approaches, many
realistic possibilities may be ignored, which in turn can lead to false decisions. In this article, we present
an indeterministic approach for deduplication by using a probabilistic target model including techniques
for proper probabilistic interpretation of similarity matching results. Thus, instead of deciding for one of the
most likely situations, all realistic situations are modeled in the resultant data. This approach minimizes the
negative impact of false decisions. Moreover, the deduplication process becomes almost fully automatic and
human effort can be largely reduced. To increase applicability, we introduce several semi-indeterministic
methods that heuristically reduce the set of indeterministically handled decisions in several meaningful
ways. We also describe a full-indeterministic method for theoretical and presentational reasons.
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1. INTRODUCTION

In a variety of commercial and scientific situations, for example, in healthcare [Taddei
et al. 2008] or bioinformatics [Goble and Stevens 2008], data from different sources
need to be combined. For that reason, data integration [Lenzerini 2002] has become an
important area of research. Nevertheless, data sets to be integrated may contain dupli-
cates. Working with non-duplicate-free data, however, can do serious economic damage
or can lead to incorrect conclusions in scientific applications. Therefore, deduplication
[Elmagarmid et al. 2007; Naumann and Herschel 2010] is an important component in
an integration process. Due to deficiencies like missing data, typos, data obsolescence
or misspellings, real-life data are often incorrect and incomplete. Hence, it often cannot
be determined with absolute certainty from the data itself that two or more database
tuples belong to the same real-world entity. This principally hinders deduplication and
is a crucial source of uncertainty.
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9:2 F. Panse et al.

Fig. 1. Deterministic vs. indeterministic deduplication.

Most current deduplication approaches acknowledge many kinds of uncertainty and
often apply fuzzy matching techniques, but in the end they still are deterministic: fi-
nally an absolute decision needs to be taken either by (1) deferring the situation to
domain experts (clerical review) which is expensive and time consuming, or (2) choose
one of the most likely configurations thereby risking a wrong choice with all conse-
quences this may have.

By using probabilistic target models, however, such determinism is not necessary.
Instead any kind of uncertainty arising in duplicate decisions can be accurately mod-
eled in the resultant data. In this way, all significantly likely duplicate mergings find
their way into the database, hence any query answer or other derived data will reflect
the inherent uncertainty. This concept may protect against negative impact resulting
from false duplicate decisions. Moreover, expensive tuning of thresholds and the even
more expensive clerical reviews can be avoided. Due to the fact that no decisions are
taken (the decisions are handled indeterministically), we denote this concept as an
indeterministic deduplication.1

In traditional deduplication approaches “old” tuples are usually kept around. How-
ever, this means that they are stored separately and hence cannot be uniformly queried
with the deduplicated relation. This may be very well for applications needing concrete
results (whether or not certain), but is not adequate for a lot of other applications as
consistent query answering or data mining tasks (see Section 6).

1.1. Motivating Example

As an illustration, consider relation R of Figure 1. All 4 tuples bear some resemblance,
so, in theory, there are 15 possible ways to deduplicate this table. By making a few
realistic assumptions, however, we can easily reduce this number. For example, it is
quite certain that t4 represents a different entity here. This leaves 4 possible worlds
for which the 4th can also be rejected, because it can be realistically argued that the
situation where t1 and t3 represent the same real-world entity (notation t1 =id t3)
while t2 is not, cannot be true: For t1 =id t3, two typos each one in the SSN and the
lname need to have occurred. Nevertheless, each of these typos individually would
have resulted in t2. Thus, the depicted three worlds I1-I3 are the only realistic ones.

Typically, fuzzy matching techniques do expose more than one possibility, in our
example by assigning significant probabilities to t1 =id t3 and t2 =id t3 as well. Deter-
ministic deduplication approaches, however, need to defer such ambiguous situations
to expensive clerical reviews or simply decide on the most likely situation, which is I1
in our example. However, only merging t1 and t2 (notation μ({t1, t2})) may be a false
decision. By ignoring the other two possibilities, any use of this result or data derived

1Note, only the deduplication result is of an indeterministic nature, the deduplication process itself is deter-
ministic, that is, it always produces the same result if same configuration settings and same input data are
given.
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Indeterministic Handling of Uncertain Decisions in Deduplication 9:3

from it may be wrong as well. Moreover, this may go unnoticed for a long time. In con-
trast to deterministic approaches where always a single world results, by using an in-
deterministic approach, we are able to maintain all three realistic database instances
I1, I2 and I3.

1.2. Contribution

Although data integration is regarded as an important application area for proba-
bilistic databases, much work focuses on modeling the uncertainty in schema match-
ing [Dong et al. 2009] or in the merge result of conflicting tuples [Tseng et al. 1993].
Modeling the uncertainty around possible duplicate representations, is much less re-
searched. Exceptions can be found in Beskales et al. [2009], and Ioannou et al. [2010].
Both approaches store the probabilistic result in a special data model. Beskales et al.
[2009] embrace the concept of indeterministic deduplication for data cleaning. They de-
fine a tailor-made data model that is restricted if the data should be further processed
such as in subsequent integration steps. Ioannou et al. [2010] produce indeterministic
deduplication results at query time by processing the entity data along with proba-
bilistic linkages both stored in a probabilistic linkage database.

In general, deduplication is required in many application areas and hence the resul-
tant data should be further processed in a variety of ways. Using a tailor-made data
model, however, is usually too specific to cover all these ways. For that reason, we pro-
pose to model ambiguous situations within the possible world semantics and store the
resultant data using a traditional probabilistic databases like Trio [Benjelloun et al.
2006] or MayBMS [Koch 2009]. In this way, the resultant data are modeled in a more
general fashion and we benefit from the strong querying power supported by these
databases, which has been extensively studied in the past.

Our approach is, in essence, a generic graph-based process that starts from a graph
representing matching similarities and that results in a set of graphs representing
multiple possible worlds that are subsequently stored in a probabilistic database. Due
to the inherent complexity of a full-indeterministic approach (an approach in which
each uncertain decision is handled indeterministically) is usually not manageable, we
introduce some semi-indeterministic methodes which reduce the volume of resultant
uncertain data to a manageable size making the indeterministic deduplication fea-
sible in practice. Moreover, we present techniques for probabilistic interpretation of
similarity matching results. Although our approach is generic, the final step of mod-
eling the resultant uncertainty in probabilistic data depends on the used probabilistic
data model. In this article, we use the ULDB model from the Trio database as a repre-
sentative, but using another model, for example, MayBMS, is also possible.

1.3. Outline

The article is structured as follows. First, we examine related work in Section 2. Then,
we discuss deterministic techniques for deduplication (Section 3.1), outline probabilis-
tic data models (especially, the ULDB model) and show how data lineage can be used
to faithfully model tuple dependencies (Section 3.2). In Sections 4 and 5, we propose
our indeterministic approach. This is done by first clarifying the problem, then pre-
senting a theoretical full-indeterministic method, which is finally refined to several
semi-indeterministic methods. Moreover, we discuss sources of matching probabilities.
In Section 6, we consider querying indeterministic deduplication results. Finally, in
Section 7, we show by some experiments on a real data set how efficient and effective
our approach can be if semi-indeterministic methods are used. Section 8 concludes the
article and gives an outlook on future research.
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9:4 F. Panse et al.

2. RELATED WORK

In general, duplicate detection is already handled in several works (for overviews,
see Elmagarmid et al. [2007], Naumann and Herschel [2010], and Talburt [2011]).
However, even though in the most of these works uncertainty in tuple matching is
considered by using different measures of similarity, the decision whether two tuples
are duplicates or not is always made in a deterministic way.

There are several approaches using probabilistic data models for handling uncer-
tainties in tuple merging. In de Keijzer and van Keulen [2008], a semi-structured
probabilistic model is used for handling ambiguities in deduplication of XML data.
Tseng et al. [1993] already used probabilistic values to resolve conflicts between two
or more certain relational values. None of the studies, however, handle the uncertainty
of duplicate decisions in detecting relational duplicates.

A probabilistic handling of uncertain duplicate decisions is proposed by Beskales
et al. [2009]. In this approach, deduplication is considered as a data cleaning task
and uncertainty in duplicate decisions is handled by using a set of possible repairs. In
contrast to our graph-based approach using the possible world semantics, the authors
restrict to hierarchical tuple clusterings. Thus, our approach is more general, which
can be specialized to the hierarchical clustering approach by using an HC-restriction
(see Section 5.3). Moreover, for representing possible repairs, Beskales et al. [2009]
define a new and specific uncertain data model. In contrast, since our approach is based
on the possible world semantics, several existing traditional probabilistic data model
as ULDB or MayBMS can be used. As we think, this increases the reusability of the
resultant data, especially if deduplication is considered as a step in a data integration
process.

Another indeterministic approach was introduced in Ioannou et al. [2010]. Based on
linkage information, Ioannou et al. [2010] decide at query time (on the fly) which of
the query-relevant tuples are duplicates and have to be merged. Although, this and
our approach are similar to a large extent, there are quite some differences: First,
Ioannou et al. [2010] use their own probabilistic data model (called probabilistic link-
age database) that supports only simple queries with projections and selections. In
contrast, our approach is based on the usage of traditional probabilistic databases
for which efficient querying is already researched in an exhaustive way [Dalvi and
Suciu 2007; Koch 2008]. Thus, complex queries with joins, grouping, aggregations,
subqueries etc. can be efficiently performed on the resultant data (see Section 6). More-
over, using a linkage database or using a traditional probabilistic database results in
two fundamental different approaches for handling uncertain decisions in deduplica-
tion. Ioannou et al. [2010] perform an offline tuple matching, store the most uncer-
tain duplicate decisions (linkages) for single tuple pairs persistently in their special
database and finally perform the possible world creation at query time. In contrast,
similar to Beskales et al. [2009], we do not store the uncertain tuple matching results
persistently, but immediately perform the possible world creation on the given tuple
matchings and finally store the resultant worlds in a probabilistic database. Thus, in
the approach of Ioannou et al. [2010], queries are applied to stored linkages, and in
our approach, queries are applied to stored possible worlds.

Furthermore, in their on-the-fly entity-aware query processing only a small number
of linkages exists. Since in reality for a lot of tuple pairs a nonlinkage (probability of
0) cannot be taken with absolute certainty, we understand their approach in the way
that they only consider linkages with high probability and then perform the transitive
closure of them for creating factors. This guarantees that factors are always very small,
which makes the querying efficient, but also poses two kinds of problems: (1) they
cannot ensure that always the most probable worlds result and (2) they disregard

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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Fig. 2. General representation of decision models.

negative information (certain non-duplicate decisions), which makes the result more
inaccurate and which makes an introduction of negative expertise during the initially
offline performed linkage creation impossible. For an illustration of these drawbacks,
we include an example in Appendix A.

Finally, Ioannou et al. do not discuss the sources of their linkage probabilities as we
will do in Section 5.2. On the other hand, they consider uncertainty on data level from
which we currently abstract.

3. BACKGROUND

Due to it is required background for our proposed approach, we shortly present deter-
ministic deduplication and probabilistic data models, especially, the ULDB model.

3.1. Deterministic Deduplication

Traditional approaches for deterministic deduplication are based on pairwise tuple
comparisons and consist of four main phases [Naumann and Herschel 2010]:

(1) Attribute Value Matching. First, for each tuple pair the similarities of their at-
tribute values are measured. Despite data preparation, syntactic as well as se-
mantic irregularities remain. Thus, attribute value similarity is quantified by syn-
tactic (e.g., edit-based distance or token-based distance [Elmagarmid et al. 2007])
and semantic (e.g., glossaries or ontologies) means. From comparing two tuples, we
obtain a normalized comparison vector �c = [ c1, . . . , cn], where ci ∈ [ 0, 1] represents
the similarity of the values from the ith attribute.

(2) Decision Model. The comparison vector is input for a decision model that classifies
a given tuple pair into matching tuples (M) or unmatching tuples (U). Common de-
cision models [Elmagarmid et al. 2007] are based on probability theory [Fellegi and
Sunter 1969; Newcombe et al. 1959], identification rules [Hernández and Stolfo
1995; Wang and Madnick 1989], distance measures [Koudas et al. 2004] or learn-
ing techniques [Ravikumar and Cohen 2004].
In general, the decision whether a tuple pair (ti, tj) is a match or an unmatch can
be decomposed into two steps (see Figure 2). In the tuple matching step (Step 1),
based on the comparison vector a single similarity degree sim(ti, tj) is determined
by a matching function:

ϕ : [ 0, 1]n → R sim(ti, tj) = ϕ(�cij). (1)

In the classification step (Step 2), based on the similarity sim(ti, tj) the tuple pair
is assigned to M or U. To minimize the number of uncertain decisions, in most
approaches a third set of possibly matching tuples (P) is intermediately introduced.
Each tuple pair originally classified to P is later manually assigned to M or U by
domain experts (clerical reviews). Usually, the classification is based on two tuple
similarity thresholds Tλ and Tμ that demarcate the boundaries between the sets
M, P, and U (see Figure 6).

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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9:6 F. Panse et al.

Fig. 3. X-relation R1 and x-relation R2.

(3) Duplicate Clustering. Based on the decisions taken for individual tuple pairs a
globally consistent result is achieved by using a duplicate clustering technique.
Simplest, clustering can be achieved by using the transitive closure of detected
matches. More complex, but also more promising approaches are presented in Nau-
mann and Herschel [2010] and Hassanzadeh et al. [2009].

(4) Tuple Merging. After detecting multiple duplicates, these various representations
have to be merged (also known as fusion [Bleiholder and Naumann 2008]) into a
single tuple. In our work, we focus on handling uncertainty in duplicate decisions
and abstract from merging details. In the following, we assume an associative and
idempotent merging function μ, where t = μ(T) represents the tuple resulting from
merging the tuples of set T. Since, we use a probabilistic target model, merging
cannot be only realized by conflict resolution, but also by creating a probabilistic
tuple with all the base-tuples as alternatives.
For reasons of clarity and comprehensibility, in following examples, the index of a
merged tuple is an ordered concatenation of the indexes of the tuples it is merged
from. For example, the result of μ({t1, t2, t3}) is denoted by t123.

In summary, the outcome of using a deterministic approach is only one of several
(maybe equally probable) possible worlds. On the contrary, the usage of probabilistic
data models allows for constructing and later querying all these worlds simultane-
ously. Matching of attribute values and tuple merging is required in both concepts and
hence will be reused in our indeterministic approach as it is.

3.2. Probabilistic Data Models

Theoretically, a probabilistic database is defined as PDB = (W, P) where W =
{I1, . . . , In} is the set of possible worlds and P : W → (0, 1] ,

∑
I∈W P(I) = 1 is the

probability distribution over these worlds. Because the data of individual worlds often
considerably overlaps and it is sometimes even impossible to store them separately, a
succinct representation has to be used.

In probabilistic relational models, uncertainty is modeled on two levels: (a) each tu-
ple t is assigned with a probability p(t) ∈ (0, 1] denoting the likelihood that t belongs
to the corresponding relation, and (b) alternatives for attribute values are given. In
earlier approaches, alternatives of different attribute values are considered to be in-
dependent (e.g., Barbará et al. [1992]). In these models, each attribute value can be
considered as a separate random variable with its own probability distribution. Newer
models like ULDB [Benjelloun et al. 2006] or MayBMS [Koch 2009] support depen-
dencies by introducing new concepts like ULDB’s x-tuple and MayBMS’s U-relation.
Both models support all the concepts required for our purpose. Since we are more fa-
miliar with the ULDB model, we consider it as a representative throughout this paper.
Nevertheless, we shortly discuss a usage of MayBMS in Appendix B.

3.2.1. ULDB: A Model for Uncertainty and Lineage. For modeling dependencies between
attribute values, in the ULDB model the concept of x-tuples is introduced. An x-tuple
t consists of one or more alternatives (t1, . . . , tn) which are mutually exclusive. Maybe
x-tuples (tuples for which non-existence is possible, that is, for which the probability
sum of the alternatives is smaller than 1) are indicated by “?”. Relations containing

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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Fig. 4. X-relation R3 with its lineage information.

one or more x-tuples are called x-relations. As an example, see the x-relations R1, R2,
and R3 in Figure 3 and Figure 4.

Besides data uncertainty, the ULDB model supports the concept of data lineage.
The lineage of a data item contains information about its derivation. In the ULDB
model, lineage is considered at the granularity of x-tuple alternatives and is defined
as a Boolean function λ over the presence of other alternatives.

An example of lineage is shown in Figure 4. Relation R3 results from a natural join
of R1 with R2 and a subsequent projection on the attributes name and industry. Let
(i, j) denote the jth alternative of x-tuple ti (outside of lineage also shortly noted as tj

i).
The lineage formula λ(7, 1) = ((1, 1)∧(4, 1))∨((2, 1)∧(3, 1)) for the single alternative of
t7 expresses the information that this alternative is derived from the first alternatives
of t1 and t4 or from the first alternatives of t2 and t3.

An interesting and useful feature of lineage is that the probability of an alternative
can be computed from the probabilities of the data items in its lineage. Moreover, an
x-tuple alternative with lineage can belong to a possible world only, if its lineage condi-
tion is satisfied by the presence of the referenced alternatives in the considered world.
As a consequence, lineage imposes restrictions on possible worlds. For example, if the
alternative t1

6 is not present in a possible world I1 then alternative 1 must be chosen
for x-tuple t1, and hence x-tuple t7 must be present in I1.

3.2.2. Tuple Dependencies. A general framework for modeling tuple dependencies in
probabilistic data is proposed in Sen and Deshpande [2007]. For representing the inde-
terministic deduplication result, however, only a modeling of a specific kind of mutual
exclusion, which we denote as complementation, is required.

Definition 1 (Complementation). The tuple sets A = {A1, . . . , Ak} are complement-
ing (short cpl(A)) in a probabilistic database PDB = (W, P), iff their existence are
jointly exhaustive and mutually exclusive events in W. Naturally speaking either all
tuples of A1 exist and none of A2, . . . , Ak that is not in A1, or all tuples of A2 exists and
none of A1, A3, . . . , Ak that is not in A2, and so on: cpl(A) ⇔ (∀I ∈ W) : (∃Ai ∈ A) : Ai ⊆
I ∧ (∀t ∈ ((

⋃
A)−Ai)) : t �∈ I.

3.2.3. Modeling Tuple Dependencies in ULDB. For modeling complementations within the
ULDB model, we use the concept of data lineage and create a specific catalog relation
called tuple dependency-indicator (short Itd). In more detail, for modeling the comple-
mentation cpl({A1, . . . , Ak}) of k x-tuple sets, we create one indicator x-tuple i ∈ Itd with
k alternatives so that

∑
j∈{1,...,k} p(ij) = 1. Whereas the x-tuples of the first set have a

lineage to the first alternative of i, the x-tuples of the second set have a lineage to its
second alternative, and so forth. Note, in such cases, the new lineage conditions hold
for the whole x-tuple and hence for all of its alternatives. Thus, we consider lineage on
x-tuple granularity.

Because the alternatives of i are mutually exclusive, this dependency holds for the
x-tuple sets, too. Due to the fact that i is not maybe, one of the x-tuple sets exists
for sure. In other words, we use the complementation of x-tuple alternatives to model
complementing sets of x-tuples.

Since in data lineage the presence of alternatives can be negated (e.g., ¬(i, 1)), the-
oretically instead of k only k − 1 indicator alternatives are sufficient. In this case,

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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9:8 F. Panse et al.

Fig. 5. Modeling cpl({{t1, t2}, {t12}}) in RX (left) with the indicator relation Itd (right).

the indicator tuple becomes maybe and the fact that one x-tuple set must exists is
modeled by the used negation. Nevertheless, for query-processing reasons, it is desir-
able to minimize the complexity of lineage formulas. Thus, we use negation only for
modeling mutual exclusions between two tuple sets (k = 2). Otherwise, we always use
k indicator alternatives.

As an example, we consider two certain tuples (x-tuples with one alternative) t1 and
t2 of a relation R, which are duplicates with a probability of 60%. To model the two
possible worlds resulting from this uncertain duplicate decision, we have to ensure
that either the tuples t1 and t2 or the merged tuple t12 =μ({t1, t2}) belong to the resul-
tant x-relation RX . To represent this complementation, we need an indicator x-tuple
i1 of the catalog relation Itd having the single alternative i11 = 1 with a probability
of 40%. By creating the lineages λ(t1), λ(t2) and λ(t12) as depicted in Figure 5, we can
guarantee that always one of these x-tuple sets exist, but we can exclude that both
x-tuple sets belong to a same possible world. In our case, all source tuples are cer-
tain. Thus, the probabilities of t1, t2 and t12 result in p(t1) = p(t2) = p(i11) = 0.4 and
p(t12) = 1 − p(i11) = 0.6.

3.2.4. Querying Probabilistic Data. Querying probabilistic data has been extensively
studied in the past and is still an active field of research [Dalvi and Suciu 2007; Koch
2008, 2009; Sarma et al. 2008; Suciu et al. 2011]. In general, queries on probabilistic
data can be evaluated in an intensional or an extensional manner [Suciu et al. 2011].
The principle of intensional query semantics is to build a propositional formula (like
the ULDB’s lineage) for each result tuple during query evaluation and then to compute
probabilities based on these formulas and the source data in a subsequent step. In con-
trast, in extensional query semantics, probability computation is directly included in
query evaluation. This, semantics is more efficient, but correct probabilities can only be
ensured for some specific classes of queries (see concept of “safe queries” in Dalvi and
Suciu [2007]). Probability computation of intensional queries is based on probabilistic
inference and can be performed exactly, for example, by variable elimination [Dechter
1996], or roughly by approximation techniques [Koch 2008] (e.g., by Monte-Carlo es-
timation [Karp and Luby 1983]). In our research, we focus on the two probabilistic
databases Trio [Widom 2009] and MayBMS [Koch 2009] and hence base ourselves on
the manuals for TriQL2 (The Trio Query Language) and MayBMS-SQL3. Trio com-
putes probabilities by exploiting the result tuples’ lineages and hence uses intensional
query semantics [Sarma et al. 2008]. MayBMS provides techniques for both seman-
tics (intensional and extensional) [Koch 2009]. We consider querying indeterministic
deduplication results in Section 6.

4. PROBLEM DESCRIPTION AND MOTIVATION

The use of deterministic deduplication presented in Section 3.1 results in an elemen-
tary problem to solve (for illustration see Figure 6): The greater the distance between
the two thresholds Tλ and Tμ, the lower is the number of false decisions (sum of yellow

2http://infolab.stanford.edu/∼widom/triql.html
3http://maybms.sourceforge.net/
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Fig. 6. Trade-off between effectiveness and human effort [Batini and Scannapieco 2006].

areas), but the higher is the number of possible matches which have to be resolved by
domain experts (red area). In general, for financial and processing-time-based reasons,
clerical reviews have to be reduced to a minimum. Nevertheless, data of high quality
result only from an effective deduplication. As a consequence, in existing approaches
a trade-off between the effectiveness of the deduplication process and the human ef-
fort resulting from clerical reviews has to be accepted. This trade-off, however, is not
required if a probabilistic target model is used. Instead, uncertain decisions can be
handled indeterministically and both, the number of false decisions as well as human
effort, can be largely reduced.

This problem goes hand in hand with three other challenges:

(1) In many applications (e.g., dynamic data integration) a full-automatic deduplica-
tion is required (Tλ = Tμ). Whatever a value for Tλ is used, always a single world
results which is selected without the help of human expertise and hence must not
be the most probable. As shown in Figure 6, the number of false decisions grows
extremely in this situation. In contrast, by using an indeterministic approach the
deduplication process can be fully automatized without accepting such a high rate
of false (un)matches as it results from a deterministic one, because multiple possi-
ble worlds are considered.

(2) In general, resolving uncertain decisions is extremely costly in terms of time. As a
rough guide, 10% of duplicate decisions cause 90% of the required processing time.
Thus, the whole integration process need not become blocked because of a small
amount of ambiguous matches that need clerical review. By using an indetermin-
istic handling of uncertain decisions, the uncertainty of the ambiguous matches is
intermediately modeled in the resultant data and can be resolved later after the
integration process is finished (see the concept of good-is-good-enough integration
in de Keijzer and van Keulen [2008]).

(3) In a deterministic approach, a domain expert is always forced to decide. All-
knowing experts, however, are not a realistic assumption. In contrast, even experts
are often not aware about the real-world state. As a consequence, in ambiguous sit-
uations, experts only have the choice between making an uncertain decision or to
spend more time for further investigations. Both options, however, are not desir-
able in many deduplication processes.

5. INDETERMINISTIC DEDUPLICATION

The problems we have stated in the previous section arise, because in decision mod-
els (see Section 3.1) uncertainty is ignored during the classification of tuple pairs into
M, U (or P) (Step 2). Such classifications, however, are not enforced, if a probabilis-
tic target model is used. In contrast, if similarity between tuples can be mapped to
the probability that both tuples are duplicates (in the following, denoted as matching
probability), probabilities of possible worlds can be derived.

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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Fig. 7. Execution phases of a(n) (in)deterministic deduplication process.

Fig. 8. General representation of the extended tuple matching phase.

As intuitively known and as formally examined in Appendix D, due to the high num-
ber of resultant possible worlds an indeterministic handling of all uncertain decisions
(full-indeterministic approach) is usually not manageable. For that reason, we intro-
duce some semi-indeterministic strategies that carefully reduce the number of inde-
terministically handled decisions in Section 5.3. Since such strategies can be seen as
restrictions on the full-indeterministic approach, we present the latter first.

5.1. Full-Indeterministic Approach

In the full-indeterministic approach, the three phases, decision model, duplicate clus-
tering and tuple merging, are replaced by three other phases (see Figure 7). Simi-
lar to the first decision model step, initially for each tuple pair a tuple matching
is applied, where after similarity computation a matching probability is computed
(Phase 1). Based on the computed matching probabilities a set of possible worlds is
derived (Phase 2). Finally, depending on the used target model, a probabilistic result
relation representing all these worlds needs to be generated (Phase 3). Tuple merging
is included in the phase of possible world creation.

5.1.1. Extended Tuple Matching (Phase 1). In the tuple matching phase, two tuples are
first matched by computing their tuple similarity (Figure 8, Step 1). As known from
the first decision model step (see Figure 2), the similarity of two tuples ti and tj results
from applying a matching function ϕ(�cij).

Since we want to interpret matching results as the probability that both tuples are
duplicates (P(t1 =id t2), short p(ti, tj)), a mapping from tuple similarity to matching
probability (sim2p-mapping) is required (Figure 8, Step 2). In the following, the func-
tion used for the sim2p-mapping is denoted as ρ:

ρ : R →[ 0, 1] p(ti, tj) = ρ(sim(ti, tj)). (2)

In several decision models, for example, identification rules (e.g., Hernández and
Stolfo [1995]), the similarity of two tuples is defined as the certainty that both tuples
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Indeterministic Handling of Uncertain Decisions in Deduplication 9:11

Fig. 9. The sample M-graph M = (N, E, γ ) with N = {t1, t2, t3}, E = {{t1, t2}, {t1, t3}, {t2, t3}}, γ = {{t1, t2} �→
0.8, {t1, t3} �→ 0.4, {t2, t3} �→ 0.3}.

are duplicates. Thus, in these cases, tuple similarity can be directly used as matching
probability. Other sources of matching probabilities are discussed in Section 5.2.

5.1.2. Possible World Creation (Phase 2). In the second phase, a set of possible worlds
is derived from the matching probabilities in four steps (algorithm for some of the
individual steps are presented in Appendix C). For reasons of presentation, we define
possible world creation as a graph-based process. For this purpose, we define two kinds
of graphs: a matching-graph representing tuple matching results and world-graphs
each representing a conceivable world.

Generation of the Initial Matching-Graph. A matching-graph is a weighted undi-
rected graph, where each node represents a base-tuple. Two nodes are connected with
an edge, if the corresponding tuples have been matched in the tuple matching phase.4
The weight of an edge denotes the probability that the connected tuples are duplicates.
An exemplary matching-graph is shown in Figure 9.

Definition 2 (Matching-Graph). A matching-graph (short M-graph ) is a triple M =
(N, E, γ ) where N is a set of nodes, E ⊆ {{a, b} | a, b ∈ N} is a set of undirected edges
and γ is a weight function γ : E →[ 0, 1] denoting matching probabilities.

We call an edge to be uncertain, if its weight is between 0 and 1 (γ ∈ (0, 1)). The set
of definite positive edges (γ = 1) is denoted by E+, the set of definite negative edges
(γ = 0) is denoted by E− and the set of uncertain edges is denoted by E?.

Generation of World-graphs. A world-graph is an unweighted undirected graph rep-
resenting one conceivable world where edges denote that the associated tuples are
declared to be duplicates.

Definition 3 (World-Graph). A world-graph (short W-graph) is a triple G =
(N, E, P) where N is a set of nodes, E ⊆ {{a, b} | a, b ∈ N} is a set of undirected edges
and P is the probability of the corresponding world.

From the initial M-graph a set of W-graphs can be derived by removing all definite
negative edges and by eliminating each uncertain edge by either removing it or replac-
ing it by a definite positive edge. The process of W-graph generation is formalized by
the mapping ν : M �→ 2G , where M is the set of all possible matching-graphs and 2G
is the power set of all possible world-graphs. Let M = (N, E, γ ) be the initial M-graph,
the mapping ν is defined as:

ν(M) =
⋃

K∈2E? {(N, E+ ∪ K,
∏

e∈K
γ (e)

∏
e∈E?\K

(1 − γ (e)))} (3)

More illustrative, we exactly create one W-graph for each possible combination K ∈
2E?

of uncertain edges. All W-graphs have the same nodes (the set N) as the initial M-
graph and contain each edge e ∈ E+. The probability of each W-graph results from the

4In processes without search space reduction, the matching-graph is complete.
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Fig. 10. The worlds I1-I8 with their corresponding W-graphs.

weights of the edges belonging to this W-graph and the inverse weights of the edges
not belonging to this W-graph.

As an example, we consider the M-graph M from Figure 9. The base-tuples t1, t2
and t3 are pairwise compared with each other and have the matching probabilities
p(t1, t2) = 0.8, p(t1, t3) = 0.4, and p(t2, t3) = 0.3. Based on these probabilities, eight
worlds along with their corresponding W-graphs can be derived (see Figure 10).

Removing Inconsistent World-Graphs. By definition, identity is a transitive relation.
Worlds in which transitivity is not valid are considered impossible.

Definition 4 (Possible World). A world I is possible, if and only if
(∀t1, t2, t3 ∈ I) : t1 =id t2 ∧ t1 =id t3 ⇒ t2 =id t3.

A W-graph is called consistent, if it represents a possible world. An M-graph is con-
sistent, if at least one consistent W-graph can be derived from it.

THEOREM 1. A W-graph G = (N, E, P) that represents world I is consistent,
if and only if G is equivalent to its transitive closure: G = G∗.

PROOF. (⇒) Assumption: G �= G∗, but G is consistent.
⇒ (∃t1, t2, t3 ∈ N) : {t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} �∈ E
⇒ (∃t1, t2, t3 ∈ I) : t1 =id t2 ∧ t1 =id t3 ∧ ¬(t2 =id t3)
⇒ the world I is impossible
⇒ G is inconsistent

PROOF. (⇐) Assumption: G is inconsistent, but G = G∗.
⇒ the world I is impossible
⇒ (∃t1, t2, t3 ∈ I) : t1 =id t2 ∧ t1 =id t3 ∧ ¬(t2 =id t3)
⇒ (∃t1, t2, t3 ∈ N) : {t1, t2}, {t1, t3} ∈ E ∧ {t2, t3} �∈ E
⇒ G �= G∗

THEOREM 2. An M-graph M = (N, E, γ ) is consistent,
if and only if (∀t1, t2, t3 ∈ N) : γ ({t1, t2}) = γ ({t1, t3}) = 1 ⇒ γ ({t2, t3}) > 0.

ACM Journal of Data and Information Quality, Vol. 4, No. 2, Article 9, Publication date: March 2013.
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Indeterministic Handling of Uncertain Decisions in Deduplication 9:13

PROOF. (⇒) Assumption: (∃t1, t2, t3 ∈ N) : γ ({t1, t2}) = γ ({t1, t3}) = 1
∧ γ ({t2, t3}) = 0, but M is consistent.
⇒ (∀G = (N′, E′, P) ∈ ν(M)) : {t1, t2}, {t1, t3} ∈ E′ ∧ {t2, t3} �∈ E′
⇒ (∀G ∈ ν(M)) : G is inconsistent
⇒ M is inconsistent

PROOF. (⇐) Assumption: M is inconsistent, but
(∀t1, t2, t3 ∈ N) : γ ({t1, t2}) = γ ({t1, t3}) = 1 ⇒ γ ({t2, t3}) > 0.
⇒ (∀G ∈ ν(M)) : G is inconsistent
⇒ (∀G= (N′, E′, P) ∈ ν(M)) : (∃t1, t2, t3 ∈ N′) : {t1, t2}, {t1, t3} ∈ E′ ∧ {t2, t3} �∈ E′
⇒ (∃t1, t2, t3 ∈ N) : γ ({t1, t2}) = γ ({t1, t3}) = 1 ⇒ γ ({t2, t3}) = 0

In the tuple-matching phase, tuple pairs are matched independently. Thus, worlds
are created from independent considerations and hence can be impossible. Each incon-
sistent W-graph represents an impossible world and hence is removed from the set of
considered graphs. In other words, dependencies between individually taken duplicate
decisions are introduced by only considering consistent W-graphs.

We consider the example from Figure 10. Due to the transitivity of identity is vio-
lated, three ({I5, I6, I7}) of the eight worlds are definitely not the true world and hence
the W-graphs G5, G6, and G7 have to be removed from further considerations.

After removing inconsistent W-graphs (impossible worlds), the probabilities of the
remaining W-graphs (worlds) no longer sum up to 1. Therefore, the probabilities of
the remaining W-graphs are conditioned with the event B that the true world must
be a possible world (the probability of B is the overall probability of all remaining W-
graphs). For instance, in our example, the conditioned probability of G1 (and hence I1)
results in:

P(G1 | B) = P(G1)/P(B) = 0.084/0.608 = 0.138.

Generation of Possible Worlds. Finally, from each W-graph exactly one possible
world has to be derived. Since all considered W-graphs are consistent, each W-graph
G = (N, E, P) can be divided into m maximally connected components {G1, . . . , Gm}. A
component with only one node represents a base-tuple that is apparently not a dupli-
cate, hence, it is included in the resultant world as it is (e.g., tuple t3 in I2). The tuples
associated with a component consisting of multiples nodes have to be merged into one
result tuple by using the merging function μ (e.g., in I2 the tuples t1 and t2 are merged
to t12). Thus, from a given component Gi = (Ni, Ei) with Ni = {t1, . . . , tk}, the tuple
tGi = μ({t1, . . . , tk}) is derived.

Since all possible worlds (set W) are mutually exclusive and one of these worlds must
exist, the tuple dependency cpl(W) is implicitly given.

5.1.3. Generation of Probabilistic Data (Phase 3). In the last phase, a probabilistic
database representing the resultant set of possible worlds needs to be generated. That
generation, however, depends on the used target model.

As described in Section 3.2.2, for representing the resultant set of possible worlds
within the ULDB model, we use an indicator tuple i ∈ Itd with |W| alternatives. The
resultant x-relation RX contains each tuple belonging to at least one possible world.
The new lineage for each of these tuples results in the disjunction of the indicator’s
alternatives representing the worlds this tuple belongs to. A complete algorithm for
x-relation generation is shown in Appendix C.

For our example, we create an indicator x-tuple i1 ∈ Itd with one alternative for each
of the five possible worlds {I1, I2, I3, I4, I8} and generate the lineage for each tuple in
the resultant x-relations RX as described in Section 3.2.2 (see Figure 11).
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Fig. 11. X-relation RX (left) and x-relation Itd (right).

5.2. Sources of Matching Probabilities

The effectiveness of the indeterministic deduplication essentially depends on the taken
matching probabilities. Nevertheless, most often, deriving adequate probabilities from
tuple similarities is not trivial. In many cases, tuple similarity is directly derived from
the similarities of their attribute values. The similarity sim(a1, a2) = 0.5 of two at-
tribute values a1 and a2, however, does not necessarily imply that both values rep-
resent the same real-world property with a probability of 50%. In contrast, often the
opposite is true. For example, it is very unlikely that “Sabine” and “Janina” both rep-
resent the first name of the same person. Using the normalized Levenshtein-distance,
however, the similarity of both words is 0.5.

In general, the more similar two tuples are, the higher is the probability that they
are duplicates. Thus, a sim2p-mapping must be monotonically nondecreasing.

Some possible sources of matching probabilities are the following.

(1) Specifications Based on Empirical Analyses. To receive adequate mappings from
tuple similarity to matching probability, statistics can be used. For example, the
probability that the tuples ti and tj are duplicates can be defined as the conditional
probability P(ti =id tj|sim(ti, tj)), which can result from empirical analysis on la-
beled sample (training) data. Since the resultant function should be nondecreasing
some further curve-fitting modification steps need to be applied. Nevertheless, this
approach is only possible if labeled sample data is available. Moreover, the resul-
tant sim2p-mapping is extremely domain-dependent. An example of a mapping
function resulting from an empirical analysis on a labeled data set is depicted in
Figure 15(ii).

(2) Specifications Based on Threshold Distances. If the indeterministical handling is
only applied to possible matches (see P-restriction in Section 5.3), only tuple pairs
with a similarity sim(ti, tj) ∈ (Tλ, Tμ] need to be considered. In this case, matching
probability can be automatically derived from the distances of the tuple similarity
to the two thresholds Tλ and Tμ:

p(ti, tj) = 1 − Tμ − sim(ti, tj)

Tμ − Tλ

. (4)

(3) Manual Specifications. In cases, clerical reviews are used to evaluate possible
matches, but domain experts do not know with certainty whether tuples are dupli-
cates or not, the matching probabilities can be manually specified by these experts
during their review (see manual-restriction in Section 5.3).

All the methods we have discussed here derive matching probabilities from single-
value tuple similarities. However, uncertainty in deduplication does not only arise
in the classification step by not knowing which threshold classifies best, but is also
present in choosing methods for matching attribute values and/or computing tuple
similarities. Consequently, instead of deriving the matching probability of a tuple pair
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from a single similarity value, we could derive it from a set of similarity values, where
each value is weighted by its believability. These similarity values as well as their be-
lievabilities can be computed by the weighted use of several attribute-value matching
methods and/or several tuple-similarity computation methods. The matching probabil-
ity of a specific tuple pair can then be finally derived by applying a single threshold
classification or a two-threshold classification to each of the pair’s similarity values.

5.3. Semi-Indeterministic Approaches

To make the indeterministic approach feasible in practice, we propose five semi-
indeterministic approaches in which only the most probable worlds are taken into
account. In the first four approaches, the initial M-graph is modified. Thus, the num-
ber of resultant worlds is downsized by reducing the set of uncertain edges and hence
by reducing the set of indeterministically handled decisions. In contrast, in the fifth
approach, the number of W-graphs is reduced by modifying the W-graph-generation
mapping ν. An important point is that these approaches are not considered to be com-
petitors, but are designed for different scenarios and partially can be combined with
each other.

In the end, the probabilities of all worlds must sum up to 1. Thus, the actual proba-
bilities of the resultant worlds are conditioned and hence may be distorted. However,
the result is still more accurate than the one world resulting from a deterministic
approach.

The five semi-indeterministic approaches are:

(1) (α, β)-Restrictions. In order to filter out the most improbable worlds, only the most
uncertain duplicate decisions have to be considered in an indeterministic way. The
uncertainty whether two tuples are duplicates is maximal, if their matching prob-
ability is 0.5. For that reason, we define the two thresholds α < 0.5 and β ≥ 0.5.
Probabilities lower than α are then initially mapped to 0 and probabilities greater
or equal to β are initially mapped to 1. Thus, only decisions with probabilities
between α and β are handled indeterministically. In contrast, decisions with prob-
abilities outside this range are quite evident and can be deterministically handled
without running a high risk of failure. On the whole, depending on α and β, the
number of uncertain decisions (and hence the number of uncertain edges in corre-
sponding M-graphs) can be effectively reduced by this way (see our experimental
results in Section 7). To make sure that the most probable worlds result, we always
use β = 1 − α.

(2) P-Restrictions. In this approach, we limit the indeterministic deduplication on tu-
ple pairs classified into the set of possible matches (P). Matching probability can
be suitably computed by regarding Tλ and Tμ (see Section 5.2). Naturally, the ef-
fectiveness and correctness of a P-restriction is lower than evaluating the tuple
pairs in P by clerical reviews. However, a P-restriction is a full-automatic approach
and hence no effort of domain experts is required. The main difference to (α, β)-
restrictions is that at first the set of indeterministically handled decisions is re-
stricted and then probabilities are computed. On the contrary (α, β)-restrictions
are based on probability values and hence require a sim2p-mapping resulting from
empirical analyses. Note, by considering tuple similarity as matching probability
(p(ti, tj) = sim(ti, tj)), a P-restriction produces the same worlds (but not the same
probabilities) as an (α, β)-restriction with α = Tλ and β = Tμ.

(3) Manual-Restrictions. During clerical reviews, it could happen that responsi-
ble experts do not know with certainty whether two tuples are duplicates or
not. In such cases, experts can consider both choices by handling the decision
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Fig. 12. Bipartite M-graph M1 resulting from a context-based restriction on the two duplicate-free relations
R1 and R2 (left) and the resultant set of its bipartite consistent W-graphs (right).

indeterministically. By doing so, the indeterministic approach is only applied to
individual tuple pairs and the number of resultant worlds remains low.

(4) Context-Based-Restrictions. During an integration process additional context in-
formation on the given sources can be available. Sometimes, this information can
be used to restrict the set of uncertain decision. For instance, one or more source
relations can be known (no heuristic, because certain information is used) or as-
sumed (heuristic) to be duplicate-free. Thus, with respect to these relations instead
of intrasource duplicates only intersource duplicates need to be detected. In this
case, tuples originating from same sources do not need to be compared and cor-
responding matching probabilities can be automatically set to 0. This enormously
decreases the number of worlds that have to be considered in the subsequent steps.
As an example, we consider the two relations R1 = {t1, t2, t3} and R2 = {t4, t5}. Both
relations are known to be duplicate-free. For that reason, in the corresponding M-
graph M1 (see Figure 12) all edges connecting two nodes representing tuples of
the same source are weighted with 0 (for simplification, these edges are removed
in Figure 12). Thus, by using the available context information the initial M-graph
can be restricted to a bipartite graph. As a consequence, each W-graph is a bipartite
graph, too, which is only consistent, if each node is only connected with at most one
other node. This in turn reduces the number of considered W-graphs enormously.

(5) HC-Restrictions. Restrictions on hierarchical tuple clustering are already known
from Beskales et al. [2009]. In our approach, such restrictions can be achieved by
modifying the original W-graph-generation mapping ν that we have introduced in
Eq. (3). One of several possible HC-restrictions is to consider an uncertain edge
only then, if all other edges having a weight greater or equal than the edge’s
weight have been considered as well, instead of generating one W-graph for each
possible combination of uncertain edges. Let M = (N, E, γ ) be an M-graph. The
previously mentioned HC-restriction can be realized by introducing the parameter
τ ∈ {γ (e)|e∈E}. For each τ , a W-graph is generated by only regarding edges having
a weight greater than or equal to τ . A corresponding W-graph-generation mapping
νHC is defined as:

νHC(M) =
⋃

τ∈{γ (e)|e∈E}
{(N, K = {e ∈ E|γ (e) ≥ τ },

∏

e∈K

γ (e)
∏

e∈E\K

(1 − γ (e)))}.

Using this HC-restriction strategy, from the M-graph M shown in Figure 9 only
the W-graphs {G1, G2, G5, G8} are derived. As a consequence, the hierarchical clus-
tering with the three consistent W-graphs {G1, G2, G8}, as illustrated in Figure 13
results. Instead of a final conditioning, the range of τ leading to a specific W-graph
could be taken as the graph’s resultant probability (e.g. P1 = 0.2, P2 = 0.5, and
P8 = 0.3).
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Fig. 13. Hierachical tuple clustering.

Table I. Use Cases of the Different Semi-Indeterministic Approaches

Approach Source of Probability Use Case

(α, β)-restriction empirical analyses full-automatic with training data
P-restriction threshold distance full-automatic without training data
Manual-restriction manual specification semi-automatic with clerical reviews
Context-based-restriction ALL ALL with additional context information
HC-restriction ALL ALL

The main benefit of restricting the indeterministic deduplication result to hierar-
chical clusterings is its low computation complexity. By using the mapping ν for
W-graph-generation, from an M-graph with k uncertain edges 2k W-graph result.
In contrast, the mapping νHC used for creating hierarchical clusterings generates at
most k + 1 W-graphs. Thus, an HC-restriction performs well even for M-graphs (or
partial M-graphs, see Section 5.3.2) with many uncertain edges (see experimental
results in Appendix F).
Since an HC-restriction concerns the W-graph-generation mapping instead of
changing matching probabilities, it can be combined with other restriction tech-
niques, as for example, an (α, β)-restriction.

Note, by using P-restrictions or manual-restrictions the classification step is addi-
tionally included in the extended tuple matching phase.

As mentioned previously, these strategies do not compete with each other, but are
possible alternatives, each having a different best use case as listed in Table I. (α, β)-
restrictions are based on given matching probabilities and hence are particularly suit-
able for cases where training data were given for empirical analyses. In contrast, due
to matching probabilities can be completely derived by threshold distances, dedupli-
cation processes using P-restrictions can be performed automatically without labeled
training data. Manual restrictions are designed for unburden experts to come to ul-
timate decisions in clerical reviews and hence to avoid doubtful decisions in semi-
automatic deduplication processes. HC-restrictions can be combined with any other
strategy to improve efficiency. Thus, they can be used in every scenario, independent
from the source of matching probabilities. Context-based-restrictions enable the inclu-
sion of additional context information and hence can be used to improve effectiveness
and efficiency. They can be combined with any other strategy.

5.3.1. Consistency. By using a semi-indeterministic approach, deterministically taken
decisions can be contradictory. In general, in an (α, β)-restriction, the closer α and β,
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Fig. 14. Decomposition of an M-graph M′ in its independent partial M-graphs M′
1 and M′

2.

the higher is the probability that the initial M-graph is inconsistent and hence all
resultant worlds are per se impossible. In such cases, repair operations are required
for ensuring the consistency of the resultant M-graph with minimal effort and minimal
decision modifications (see future goals in Section 8).

Let M1 = (N1, E1, γ1) be a consistent initial M-graph that has been restricted to the
inconsistent M-graph M2 = (N2, E2, γ2). A simple method to repair M2 is to sort all
definite edges e ∈ (E+

2 ∪ E−
2 ) by the certainty of their original weight c(e) = |γ1(e) − 0.5|

in ascending order and then modify edge by edge from the top of the sorted list from
definite to uncertain until the modified M-graph is consistent.

5.3.2. Decomposition of Matching-Graphs. The more the set of indeterministically han-
dled decisions is restricted, the larger is the proportion of edges weighted with 0. As
a consequence, the usage of a semi-indeterministic approach enables a splitting of
the initial M-graph into multiple independent subgraphs (called partial M-graphs5).
In this case, for each of the partial M-graphs the W-graph-generation mappings ν
(or νHC respectively) can be applied independently. Thus, the number of resultant
W-graphs can be dramatically downsized and hence the resultant possible worlds are
represented in a more succinct way. Since the decisions of the individual subgraphs
are independent to each other, instead of complementations of whole worlds, only
complementations of small parts of these worlds result. This in turn extremely reduces
the number of required indicator alternatives. An example for decomposing an initial
M-graph is shown in Figure 14. Note that |ν(M′)| = |ν(M′

1)| × |ν(M′
2)| = 3 · 2 = 6 and

|ν(M′
1)| × |ν(M′

2)| > |ν(M′
1)| + |ν(M′

2)|.

5.3.3. Complexity. All proposed techniques for semi-indeterministic restrictions may,
in the worst case, eliminate not even one uncertain edge and hence both full- and
semi-indeterministic approaches have theoretically the same complexity. However, as
we will see in the experimental results presented in Section 7, even marginal restric-
tions come nowhere near the worst case, because they eliminate the majority of the
uncertain edges rather than none at all. Since the number of uncertain edges k is
the dominant factor in the complexity formulas (see Appendix D), it means that, in
practice, a semi-indeterministic approach moves us into an entirely different area of
complexity curve, an area we show is well manageable in practice.

5Each partial M-graph can be considered as a graphical representation of a factor, as defined in Sen and
Deshpande [2007]
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6. QUERYING INDETERMINISTIC DEDUPLICATION RESULTS

We identified four classes of applications for which querying indeterministic dedupli-
cation results is of use. Each of them is based on a different type of queries:

(1) Applications Needing Concrete Absolute Query Results. Concreteness can be
achieved by querying the most probable world. This is similar to querying a de-
terministic deduplication result. Q1 is a sample TriQL-query computing the most
probable world by using horizontal subqueries on indicator tuples:

Q1: SELECT *
FROM R X t, Ind i
WHERE Lineage(t,i)

AND (i.id,i.val) IN (SELECT *
FROM Ind i
WHERE Conf(i) = [max(Conf(*))]);

(2) Applications Interested in Query Results that Are Dead Certain (see the concept
of consistent query answering [Arenas et al. 1999]). By querying deterministic
deduplication results, such a certainty cannot be ensured, because maybe some
of the duplicate decisions were actually not made with absolute certainty, but the
system does not know which of them. Q2 is a sample TriQL-query computing all
persons who definitely have a nonunique name. For this query, a consideration of
uncertainty is especially important in the evaluation of the subquery predicate
EXISTS, if the result should be absolutely certain:

Q2: SELECT *
FROM (SELECT *

FROM Person t1
WHERE EXISTS (SELECT *

FROM Person t2
WHERE t1.tid != t2.tid

AND t1.name = t2.name))
WHERE Conf(*) = 1.0;

(3) Applications Where It Is Useful to Present/Visualize the Uncertainty Around
Certain Data Items, may pose queries to return uncertain results (e.g., by using
the TriQL-predicate Conf ()). Moreover, in some applications, it could be of interest
to distinguish certain duplicate decisions from ambiguous duplicate decisions.
Q3 is a sample TriQL-query returning all tuples that are involved in duplicate
decisions with less certainty (the probability of each choice is lower than 0.6),
ordered by the probabilities of the corresponding choices:

Q3: SELECT *
FROM R X t, Ind i
WHERE Lineage(t,i)

AND i.id IN (SELECT id
FROM Ind
WHERE [max(Conf(*))] < 0.6)

ORDER BY Confidences ASC;

(4) Analytical Applications (such as data mining) are statistical in nature themselves,
so they can process the uncertain data directly. For that purpose, computing
aggregation values (e.g., the expected number) can be required. Q4 is a sample
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TriQL-query computing the expected value, the minimal value (worst case), and
the maximal value (best case) of the sales for a company’s products:
Q4: SELECT Esum(value) AS ExpSale, Lsum(value) AS MinSale, Hsum(value) AS MaxSale

FROM Sale
GROUP BY product;

Note, traditional (vertical) subqueries and subquery-predicates are not supported
by the currently available Trio version, but all these queries can be also formulated
by using joins and auxiliary tables. However, we use these constructs in our examples,
because they are part of the TriQL manual and we want to define queries as short as
possible. Equivalent and working queries are listed in Appendix E.

7. EXPERIMENTAL EVALUATIONS

To demonstrate the efficiency and effectiveness of semi-indeterministic approaches,
we run two experiments each with different (α, β)-restrictions on an online cd dataset6

with 9,763 items. To obtain matching probabilities, we split the data into two parts.
The first part (5000 items) was used as labeled sample data to determine an adequate
sim2p-mapping (see Section 5.2). The second part (4763 items) was used as actual
source data. To match attribute values, we used the normalized Levenshtein distance.
To compute tuple similarity, we used an ordinary distance function based on the simi-
larities of the values of the three attributes a1=dtitle, a2=artist, and a3=category:

sim(ti, tj) = 0.5 · �cij(a1) + 0.4 · �cij(a2) + 0.1 · �cij(a3).

7.1. Experiments on Efficiency

To evaluate the efficiency also for very small restrictions (e.g., α = 0.01), we only use
2000 items of the second data part for these experiments. The experimental results are
shown in Table II and are graphically presented in Figure 15. We use M-graph decom-
position to improve efficiency, but perform all experiments by using the nonhierarchi-
cal W-graph-generation mapping ν. Experimental results of using an HC-restriction
for improving efficiency further on are reported in Appendix F.

As depicted in Figure 15(i), the similarity of most tuple pairs was very low (98.7%
were lower than 0.35 and only 0.002% were higher than 0.7). Moreover, as shown in
Figure 15(ii), only high similarity implied an appreciable value of matching probability
(almost all duplicates of the labeled sample data had a similarity higher than 0.7).
The number of considered worlds and the number of W-graphs could be drastically
downsized by only taking the most uncertain decisions into account. For example, only
a small restriction of the area of indeterministically handled decisions from (0, 1) to
(.1, .9) was required to decrease the number of uncertain edges by almost a factor of
one hundred thousand (see Figure 15(iii)).

As expected, the complexity decreased with a shrinking area of indeterministically
handled decisions. A (0, 1)-restriction is a full-indeterministic approach having an un-
manageable complexity, even if not as complex as the worst case predicted in Ap-
pendix D (only each fourth edge was uncertain). In contrast, a (.5, .5)-restriction is
equal to a full-deterministic approach. Therefore, naturally no uncertain edge and
hence only one W-graph as well as only one possible world resulted. Since 16 dupli-
cates were detected, the resultant x-relation contains 1984 tuples.

In general, most edges had low weights. Thus, the number of uncertain edges
decreased dramatically, if the area of indeterministically handled decisions was
marginally reduced. In contrast, a restriction of this area from α = 0.05 to α = 0.4

6http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets/cd datasets.html
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Table II. Complexity and Uncertainty of Several (α, 1 − α)-Restrictions with M-graph Decompostion

ααα
#unc. #possible #world- #result #ind.

Dens. Dec.
runtime

edges worlds graphs tuples altern. [sec.]

0 577004 → ∞∗ → ∞∗ → ∞∗ → ∞∗ → 1∗ → 0∗ → ∞∗
.0165 98 3.6 · 1023 133296 5739 1194 0.0151 0.9915 18.519
.0175 95 1.0 · 1023 4288 2349 227 0.0153 0.9911 10.549
.05 42 1.7 · 1011 2011 2036 51 0.0087 0.9939 2.519
.1 30 1.7 · 108 1996 2019 33 0.0067 0.9951 1.845
.4 2 4 1985 1987 2 0.0005 0.9994 0.969
.5 0 1 1984 1984 0 0 1 0.966

*Due to our limited resources, processing a full-indeterministic approach was not feasible.

Fig. 15. Experimental results of several (α, β)-restrictions with M-graph decomposition.

only insignificantly reduced this number further on. The number of resultant possi-
ble worlds imploded exponentially with a shrinking indeterministic area. In contrast,
the number of resultant tuples and the number of required indicator alternatives de-
creased proportionally with a decreasing number of uncertain edges (see Table II).

Runtime (we measured runtime starting from tuple matching results) increased no-
ticeably for very small restrictions (α < 0.02), but was still of an acceptable size for
all experiments. Note that all experiments were performed by a prototypical imple-
mentation that was not tuned so far. Thus, absolute runtime values do not bring any
scientific value and can be only used to give a feeling of complexity.

As shown by these results, the number of edges weighted with 0 increased enor-
mously, if a semi-indeterministic approach is used. As mentioned in Section 5.3.2,
the more edges were weighted with 0, the more partial M-graphs the initial M-graph
could be decomposed into. For example, already a small restriction to α = 0.05 was
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sufficient to decompose the initial M-graph into a high number of subgraphs (1952
partial M-graphs). The most of these partial M-graphs (1913) were single nodes. For
that reason, only 2011 partial W-graphs resulted. This in turn reduced the required
number of indicator tuple alternatives from 1.7 · 1011 (the number of possible worlds)
to 51. In contrast, in a full-indeterministic approach instead of 1913 only 12 tuples
could definitely be excluded to be duplicates. In general, in a full-indeterministic ap-
proach, the initial M-graph can be only limitedly decomposed.

To score the uncertainty of the probabilistic result, we adopted the two measures
Uncertainty Density (Dens.) and Answer Decisiveness (Dec.) from de Keijzer and van
Keulen [2007] by considering each partial M-graph as a choice point and its consistent
partial W-graphs as its mutually exclusive alternatives. The Uncertainty Density (An-
swer Decisiveness) is evaluated to 0 (1) for a databases that contains no uncertainty. As
you can see, for α ≥ 0.05, the uncertainty was very low, because the majority of base-
tuples could be classified as nonduplicates with high certainty. Even for α = 0.0165,
the resultant uncertainty was still of a manageable size.

In conclusion, these results demonstrate that the complexity and uncertainty of an
indeterministic approach is already manageable, if the area of indeterministically han-
dled decisions is only marginally restricted.

More detailed results on our experiments on efficiency are listed in Appendix F.

7.2. Experiments on Effectiveness

To evaluate the effectiveness of several (α, 1 − α)-restrictions (FAID1-FAID3), we took
all 4763 items of the second data part as input. Existing adaptations to recall and
precision, such as van Keulen and de Keijzer [2009], insufficiently capture what is
intuitively better for these applications. In general, the meaning of quality depends on
the intended use. Thus, we compared the number of resultant false decisions,7 which,
for example, is an appropriate measure for the quality of consistent query results,
with those resulting from four processes of two ordinary deterministic deduplication
approaches: (1) A process of a full-automatic approach for deduplication (FADD1) as a
benchmark having a single threshold Tλ = Tμ. To obtain an adequate benchmark, we
took the threshold Tλ = 0.78 leading to the best F1-score in the labeled sample data.
(2) Three processes of a semi-automatic approach (SADD1-SADD3) each producing a
temporary set of possible matches requiring clerical reviews. We considered several
threshold settings (each with center 0.78) each resulting in a set P having a realistic
number of clerical reviews. To be independent of the experts’ competence, we assumed
each manual decision to be correct.

As presented in Table III, in comparison to FADD1, the number of false decisions
decreased with a growing size of P. The share of false decisions taken by FADD1, which
was correctly assigned to M or U (denoted as improvement) by SADD1-SADD3, was up
to 50%. However, in reverse, the number of clerical reviews increased as well. For ex-
ample, given the setting P = (0.63, 0.93], 2735 clerical reviews were required. Take
into consideration that these were 0.022% of all matches, which was not much in our
experiment, but which can be tremendous for large data sets (c.a. 1.1M reviews for
100,000 source items). In contrast, by using one of the indeterministic processes FAID1-
FAID3, the number of false decisions was reduced to a large extent without any clerical
review. Even an (.4, .6)-reduction had an improvement of around 23%. A restriction
with α = 0.05 which was still performing efficiently (see Section 7.1) improved the
result of 66.7%, which was higher than the best result of the semi-automatic deter-
ministic approaches.

7We consider a decision to be false, if it was false with absolute certainty, that is, if it was false in every
possible world.
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Table III. Effectiveness of Several Deduplication Approaches Scored by Number of False
Unmatches (FU), Number of False Matches (FM), Number of Clerical Reviews, Number of

Indeterministically Handled Decisions (IhD), and the Resultant Amount of Certainty (Measured
in Answer Decisiveness)

Full-Automatic Deterministic Deduplication (FADD), Tλ = Tμ

Settings FU FM Improv. Reviews IhD Certainty
FADD1 Tλ = Tμ = 0.78 25 35 – 0 0 1.0

Semi-Automatic Deterministic Deduplication (SADD), P = (Tλ, Tμ]

Settings FU FM Improv. Reviews IhD Certainty
SADD1 Tλ = 0.73, Tμ = 0.83 17 26 28.3% 70 0 1.0
SADD2 Tλ = 0.68, Tμ = 0.88 14 20 43.3% 389 0 1.0
SADD3 Tλ = 0.63, Tμ = 0.93 12 17 51.6% 2735 0 1.0

Full-Automatic Indeterministic Deduplication (FAID), (α, 1 − α)-Restriction

Settings FU FM Improv. Reviews IhD Certainty
FAID1 α = 0.4 26 20 23.3% 0 13 0.9973
FAID2 α = 0.2 22 13 41.7% 0 44 0.9966
FAID3 α = 0.05 15 5 66.7% 0 137 0.9957

Of course, by using an indeterministic approach, the resultant data was more accu-
rate, but also more uncertain than by using a deterministic one. To score certainty, we
took the Answer Decisiveness as used in our experiments before. As you can see, the
certainties of our indeterministic results were only marginally reduced. In general, the
extent of indeterministically handled decisions is always a trade-off between accuracy
and certainty and thus, the best configuration setting differs from case to case.

These results demonstrate the effectiveness of our indeterministic approach in gen-
eral, but also show the high potential of using an adequate sim2p-mapping. From the
used sample data, we got a sim2p-mapping of good quality (we have to confess that
this was not always the case). Thus, even if all indeterministically handled decisions
would be pass to a domain expert, the number of clerical reviews for FAID3 (137 re-
views) would be lower than by using SADD2 (389 reviews) despite the fact that the
number of false decisions is reduced as well (improvement 66.7% to 43.3%).

8. CONCLUSION

In this article, we propose an efficient indeterministic approach for deduplication in-
cluding how to represent possible mergings using x-relations [Benjelloun et al. 2006].
The latter requires careful construction of data lineage to faithfully represent the in-
herent tuple dependencies. For reasons of generality and illustration, we first present
a theoretical full-indeterministic approach that we then refine into a set of more practi-
cal semi-indeterministic approaches. For the same reasons, we model the fundamental
part using a graph-based approach and possible world semantics.

The main contributions of this article are: An indeterministic approach for dedu-
plication that is based on the possible world semantics. The approach minimizes the
negative impact (i.e., loss of data quality) resulting from false decisions in ambiguous
circumstances and avoids human effort during the duplicate decisions – clerical re-
views and tuning of thresholds are not that crucial anymore. Moreover, it enables the
usage of traditional probabilistic databases as Trio, which increases the usability of
the resultant data (e.g., for further integration processes) and enables a more powerful
querying than in other indeterministic approaches. Finally, we present techniques for
proper probabilistic interpretation of similarity values.
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We have shown by experiments that even very small and cautious restrictions of the
set of indeterministically handled decisions already reduce the volume of resultant
uncertain data to a manageable size, making indeterministic deduplication feasible in
practice. Moreover, we demonstrate that the number of false decisions resulting from
deterministic approaches with or without clerical reviews can be reduced to a large
extent, if an indeterministic approach is used.

Although feasible, better scalability of deduplication remains a direction for future
research. Another direction is to identify effective and efficient repair strategies for
dealing with an inconsistent initial M-graph (see Section 5.3.1). Furthermore, if dedu-
plication is to be a step in a larger data integration process, it needs to be extended
to probabilistic source data. Moreover it should respect fundamental properties such
as idempotence if data is duplicate-free. Another important aspect is to analyze the
correlation between the amount of uncertainty modeled in the database and the re-
sponse time of different kind of queries. Finally, an essential point of future work is the
design of new well-defined quality metrics for probabilistic data. These are required
for (1) capturing the benefits and drawbacks of probabilistic data with respect to cer-
tain data, (2) working out the most effective parameter settings (e.g. used similarity
measures, matching functions or sim2p-mappings), and (3) better comparing the effec-
tiveness of full-indeterministic, semi-indeterministic and deterministic approaches for
deduplication.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

Arenas, M., Bertossi, L. E., and Chomicki, J. 1999. Consistent query answers in inconsistent databases. In
Proceedings of PODS. 68–79.
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