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Abstract. The importance of distributed applications is constantly rising due to technological
trends such as the widespread usage of smart phones and the increasing internetworking of all kinds
of devices. In addition to classical application scenarios with a rather static structure these trends
push forward dynamic settings, in which service providers may continuously vanish and newly ap-
pear. In this paper categories of distributed applications are identi�ed and analyzed with respect
to their most important development challenges. In order to tackle these problems already on a
conceptual level the active component paradigm is proposed, bringing together ideas from agents,
services and components using a common conceptual perspective. Besides conceptual foundations of
active components also a programming model and an implemented infrastructure are presented. It
is highlighted how active components help addressing the initially posed challenges by presenting an
example of an implemented application.

1. Introduction. Technological trends like the widespread usage of smart phones
and the increased internetworking of all kinds of devices lead to new application ar-
eas for distributed systems, thus reinforcing and increasing the challenges for their
design and implementation. On the one hand, developers can choose from a vast
amount of existing technologies, frameworks, patterns, etc. for tackling any challenge
that they may face during the development of a complex distributed application.
Nonetheless most concrete solutions only address a small set of challenges. Thus for
most applications, combinations of di�erent solutions are required, causing a labori-
ous and error-prone process of analyzing, selecting and interating di�erent solution
approaches.

On the other hand, a software paradigm represents a holistic solution approach
for a more or less generic class of software applications. A paradigm represents a
speci�c worldview for software development and thus de�nes conceptual entities and
their interaction means. It supports developers by constraining their design choices
to the intended worldview. When a paradigm �ts to the application problem, it al-
lows addressing all challenges using a common conceptual framework, thus e�ectively
reducing the need for the expensive integration and testing of isolated solutions.

The contributions of this paper are as follows. Recurring challenges for the devel-
opment of todays complex distributed systems are identi�ed and existing paradigms,
such as object or service orientation, are analyzed in which way they support ad-
dressing these challenges. As a consequence of the analysis, the active components
paradigm is proposed as a uni�cation of the strengths of objects, components, services,
and agents. The proposed paradigm is concretized on the one hand by a programming
model, allowing to develop active components systems using XML and Java, and on
the other hand by amiddleware infrastructure, that achieves distribution transparency
and provides useful development tools.

The next section presents classes of distributed applications and challenges for
developing systems of these classes. Thereafter, the new active components approach
is introduced in Section 3. In Section 4 the programming model for active components
is introduced and in Section 5 the Jadex platform as active components runtime
infrastructure is described. To illustrate the practicality of the approach, several real
world example applications are presented in Section ??. Section 7 discusses related
work and Section 8 concludes the paper.

∗Distributed Systems Group, University of Hamburg, {braubach, pokahr}@informatik.uni-
hamburg.de
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Figure 2.1. Applications and paradigms for distributed systems

2. Challenges of Distributed Applications. The purpose of this paper is
conceiving a uni�ed paradigm for developing complex distributed systems. To in-
vestigate general advantages and limitations of existing development paradigms for
distributed systems, several di�erent classes of distributed applications and their main
challenges are discussed in the following. Such challenges arise from di�erent areas and
can be broadly categorized into typical software engineering challenges for standard
applications and new aspects, summarized in this paper as distribution, concurrency,
and non-functional properties (cf. also [25]). In Fig. 2.1 theses application classes as
well as their relationship to the introduced criteria of software engineering, concur-
rency, distribution and non-functional aspects are shown. The classes are not meant to
be exhaustive, but help illustrating the diversity of scenarios and their characteristics.

Software Engineering: In the past, one primary focus of software development
was laid on single computer systems in order to deliver typical desktop applications
such as o�ce or entertainment programs. Challenges of these applications mainly
concern the functional dimension, i.e. how the overall application requirements can be
decomposed into software entities in a way that good software engineering principles
such as modular design, extensibility, maintainability etc. are preserved.

Concurrency: In case of resource hungry applications with a need for extraor-
dinary computational power, concurrency is a promising solution path that is also
pushed forward by hardware advances like multi-core processors and graphic cards
with parallel processing capabilities. Corresponding multi-core and parallel computing
application classes include games and video manipulation tools. Challenges of concur-
rency mainly concern preservation of state consistency, dead- and livelock avoidance
as well as prevention of race condition dependent behavior.

Distribution: Di�erent classes of naturally distributed applications exist de-
pending on whether data, users or computation are distributed. Example application
classes include client/server as well as peer-to-peer computing applications. Chal-
lenges of distribution are manifold. One central theme always is distribution trans-
parency in order to hide complexities of the underlying dispersed system structure.
Other topics are openness for future extensions as well as interoperability that is often
hindered by heterogeneous infrastructure components. In addition, today's applica-
tion scenarios are getting more and more dynamic with a �exible set of interacting
components.
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Figure 2.2. Contributions of paradigms

Non-functional Criteria: Application classes requiring especially non-func-
tional characteristics are e.g. centralized backend applications as well as autonomic
computing systems. The �rst category typically has to guarantee secure, robust and
scalable business operation, while the latter is concerned with providing self-* proper-
ties like self-con�guration and self-healing. Non-functional characteristics are partic-
ularly demanding challenges, because they are often cross-cutting concerns a�ecting
various components of a system. Hence, they cannot be built into one central place
but abilities are needed to con�gure a system according to non-functional criteria.

Combined Challenges: Today more and more new application classes arise
that exhibit increased complexity by concerning more than one fundamental challenge.
Coordination scenarios like disaster management or grid computing applications like
scienti�c calculations are examples for categories related to concurrency and distribu-
tion. Cloud computing subsumes a category of applications similar to grid computing
but fostering a more centralized approach for the user. Additionally, in cloud com-
puting non-functional aspects like service level agreements and accountability play
an important role. Distributed information systems are an example class containing
e.g. work�ow management software, concerned with distribution and non-functional
aspects. Finally, categories like ubiquitous computing are extraordinary di�cult to
realize due to substantial connections to all three challenges.

In this paper object, component, service and agent orientation are further dis-
cussed as successful paradigms for the construction of real world distributed applica-
tions. Fig. 2.2 highlights which challenges a paradigm conceptually supports. Object
orientation has been conceived for typical desktop applications to mimic real world
scenarios using objects (and interfaces) as primary concept and has been supple-
mented with remote method invocation (RMI) to transfer the programming model to
distributed systems. Component orientation extends object oriented ideas by intro-
ducing self-contained business entities with clear-cut de�nitions of what they o�er and
provide for increased modularity and reusability. Furthermore, component models of-
ten allow non-functional aspects being con�gured from the outside of a component.
The service oriented architecture (SOA) attempts an integration of the business and
technical perspectives. Here, work�ows represent business processes and invoke ser-
vices for realizing activity behavior. In concert with SOA many web service standards
have emerged contributing to the interoperability of such systems. In contrast, agent
orientation is a paradigm that proposes agents as main conceptual abstractions for
autonomously operating entities with full control about state and execution. Us-
ing agents especially intelligent behavior control and coordination involving multiple
actors can be tackled.

Yet, none of the introduced paradigms is capable of supporting concurrency, dis-
tribution and non-functional aspects at once, leading to di�culties when applications

3



Figure 3.1. Active component structure

should be realized that stem from intersection categories (cf. Fig. 2.1). In order to
alleviate these problems already on a conceptual level, in the following section the
active component paradigm is proposed as a uni�cation of the analyzed paradigms.

3. Active Components Paradigm. For addressing all challendes of distributed
systems in a uni�ed way, the active component paradigm brings together agents, ser-
vices and components in order to build a worldview that is able to naturally map
all existing distributed system classes to a uni�ed conceptual representation [24]. Re-
cently, with the service component architecture (SCA) [20] a new software engineering
approach has been proposed by several major industry vendors including IBM, Oracle
and TIBCO. SCA combines in a natural way the service oriented architecture (SOA)
with component orientation by introducing SCA components communicating via ser-
vices. Active components build on SCA and extend it in the direction of sofware
agents. The general idea is to transform passive SCA components into autonomously
acting service providers and consumers in order to better re�ect real world scenarios
which are composed of various active stakeholders. In Fig. 3.1 an overview of the
synthesis of SCA and agents to active components is shown. In the following subsec-
tions the implications of this synthesis regarding structure, behavior and composition
are explained.

3.1. Active Component Structure. In Fig. 3.1 (right hand side) the struc-
ture of an active component is depicted. It yields from conceptually merging an
agent with an SCA component (shown at the left hand side). An agent is considered
here as an autonomous entity that is perceiving its environment using sensors and
can in�uence it by its e�ectors. The behavior of the agent depends on its internal
reasoning capabilities ranging from rather simple re�ex to intelligent goal-directed
decision procedures. The underlying reasoning mechanism of an agent is described as
an agent architecture and determines also the way an agent is programmed. On the
other side an SCA component is a passive entity that has clearly de�ned dependen-
cies with its environment. Similar to other component models these dependencies are
described using required and provided services, i.e. services that a component needs
to consume from other components for its functioning and services that it provides
to others. Furthermore, the SCA component model is hierarchical meaning that a
component can be composed of an arbitrary number of subcomponents. Connections
between subcomponents and a parent component are established by service relation-
ships, i.e. connection their required and provided service ports. Con�guration of SCA
components is done using so called properties, which allow values being provided at
startup of components for prede�ned component attributes. The synthesis of both
conceptual approaches is done by keeping all of the aforementioned key characteristics
of agents and SCA components. On the one hand, from an agent-oriented point of
view the new SCA properties lead to enhanced software engineering capabilities as hi-
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erarchical agent composition and service based interactions become possible. On the
other hand, from an SCA perspective internal agent architectures enhance the way
how component functionality can be described and allow reactive as well as proactive
behavior.

3.2. Behavior . The behavior speci�cation of an active component consists of
two parts: service and component functionalities. Services consist of a service interface
and a service implementation. The service implementation contains the business
logic for realizing the semantics of the service interface speci�cation. In addition, a
component may expose further reactive and proactive behavior in terms of its internal
behavior de�nition, e.g. it might want to react to speci�c messages or pursue some
individual goals.

Due to these two kinds of behavior and their possible semantic interferences the
service call semantics have to be clearly de�ned. In contrast to normal SCA compo-
nents or SOA services, which are purely service providers, agents have an increased
degree of autonomy and may want to postpone or completely refuse executing a ser-
vice call at a speci�c moment in time, e.g. if other calls of higher priority have arrived
or all resources are needed to execute the internal behavior. Thus, active components
have to establish a balance between the commonly used service provider model of
SCA and SOA and the enhanced agent action model. This is achieved by assuming
that in default cases service invocations work as expected and the active component
will serve them in the same way as a normal component. If advanced reasoning about
service calls is necessary these calls can be intercepted before execution and the active
component can trigger some internal architecture dependent deliberation mechanism.
For example a belief desire intention (BDI) agent could trigger a speci�c goal to decide
about the service execution.

To allow this kind service call reasoning service processing follows a completely
asynchronous invocation scheme based on futures. The service client accesses a
method of the provided service interface and synchronously gets back a future rep-
resenting a placeholder for the asynchronous result. In addition, a service action is
created for the call at the receivers side and executed on the service's component as
soon as the interpreter selects that action. The result of this computation is subse-
quently placed in the future and the client is noti�ed that the result is available via
a callback.

In the business logic of an agent, i.e. in a service implementation or in its in-
ternal behavior, often required services need to be invoked. The execution model
assures that operations on required services are appropriately routed to available ser-
vice providers (i.e. other active components) according to a corresponding binding.
The mechanisms for specifying and managing such bindings are part of the active
component composition as described next.

3.3. Composition. One advantage of components compared to agents is the
software engineering perspective of components with clear-cut interfaces and explicit
usage dependencies. In purely message-based agent systems, the supported interac-
tions are usually not visible to the outside and thus have to be documented separately.
The active components model supports the declaration of provided and required ser-
vices and advocates using this well-de�ned interaction model as it directly o�ers a
descriptive representation of the intended software architecture. Only for complex
interactions, such as �exible negotiation protocols, which do not map well to service-
based interactions, a more complicated and error-prone message-based interaction
needs to be employed.

5



01: IFuture<String> fut = callee.method(arg1, arg2);
02: fut.addResultListener(new IResultListener<String>() {
03: public void resultAvailable(String res) {
04: System.out.println(�System.out.println(�Result: �+res)�);
05: }
06: public void exceptionOccurred(Exception e) {
07: System.out.println(�System.out.println(�Exception: �+e)�);
08: });

Figure 4.1. Asynchronous method invocation with future return value

The composition model of active components thus augments the existing coupling
techniques in agent systems (e.g. using a yellow page service or a broker) and can make
use of the explicit service de�nitions. For each required service of a component, the
developer needs to answer the question, how to obtain a matching provided service of a
possibly di�erent component. This question can be answered at design or deployment
time using a hard-wiring of components in corresponding component or deployment
descriptors. Yet, many real world scenarios represent open systems, where service
providers enter and leave the system dynamically at runtime [15]. Therefore, the ac-
tive components approach supports besides a static wiring (called instance binding)
also a creation and a search binding (cf. [24]). The search binding facilities simpli�ed
speci�cation and dynamic composition as the system will search at runtime for com-
ponents that provide a service matching the required service. The creation binding is
useful as a fallback to increase system robustness, e.g. when some important service
becomes unavailable.

The active components paradigm introduced in the last sections allows a concep-
tual view of a distributed system as a dynamic composition of autonomously executing
entities with clearly de�ned interfaces. Yet, the conceptual view leaves open many
questions with regards to how the behavior of a component is realized or how the in-
teraction between components looks like. These questions are answered by a concrete
active components programming model introduced next.

4. Programming Model. In this section the general concepts of active com-
ponents, as presented before, will be further re�ned to a concrete programming ap-
proach. The approach itself is similar to the SCA programming model with the
following major exceptions. First, the programming model of active components is
inherently asynchronous, which is also directly re�ected in the way service interfaces
are speci�ed and services have to be implemented.1 Second, components may expose
their own behavior in addition to providing external services. For this reason the
programming concepts for components heavily depend on their concrete internal ar-
chitectures. Third, as bindings between components can be con�gured to be dynamic,
programming component compositions introduces new means for declarative search
speci�cations. In the following, a short introduction to the underlying asynchronous
programming model with future based return values is given. Thereafter, the key
aspects from the last section - structure, behavior and composition - will be revisited
on the programming level.

1This does not mean that SCA does not support asynchronous invocations at all. In SCA the
callback pattern is used to pass callback objects as parameters from the caller to the callee. The
callee can use the interface of the callback object to invoke its remote methods. This approach leads
to interface de�nitions that look synchronous but in fact are not.
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4.1. Asynchronous Programming with Futures . The widely used syn-
chronous message based invocation scheme well known from object-oriented program-
ming is easy to understand and employ. It �ts to the fundamental idea of the imper-
ative programming paradigm considering programs as a linear sequence of actions.
Actions are processed one by one and the next action is begun only after completion
of its predecessor. In case of distributed applications this style of programming leads
to severe problems as it means that an action possibly has to wait for completion of
a called remote action e.g. via remote procedure call or remote method invocation.
Hence, processing of the caller has to be blocked until the result of the callee arrives.
Besides being ine�cient this invocation scheme is inherently deadlock prone because
invocation cycles between callers and callees can easily occur, e.g. if the callee needs
a functionality of the caller and invokes one of its methods it cannot be served as the
caller is still blocked. Such technical deadlocks can be avoided when an asynchronous
invocation scheme is employed. In this case the caller is not blocked after issuing a
call and can continue processing other tasks. In practice, asynchronous programming
has become common with several important technologies like AJAX in the context of
HTTP processing and the GoogleAppEngine for realizing cloud applications.

Futures [29] have been developed as fundamental programming concept for asyn-
chronous systems and represents a holder for the future result of an initiated process-
ing. In case of an asynchronous call with future return value, the callee immediately
returns the future object to the caller. The caller can use the future to check if the
result has been provided and read the real result value. Typically, futures provide
some form of a blocking get method that the caller can invoke to become suspended
until the result has been made available. It has to be noted that this wait-by-necessity
mechanism again opens up the possibilities for deadlocks and should be avoided. In-
stead, a result listener should be used that is noti�ed in the moment the result value
arrives.

In Figure 4.1 the concept of an asynchronous call with future result value is visu-
alized and also the corresponding Java code is shown. It can be seen that the caller
invokes a method on the callee, which starts processing the call. In the example code
(line 1) two arguments (called arg1, arg2) are passed to the callee. As result type
a future is de�ned (IFuture represents the interface for futures). Java generics are
used to specify the type of the real return value of the future (here String). The
callee returns a future to the caller as soon as possible and afterwards may continue
processing the request. After the future object has been received by the caller, it
adds a result listener to it (line 2) and may or may not continue processing other
tasks. The code (lines 2-8) highlights the result listener (IResultListener) interface
and methods. It contains two obligatory methods named resultAvailable() and excep-
tionOccurred(), which are invoked exclusively. The �rst method is invoked if the call
could be processed normally, otherwise the latter one is used to signal the exception
that was thrown. Discriminating between both allows for keeping the normal Java
method execution semantics, i.e. asynchronous methods can use exceptions to inform
the caller about execution problems. After the callee has �nished, it will provide the
result to the future, which subsequently noti�es all registered result listeners at the
caller side. In consequence, either the result value (line 4) or the exception (line 7) is
printed out to the console by the example listener.
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Figure 4.2. Active component structure speci�cation

4.2. Component Structure Speci�cation. Active components exhibit a com-
mon black box view of properties shown in Figure 4.2.2 Using these properties a
speci�c component type can be speci�ed from which component instances can be cre-
ated at runtime (similar to the relation of a Java class and its instances). To foster
a general understanding of the component speci�cation �rst the meaning of these
properties will be sketched.

• Imports can be used in the same way as in Java classes to include resources
like Java classes and packages that are used in context of the �le.

• The Arguments section contains both, argument and result types. It can
be stated which arguments can be fed into the component at start up and
which results are provided by component after termination. For an argument
and result, a name, implementation class and default value can be provided.
The explicit de�nition of arguments and result types as part of the public
component structure allows for treating components also in a functional way,
i.e. one can consider them as a function performing operations on input
data and �nally producing some output data. This �ts well to e.g. work�ow
based applications in which subwork�ows are often invoked with functional
semantics.

• In the Component types part the types of subcomponents can be de�ned with
a local name and a �lename that points to the referenced model. Having
local names for subcomponent types facilitates the de�nition of component
instances at other places in the same �le.

• The Services section contains a de�nition of the provided and required service
types of a component. Details will be presented in the service speci�cation
section below.

• Properties represent optional settings of a component.
• Con�gurations allow for specifying di�erent component setups that can be
used at startup of a component. A con�guration is de�ned with a name
and most importantly can be employed to provide composition information
about subcomponents and their bindings. At startup of a component the
con�guration name is used to choose among its prede�ned con�gurations, e.g.
a test con�guration with mock subcomponents vs. an operational setting.

4.3. Service Invocations . Service invocations between active components
need to cope with the inherent system concurrency. Each active component may

2It has to be noted that speci�cation of active components can be done in di�erent formats
including XML (following the XML scheme of Figure 4.2) and also Java annotations. The component
type, e.g. BPMN work�ow or BDI agent, determines the way in which the properties need to be
de�ned.
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Figure 4.3. Service interceptors

potentially expose active behavior and thus executes proactive behavior on its own
thread of control. In order to avoid concurrent access to the state of a component
by di�erent components that invoke services at the same time, a general protection
mechanism between the caller and callee component is established. This protection
mechanism is in charge of decoupling incoming calls from the caller thread and execute
them on the callee thread. After the result has been produced the control is transferred
back to the caller thread. In this way each component is executed on its own thread
only and all data access is linearized. To further protect also data that is transmitted
between components as parameter or return values of method invocations it has to be
ensured that components do not share those objects and modify them concurrently.
State corruption can be avoided by giving components exclusively owned objects and
only sharing immutable objects. To assure this property, parameter and return values
are automatically cloned if they are mutable. Otherwise direct object references can
be provided in local method invocations. In this way active components follow the
fundamental principles of the actor model [11] considering each active component as
independent actor who's behavior and state is independent of other actors [16].

At the implementation side thread and parameter protection are ensured by using
an extended variant of the interceptor design pattern [27]. Using interceptors renders
the employed mechanisms transparent for service users and providers. The basic
invocation scheme is illustrated in Figure 4.3. Given that some behavior in active
component AC1 wants to invoke a service method on a known service with interface
S1, the call will be catched by the local required service proxy of AC1. This service
proxy looks to the service user as if it were the original service but in fact only
implements the same service interface S1. The required service proxy owns a chain
of asynchronous interceptors (Required SI ) which are subsequently invoked. The
last interceptor in this chain performs a (possibly remote) method call to the active
component AC2, which is hosting the original service implementation of S1. Before
the call is routed to the implementation, the interceptor chain of the provided service
(Provided SI) is executed. Thread decoupling is done here at two points. First, on AC2
the incoming request is decoupled by an interceptor and �nally, at AC1 the returning
invocation is decoupled and routed to the thread of AC1. State encapsulation is
handled exclusively at the side of the provided interceptor chain. In case of a local
call the interceptor clones arguments before the call and the result after the call,
whereas in case of a remote call no cloning needs to be performed as the remote
method invocation itself has to marshal and unmarshal parameter and return values.

4.4. Service Speci�cation. In Figure 4.4 details of provided and required ser-
vice speci�cation are depicted. A provided service is de�ned by using its interface type
as well as an obligatory implementation de�nition and optional further publishing op-
tions. The service implementation is typically de�ned via an implementation class
that is used by the component to instantiate the service at component startup. Alter-
natively, a binding can be used to delegate service calls to another subcomponent, i.e.
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Figure 4.4. Provided and required service speci�cation

the component does not host the implementation itself but forwards calls to another
component. Binding details are described in context of required services below. In
addition to the service implementation also custom interceptors can be de�ned. These
interceptors represent an extension point that can be used to insert new behavior in
the sense of aspect-oriented programming [17], before, after or around speci�c service
calls. Publishing options can be used to provide a service in other technologies facil-
itating the interoperability of external systems with the active components runtime.
Currently, support exists for publishing active component services as WSDL-based or
RESTful web services. The publication process can be done either fully automatically
or by providing custom mapping information that describe how the published service
should look like. More details about service publication can be found in [6].

Required services are speci�ed using basic required service information and bind-
ing details. The �rst refers to the general characteristics of a required service and
includes aspects like the local name, the service interface, as well as the multiplicity.
The name is used to refer to the required service declaration from behavior code and
the interface describes the expected type of the service. Additionally, for a required
service the multiplicity property can be used to state if exactly one service or a set
of services should be delivered. The second part of the speci�cation contains details
about the search characteristics that are used to locate required services. Most im-
portantly the search space can be de�ned by using a search scope, which describes
the components that are included in the service search. Currently, several di�erent
default scopes are available that range from local scope, considering only a component
itself, over application scope including all components of one speci�c application to
platform and global scope. The latter options include all components on one platform
and components of all currently connected remote platforms. Many further options
to adjust the search to the concrete application demands are available. Examples
include the search dynamics and service recovery. The �rst aspect determines if the
search should be executed on each service access or the results of a former search
should be cached. The latter issues a new service search transparently for a service
user if the currently used service becomes unavailable for some reason.

4.5. Component Implementation. The implementation of components con-
sists of two parts. The provided service implementations and the component behavior
implementation. Both parts are optional to allow de�ning components that only con-
tain internal behavior and passive components in the sense of traditional components
with no own proactive behavior. The implementation of services is kept as simple as
possible by sticking to the Java POJO (plain old Java objects) model, i.e. develop-
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ers create purely domain oriented classes without having to extend or use framework
speci�c classes or interfaces. Active component speci�cs are included using Java an-
notations. Especially, annotations are provided to enable dependency injection [10] of
the hosting component itself, required services or component arguments to the service
implementation.

The implementation of component behavior is dependent on the concrete type
of component used. In the following the implementation principles of two exemplary
component types are roughly sketched. The �rst component type is called micro
agents, which represents a very simple Java based agent architecture and the second
type are BPMN (business process modeling notation) work�ows. Micro agents are
de�ned as annotated Java classes. The architecture assumes a simple three-phased
execution model of the internal agent behavior. The three phases are initialization,
execution and termination and the infrastructure guarantees that a speci�c method
of the micro agent pojo is called when entering each of the phases. Despite the three
phases, a micro agent can implement more complex behavior by scheduling actions
at later points in time. Furthermore, reactive behavior can be initiated by arriving
service calls or incomings messages. BPMN work�ows are modeled graphically ac-
cording to the corresponding standard [22] mainly with events, actions and gateways.
The work�ow descriptions need to be enriched with implementation details that are
added to the model elements. A Java expression language is used to encode parameter
values and constraint checks at gateways. Moreover, domain dependent behavior is
encoded in extra Java classes that can be bound to speci�c actions in the process
model.

4.6. Example Implementation. To illustrate the implementation of compo-
nents further, below a cutout of the implementation of a simple chat micro agent is
given. It is a peer-to-peer chat variant in which each chat agent o�ers a chat service.
In Figure 4.5, the chat agent (ChatAgent), the chat interface (IChatService) as well as
a cutout of the service implementation (ChatService) are shown. It can be seen that
the component �le (lines 1-15) contains annotations to declare the active component
characteristics and a small behavior part contained in the body method. First of all,
the @Agent annotation (line 1) is used to state the Java class is an active component
declaration. It also declares one provided service (line 2) with interface IChatService
and an implementation class ChartService. This means that the agent will automat-
ically create an instance of the implementation class at startup to provide the given
service interface. In addition, a required service with name �chatservices� is de�ned
(line 3), which can be used to retrieve all chat services in a network of platforms. To
fetch all services instead of one, the multiplicity has been set to true. The binding
of the required service is set to dynamic and to global search scope. This ensures
that each service request leads to a fresh search and that all available platforms are
included into the search. The behavior of the chat agent (lines 5-14) is annotated with
@AgentBody and very simple in this case. It creates a command (called component
step) that is periodically executed by the agent. Each time the command is invoked
it searches the users currently online by using the corresponding required services and
refreshes the user list in the user interface.

The chat service interface (lines 17-22) contains methods to send a message (line
19), to actively announce a new user state, e.g. user is typing a message (line 20) and
to send a �le to another user (line 21). Additionally, the service is annotated with
a security setting (line 17), which enables unrestricted access to the chat service, i.e.
other platforms can �nd chat service components even when the platform is password

11



01: @Agent
02: @ProvidedServices(@ProvidedService(type=IChatService.class,

implementation=@Implementation(ChatService.class)))
03: @RequiredServices(@RequiredService(name="chatservices", type=IChatService.class,

multiple=true, binding=@Binding(dynamic=true, scope=Binding.SCOPE_GLOBAL)) )
04: public class ChatAgent {
05: @AgentBody
06: public void body() {
07: IComponentStep<Void> step = new IComponentStep<Void>() {
08: public IFuture<Void> execute(IInternalAccess agent) {
09: getChartPanel().refreshUserList(searchCurrentUsers());
10: agent.waitForDelay(delay, this);
11: }
12: };
13: scheduleStep(step);
14: }
15: }
16:

17: @Security(Security.UNRESTRICTED)
18: public interface IChatService {
19: public IFuture<Void> message(String text);
20: public IFuture<Void> status(String status);
21: public IFuture<Void> sendFile(String �lename, long size, IInputConnection con);
22: }
23:

24: @Service
25: public class ChatService implements IChatService {
26: @ServiceStart
27: public IFuture<Void> start() {
28: // gui init, creates chat panel
29: }
30: public IFuture<Void> message(String text) {
31: chatpanel.addMessage(IComponentIdenti�er.CALLER.get(), text);
32: return IFuture.DONE;
33: }
34: ...
35: }

Figure 4.5. Chat service interface and implementation snippets

protected and normally restricts search and service requests. The implementation of
the service (line 24-35) is identi�ed with the @Service annotation. It implements the
IChatService interface and additionally introduces a lifecycle method named start()
(lines 26-29) that is called on initialization of the service and creates the user interface.
The implementation of the message() method just forwards a received message to the
user interface, which will show it to the user. It can be seen that the sender of the
message (more precisely the component identi�er of the caller) can be always obtained
directly via a thread local variable that is provided by the framework (line 31) so that
no extra parameter is needed.

After this section has clari�ed the active components programming model using a
concrete example, the next section will introduce a runtime infrastructure and devel-
opment tools for deploying active components systems in distributed environments.

5. Platform Architecture and Implementation. The proposed active com-
ponents paradigm and programming model require a runtime infrastructure for load-
ing and executing component models and for providing discovery and communication
facilities for their composition. Therefore, the active components concepts have been
realized in the open source Jadex platform.3 In the following, the basic architecture
and its important modules will be described. The component container represents
the minimal requirement of being able to execute and manage local components and
enable their interaction in terms of provided and required services. In a distributed
infrastructure, interaction between multiple component containers as well es other

3http://jadex.sourcefourge.net/
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Figure 5.1. Basic platform services

external systems needs to be supported. Therefore, important middleware features
need to be introduced for supporting and simplifying the development of distributed
applications using an active components infrastructure. Finally, runtime tools are re-
quired to foster, e.g., debugging during systems development as well as administration
and monitoring of deployed systems.

5.1. Component Container. The main modules of the platform provide the
execution context for any active components running on the platform, i.e. they form
the component container. Their interdependencies are illustrated in Figure 5.1. All
modules contribute to one or both of the component management and messaging
functionalities. Both of these functionalities are further explained in the following
two sections, followed by some details about the generic approach towards realizing
these functionalities.

5.1.1. Component Management. The Component Management module is
responsible for starting and stopping components. Upon initialization of each com-
ponent, its provided services are instantiated and made available for searching and
invocation. Additionally, the means for binding and invoking required services are
set up according to the component description or additional con�guration options
supplied as external start parameters. The component management also serves as an
entry point to the platform by providing information about running components on
request or in a publish-subscribe fashion.

Component management makes use of the Component Factory for loading and
instantiating component descriptions. The component factory in turn uses the Library
module for handling the physical access to component descriptions, e.g. on a local hard
drive or in component repositories. Di�erent component factories exist that represent
the di�erent component types (cf. Section 4.5). For each component description, thus
a component type speci�c interpreter implementation is initialized. The component
management passes the interpreter to the Execution module, which is responsible for
providing a thread from a Thread Pool to the interpreter, whenever the corresponding
component should be executed.

5.1.2. Messaging. Each component is assigned a unique id that enables ad-
dressing messages to speci�c components. The Message module is responsible for the
internal delivery of messages. It further enables tracking of timeouts with the help
of the Clock, which, in case of an active clock4, uses a thread from the thread pool.
The message module also deals with the marshalling and unmarshalling of message

4Jadex supports di�erent clock types including active clocks for normally timed or dilated exe-
cution as well as passive clocks, which are controlled by an additional simulation module, e.g. for
as-fast-as-possible execution of simulation scenarios as described in [26].

13



contents, and uses the library module, e.g. for resolving classes for unmarshalling
message content into appropriate Java objects.

5.1.3. Container Realization. All of the aforementioned modules are real-
ized as component services. As a result, the platform itself is considered an active
component with the platform modules modeled as provided services and their interde-
pendencies being represented as required services. This approach provides a number
of technical advantages regarding their implementation. First, the mechanisms for
initializing and managing as well as searching and invoking component services are
employed for platform services as well, thus reducing the implementation e�ort for
this recurring functionality. Further on, the platform con�guration is speci�ed as a
component description, such that existing speci�cations means can be reused and the
developer may choose from the available description means like Java or XML, if she
wishes to provide a customized platform con�guration.

Another advantage is that the execution mechanisms, e.g. for decoupling of asyn-
chronous calls, apply to platform services as well, such that concurrency issues can be
avoided in the implementations. Also the dynamic binding of services is of advantage
here, as platform services can easily be exchanged in the platform con�guration or
even at runtime. For example, Jadex supports seamless switching between di�erent
clock implementations also when components are currently executing. Last but not
least, this approach is easy to realize. Only a simple bootstrapping script is required
that loads and instantiates a platform con�guration through a prede�ned component
factory and calls the obtained interpreter until the actual execution service is avail-
able. As a result, the platform itself is highly con�gurable and can be adapted to
the needs of an application using the same concepts that are also used for application
implementation. This is also illustrated in the next section that introduces additional
platform services for supporting distributed infrastructures.

5.2. Distributed Infrastructure. The active components approach as well as
the Jadex platform implementation aim at supporting the development of distributed
applications. Therefore interactions between application parts residing on di�erent
network nodes are of particular importance due to the inherent challenges of dis-
tributed applications (cf. Section 2). The Jadex platform thus provides a number
of features that facilitate using the active components approach in a distributed in-
frastructure and at the same time hiding many of the challenging details regarding
concurrency, distribution and non-functional criteria. The general goal is that the de-
veloper should be able to focus on implementing the application functionality, based
on the active components programming model. The model naturally deals with con-
currency issues due to the asynchronous interaction style and the single-threaded com-
ponent approach. Dealing with distribution and non-functional aspects should ideally
be delayed until application deployment. In the following, �rst the important Jadex
features with regard to distribution transparency are described. Afterwards, with
security and web service interoperability two examples of supporting non-functional
aspects are given.

5.2.1. Distribution Transparency. Distribution transparency is achieved by
a set of di�erent mechanisms that shield communication and discovery issues from the
application developer. The communication stack is illustrated in Figure 5.2. To the
left, the addressing schemes of the di�erent layers are shown with examples. In the
upper half, the high-level mechanisms for service-based communication are shown.
The lower part contains the infrastructure for message-based communication. From

14



Figure 5.2. Jadex communication stack

the viewpoint of a developer, a required service is transparently bound to a local or
remote reference. In case of a remote reference, the required service resolves to a proxy
implementing the desired service interface, e.g. IChatService for a chat application.
When the component behavior as programmed by the application developer invokes
a method on this proxy, the call is delegated to the remote management system
(RMS). Remote operations such as method invocations, callback results, as well as
remote service searches are encapsulated as so called remote commands, which are
exchanged between RMS components on di�erent platforms. E.g. to perform a remote
method call, a service identi�er is stored in the proxy, to uniquely identify the service
implementation and the corresponding remote component. The RMS at the caller
side (left) uses the platform part of the service identi�er to build the identi�er of the
remote RMS component. The remote method call command is sent as a message to
the remote RMS, which uses the included service identi�er to locate the component
and invokes the requested method on the provided service (cf. Section 4.4). The
result of the service invocation is sent back from the remote RMS using a remote
result command that includes a callback identi�er to match the result to the original
call for updating the corresponding future (cf. Section 4.1).

The RMS requires a message-based communication infrastructure that allows di-
rect exchange of asynchronous messages between arbitrary platforms. Furthermore,
the messages should be able to contain arbitrary Java objects for capturing, e.g.,
complex method parameter values from an application domain. The management
of message exchanges is implemented in the message service, which handles message
contents using codecs and transmits messages with the help of transports (cf. Figure
5.2, lower half). Two types of codecs are supported. One codec type is required for
(un)marshaling objects to or from a byte or character stream and the other type is
optional and operates on the stream for adding features such as compression or encryp-
tion. For supporting development as well as production environments, (un)marshaling
can be done to a compact binary format or to a human readable XML format [14].

When sending a message, the message service collects the transport addresses
stored in the component identi�ers. Each transport realizes a di�erent means for
transmitting a message, e.g. using a direct TCP connection, mediation via an HTTP
relay server, or forwarding in a Bluetooth scatter network. A transport also acts as
receiver for incoming messages, which are passed to the message service for decoding
and delivery. For each received and decoded message, the message service identi�es
the receiver components based on their component identi�er and places the message
in their inbox.
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Figure 5.3. Jadex platform awareness

The communication stack described above achieves distribution transparency as
long as some communication participants are already acquainted. E.g. when a chat
component holds a remote reference to the chat service of a remote participant, com-
munication happens transparently in response to method calls. Therefore, the pro-
gramming API does not distinguish between local and remote calls (access trans-
parency). In addition, the developer does not need to care about how the message
transports reach the target platform hosting the service (location transparency). To
achieve access and location transparency also for initial acquaintances, the binding
of required services is transparently expanded to include remotely provided services
using a so called awareness approach (cf. Figure 5.3). For this purpose, proxy compo-
nents can be started on a local platform, that represent the remote platform. When
a service is searched for on the local platform and the search scope allows including
remote platforms, all proxy components on the local platform pass a search request to
the RMS to issue a service search also on the corresponding remote platform. There-
fore, from the viewpoint of the developer, global service searches (e.g. for binding
a required service of a component) are transparently forwarded to all platforms, for
which a proxy component exists locally. To discover the available platforms in the
network automatically, di�erent discovery mechanisms are available. The awareness
management controls the descovery mechanisms and receives announcements of newly
discovered remote platforms. It takes care of instantiating corresponding proxies for
discovered platforms and also removes proxies for platforms that disappear or time
out, such that only live platforms are included in service searches.

Depending on the requirements of the network, di�erent discovery mechanisms
can be employed separately or in combination. Common for all discovery mechanisms
is that the same discovery mechanism needs to be running on the local as well as the
remote platform. Some mechanisms are based on direct communication, such as the
broadcast, multicast and scanner discovery implementations, which are well suited for
local (e.g. company) networks. E.g., broadcast discovery components send and receive
UDP broadcast packets containing the (remote) platform information, thus making
the platforms known to each other. Unlike these direct mechanisms, other mechanisms
require an intermediate, such as the relay and registry discovery approaches. They
allow discovery to expand beyond local network borders and enable an internet-scale
awareness. E.g. the registry discovery employs a central registry component, where
all platforms announce their existance and look up other platforms. Regarding the
technical implementation, the mechanisms di�er whether they are based on an existing
transport. E.g. the broadcast, multicast, scanner and registry are independent of any
transport. The relay discovery is implemented as part of the relay transport, i.e.
the relay discovery component sends a speci�c message through the relay transport
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containing the platform information. The relay server collects all platform information
and sends it to other platforms, registered at the relay server. Similarly, the Bluetooth
transport keeps track of the platforms participating in a Bluetooth scatter network
and provides this information to the Bluetooth discovery component. Therefore, the
Bluetooth transport and discovery are well suited for platforms running on mobile
(e.g. android) devices connected in an ad-hoc network.

5.2.2. Non-functional Aspects. The active components approach inherits from
traditional component approaches the intention to separate the implementation of
component functionality as much as possible from the treatment of non-functional as-
pects. Ideally, non-functional aspects need be considered during implementation not
at all and can be handled later during application deployment by providing appropri-
ate component con�gurations. In general, the active components approach supports
at least two ways of con�guring non-functional aspects in a deployed application. The
�rst way is to provide additional meta-information for speci�c components, either in
the component descriptions or in external composite con�gurations. One typical use
case is adapting a required service binding to the speci�c deployment, e.g. switching
between a static wiring of components inside a composite and a dynamic open system
where bindings are resolved using a global service search. The second way consists in
providing di�erent service implementations for di�erent environments, such that both
can be transparently exchanged as needed without having to touch the components
that use this service. A common example would be a storage service that could be
implemented as simple in-memory storage for testing, database-backed storage for
medium-sized production systems and cloud storage for highly scalable applications.
To support easy con�guration of recurring non-functional aspects, many features of
Jadex are implemented using the �rst or second approach, such that the developer
can always adapt them to the current usage context. As an example, two features
are presented in the following. The �rst is an extension to support web service pub-
lication and invocation and thus serves the interoperability of Jadex-based and other
applications. It is realized using the meta-information approach. The second example
concerns security of remote component interactions and employs annotations as well
as a replaceable service.

For supporting seamless interaction between Jadex-based systems and external
applications, a web service extension was realized [6]. The goal was to transparently
embed external WSDL and REST web services into the active components service
ecosystem and also support the publication of arbitrary active components services
using a WSDL or REST interface without having to change the service implementa-
tion. The publication of services can be done using meta-information in the compo-
nent description as part of the provided service declaration. Considering web service
publication as a deployment issue, the corresponding meta-information can also be
speci�ed separately, e.g. when composing an application from existing components.
In this case, the existing component descriptions need not be changed, as the new
information is only contained in the application (deployment) descriptor. Similarly,
for incorporating an external web service, a wrapper component can be added to the
application, that provides the external service as a Jadex service. Therefore applica-
tion components are now able to �nd and invoke the external service like any other
service inside the application. The wrapper component maps the web service oper-
ations to an asynchronous active components service interface. In the simplest case,
only this wrapper interface needs to be speci�ed by the developer and an appropriate
wrapper component is automatically generated at runtime. More complex mappings
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Figure 5.4. The Jadex control center

can be achieved by adding annotations to the interface or providing separate wrapper
functionality (cf. [6] for more details).

Another important aspect of open distributed systems is security. When systems
are technically enabled to transparently perform arbitrary remote operations, the
platform administrator has to make sure that only authorized users are granted access
to critical operations. In Jadex, security is handled on two levels. On the �rst level,
general security requirements are annotated to operations de�ned in service interfaces.
Therefore, the application programmer has to decide if a special treatment of security
is necessary for a speci�c service or one of its operations. As a default, a very strict
security setting is applied to all services not annotated otherwise, such that only local
interactions are possible and any remote interactions are prohibited. On a second level,
the security service inside the platform is responsible for monitoring the compliance
to security settings and rejecting operations in case of security faults. The security
service also processes outgoing service requests for achieving compliance to current
security settings. E.g. when authentication is required, the initiating security service
can sign the request before sending it, by using locally stored user credentials. The
security service on the receiving side veri�es the signature and accepts or rejects the
request accordingly.

5.3. Tools. Besides the adequate treatment of fundamental challenges like con-
currency, distribution and non-functional criteria, any practical development infras-
tructure also needs to take care of pragmatic aspects as well. Among the most impor-
tant pragmatic aspects (besides the availability of documentation) are tool-support
and integration with existing development infrastructure. The Jadex active compo-
nents approach is based on existing languages, such as Java and XML. As a result,
most of the productivity features of existing development environments like Eclipse,
such as automatic code completion, can be used while developing active components
as well. Similarly, existing build tools like Maven or continuous integration servers
like Hudson/Jenkins can form integral parts of setups for developing active compo-
nent applications. In addition, some extensions have been developed, e.g. an Eclipse
plugin that provides consistency checking of component descriptions as well as a JUnit
adapter for easy testing of active components during automated builds.
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Extensive work was performed to provide adequate runtime tools that allow on
the one hand the administration of deployed active component applications and on
the other hand are also substantially helpful for testing and debugging during devel-
opment. These runtime tools are combined into the so called Jadex control center
(JCC) as shown in Figure 5.4. The JCC itself is realized as an active component,
running as part of a Jadex platform and is composed of a number of tools and plug-
ins, which are available from the toolbar at the top right. The screenshot shows the
starter tool. It allows browsing component descriptions from included repositories
(left) and shows see the currently running local components (bottom, left), includ-
ing also proxy components, which have been started by the awareness component to
represent discovered remote platforms. The starter tool further allows creating new
component instances from a selected component description, by editing and starting a
con�guration (right). Besides the starter, a debugger tool allows inspecting the inter-
nal state of a component and executing a component stepwise. As the internal state
of a component di�ers with respect to the component type, di�erent debugger views
are provided for, e.g. BPMN or micro components. Several other tools are mainly
required for administration purposes, as they provided con�guration options for basic
platform functionality. E.g. the awareness tool allows to enable/disable the available
discovery mechanisms and to control the creation of platform proxies with blacklists
and whitelists. In another tool, the security settings can be edited, e.g. setting a local
platform password or entering credentials for connecting to remote platforms.

All functionality of the JCC supports interaction with local as well as remote
platforms. When the user has enough rights to administer a remote platform, she
can right-click on its platform proxy, as e.g. shown in the bottom left of in the
starter tool, and choose to open an additional JCC view for this platform. The
currently open JCC view are shown as tabs at the top left of the JCC. In the spirit of
distribution transparency, the view of a remote platform is exactly the same as that of
the local platform and the user may interact with any tools, provided that the security
constraints hold. Therefore the Jadex platform provides distribution transparency not
only for programming, but also for testing, debugging and administration of active
component applications. The practicality of the Jadex concepts, middleware and tools
are illustrated in the following section using real world application examples.

6. Case Studies. The usefulness and practicality of the approach is illustrated
with three case studies that have been implemented using active components. All
applications have been developed together with di�erent companies. The �rst appli-
cation called tari� maxtrix belongs to the area of distributed calculations and is used
to precompute urban tra�c prices. The second application called DiMaProFi (Dis-
tributed Management of Processes and Files) is a distributed and process-driven ETL
(extract-tranform-load) tool. As third application a distributed and goal-oriented
work�ow management system in the context of the Go4Flex project is presented. It
has to be noted that due to secrecy reasons not all details of the commercial scenarios
can be described.

6.1. Tari� Maxtrix. The company HBT5 is responsible for a journey planner
called GEOFOX that computes best routes using the local public transportation of
Hamburg.6 GEOFOX is a client server based system that allows users to use di�erent
frontends such as normal browsers as well as mobile devices such as smart phones.

5Hamburger Berater Team GmbH, http://www.hbt.de/
6Public transport in Hamburg is managed by the company Hamburger Hochbahn AG.
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Besides getting information about the connection itself, GEOFOX also provides price
information to the users. Tickets can then be bought via di�erent channels includ-
ing an online shop and ticket automatons. In this respect HBT also has to equip
ticket automatons with the ability to compute the same prices as GEOFOX, which
is di�cult due to their restricted computing power and the fact that they are not
always connected to the Internet. Hence, currently an o�ine mechanism is used to
precompute ticket prices of all possible connection alternatives. The results of this
computation is expressed as a tari� matrix, i.e. an undirected, fully connected graph
with multi edges.7 HBT has to recompute the matrix several times a year whenever
price or environmental changes have occurred. As matrix computation is computa-
tionally expensive HBT already uses a decentralized approach in which a divide and
conquer strategy is applied to distribute work among normal company workstations.

A process analysis of existing solution revealed that the following improvement
areas are especially promising. First, the amount of manual activities should be
reduced and the matrix computation process should automated to a higher degree.
Second, the state of processes and steps should be made more observable in order
to detect problems and failures earlier. Third, downtimes in the processes should be
avoided. Following these objectives a work�ow driven solution based on Jadex active
components has been developed and tested. The architecture of the system consists
of a server agent and multiple worker agents, whereby the server coordinates work
distribution and collection and the clients are responsible for computing prede�ned
parts of the tari� matrix. Jadex supported achievement of the mentioned goals in
the following way. The overall process could be modelled and implemented as BPMN
work�ow thus reducing many manual steps that originally existed to trigger next
steps. Using active components allowed for using proactive noti�cations of worker
agents based on service invocations instead of relying on the produced �les in a shared
�le system. Faster information propagtion to the master gives users an up to date
view of the system progress and reduces dectection times of errors. Finally, downtimes
within the process can now be observed by the master and adequate reactions, such as
automatically including new workers detected by Jadex awareness, can be performed.

6.2. DiMaProFI. DiMaProFi is a software product currently developed from
Uniique AG8 together with the University of Hamburg. The company is a database
vendor that is specialized on data preprocessing in context of data warehousing. Most
of their work�ows in the area of ETL are distributed, long lasting, and interleaved
with manual quality assurance tests. These properties make such work�ows hard
to automate and control without considerable human involvement. Existing tool
support is based on centralized architectures with a designated node that controls the
overall work�ow. Such approach is problematic in environments with dynamically
changing network setups, because e.g. spontaneous occurring network partionings or
node breakdowns. Hence, the newly created DiMaProFi software solution will enable
executing distributed ETL work�ows modelled in a simpli�ed version of BPMN relying
on hierarchical decomposition via subwork�ows and a palette of prebuilt ETL activies.
Each ETL activity will be mapped to a service and can thus be executed locally as
well as remotely. In the work�ow description, constraints can be speci�ed to bind
the execution location to speci�c target nodes if this is deemed necessary, e.g. when
subsequent steps of the process operate with data that should not be copied to other
nodes for e�ciency or privacy reasons.

7Between source and target multiple routes with di�erent prices may exist.
8http://www.uniique.de/
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Using active components as foundation for DiMaProFi simpli�ed the system de-
velopment in the following ways. One important aspect is the possibility to apply a
component based design with clearly de�ned service interfaces. This allows to build
up a set of ready to use ETL functionalities available in a network of components. In
constrast to purely service oriented architecture, in which services are rather static,
such services can dynamically appear and disappear by starting and stopping active
components at any network node. Using the monitoring capabilities of DiMaProFi
the infrastructure can react to environmental changes by dynamic recon�guration
of service providers in the network. Another important advantage of using active
components consists in the automatically achieved distribution transparency. The
processes and program code need not to be changed if local or remote services are
used. Finally, the development of DiMaProFi also bene�ts from the active component
property of di�erent internal comopnent architectures. This allows using BPMN for
complex processes that should be readable by customers, e.g. template work�ows and
basic services, and Java based micro agents for components and services with high
demands regarding e�ciency and compactness.

6.3. Go4Flex. The Go4Flex project is conducted together with Damiler AG
and is targeted at business process management [13]. At Daimler di�culties in re-
alizing complex business processes have been observed, especially if these processes
are long running and contain a lot of di�erent potential errors that might occur.
Traditional work�ow languages like BPMN are useful if work�ow semantics is rather
procedural and can be expressed as sequences of actions. In case of work�ows with
a more declarative semantics BPMN and similar languages reach their limits, as ex-
ceptional cases have to be described explicitly. For this reason, in Go4Flex a new
goal-oriented modelling language called GPMN (goal-oriented process modeling nota-
tion) is developed which can be used to describe work�ows in a high-level requirement
driven way. GPMN uses two modelling levels. Higher-level work�ows are modelled
with goals, whereas lower-level work�ows are modelled in standard BPMN. In this
way the goal-oriented work�ows form an upper control level that is used to decide
which concrete BPMN work�ows should be used according to the current context.

In Go4Flex active components and Jadex have been used for two purposes. First,
the active component metaphor naturally allowed to execute di�erent kinds of work-
�ows, GPMN and BPMN, in the same infrastructure, as both kinds of work�ows can
be seen as active components that di�er only with respect to the internal architec-
ture used. The goal semantics of GPMN work�ows has been directly mapped to the
extensively studied BDI goal semantics including di�erent goal types and inhibition
relationships between goals [7, 5]. Using a model transformation approach, GPMN
work�ow model are converted to BDI agent representations so that at runtime the
BDI agent interpreter can be resused for executing GPMN work�ows. Second, as
part of Go4Flex a work�ow management system (WfMS) has been built relying on
Jadex. In this way the work�ow management system can directly pro�t from the
characteristics of the distributed middleware by exploiting service based communica-
tions between clients and WfMS. In order to better validate the correctness of the
GPMN work�ows a test case driven evaluation tool has been developed. It executes
a GPMN work�ow for each possible combination of allowed input values and checks
the results of the single runs according to prede�ned correctness criteria. In order to
execute the possibly large number of runs e�ciently the Jadex simulation support is
used, leading to as-fast-as-possible execution semantics [12].
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Figure 7.1. Paradigm integration approaches

7. Related Work. As the objective of this paper is to motivate a new concep-
tual approach for developing distributed systems, alternative integration approaches
have been categorized according to the pardigms (objects, agents, SOA, and compo-
nents) they aim to combine (cf. Fig. 7.1). Additionally, the approaches have to be
distinguished according to the level they address, i.e. are they rather conceptual pro-
posals or do they combine the concepts with a middleware that follows these ideas.
The �gure shows that many integration approaches exist that belong to di�erent
combinations of paradigms, but none of them is targeted towards an integration of
ideas from all four main paradigms. Only the work of [1] shares the same goal, but
proposes a meta-model combination approach, in which the core entities of the main
paradigms are brought together into a coherent scheme. In contrast our approach
strives at a simplication of development by introducing a new notion that encom-
passes the paradigm key characteristics and also provides a middleware infrastructure
that demonstrates its capabilities.

In the following speci�c combination areas and representatives from these areas
will be considered in more detail. We have chosen to discuss those combination areas
in which the agent paradigm is involved. In the area of agents and objects especially
concurrency and distribution has been subject of research. One example is the active
object pattern, which represents an object that conceptually runs on its own thread
and provides an asynchronous execution of method invocations by using future return
values [29]. It can thus be understood as a higher-level concept for concurrency in OO
systems. In addition, also language level extensions for concurrency and distribution
have been proposed. One in�uential proposal much ahead of its time was Ei�el [21],
in which as a new concept the virtual processor is introduced for capturing execution
control.

Also in the area of agents and components some combination proposals can be
found. CompAA [2], SoSAA [8] and AgentComponents [18] try to extend agents
with component ideas. In CompAA a component model is extended with so called
adaptation points for services. These adaptation points allow to choose services at
runtime according to the functional and non-functional service speci�cations in the
model. The �exibility is achieved by adding an agent for each component that is
responsible for runtime service selection. The SoSAA architecture consists of a base
layer with some standard component system and a superordinated agent layer that has
control over the base layer, e.g. for performing recon�gurations. In AgentComponents,
agents are slightly componenti�ed by wiring them together using slots with prede�ned
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communication partners. In addition, also typical component frameworks like Fractal
have been extended in the direction of agents e.g. in the ProActive [4] project by
incorporating active object ideas.

One active area, is the combination of agents with SOA [28] mostly driven by the
need of dynamic service composition, i.e. agents are used to dynamically search and
select services at runtime according to given requirements or service level agreements
[19, 30]. These approaches mainly deal with aspects of semantic service descriptions
and search but do not aim at a paradigm integration by itself. Also other SOA
related integration approaches that deal with work�ows and agents have been put
forward. Examples are agent-based service invocations from agents using WSIG (cf.
JADE9), or model-driven code generation approaches like PIM4Agents [32] and work-
�ow approaches like WADE (cf. JADE) or JBees [9]. Agents are considered useful
for realizing �exible and adaptive work�ows especially by using dynamic composition
techniques based on negotiations and planning mechanims, e.g. proposed in MASE
[23].

Finally, also the combination of agent, component and object concepts have been
investigated. With ProActive [3] and AmbientTalk [31] two recent approaches exist
that provide sound conceptual foundations and also a ready-to-use middleware frame-
work. ProActive is targeted towards supporting Grid environments and conceptually
relies on active objects that have been extended with distribution features. The frame-
work adds further support for typical Grid requirements such as map-reduce support,
security and reliability features. AmbientTalk has been designed to support mobile
ad-hoc networks with a dynamic number of clients. It introduces a new programming
language that is also based on the distinction of active and passive objects. Services
of active objects are dynamically discovered and invoked with a future based invoca-
tion scheme. AmbientTalk is conceptually close to active components but does rely
on a complete component model, especially provided and required services cannot be
declared.

The discussion of related works shows that the complementary advantages of the
di�erent paradigms have led to a number of approaches that aim at combining ideas
from di�erent paradigms. From all areas involving agents the most prominent ap-
proaches have been evaluated. The majority of those approaches are rather technical
integration attempts not targeted at devising new conceptual entities. Most relevant
with respect to our works are the approaches of ProActive and AmbientTalk that
both share some underlying ideas with active components. Active components ex-
tends those in the direction of agents (instead of active objects) and present a new
uni�ed conceptual model that combines the characteristics of services, components
and agents.

8. Conclusions and Outlook. In this paper it has been argued that di�erent
classes of distributed systems exist that pose challenges with respect to distribution,
concurrency, and non-functional properties for software development paradigms. Al-
though, it is always possible to build distributed systems using the existing software
paradigms, none of these o�ers a comprehensive worldview that �ts for all these classes
and for each class some conceptual problems usually remain unsolved. Hence, devel-
opers are forced to choose among di�erent options with di�erent trade-o�s and cannot
follow a common guiding metaphor. From a comparison of existing paradigms the
active component approach has been developed as an integrated worldview from com-
ponent, service and agent orientation. Based on this conceptual approach a concrete

9http://jade.tilab.com

23



programming model has been devised, which provides concurrency support follow-
ing actor based concepts. It fosters distribution transparency by not distinguishing
between local and remote service as well as by hiding all aspects of service regis-
tration and search from the user. Non-functional aspects are supported on basis of
meta-information that can be annotated to components as well as by adding or ex-
changing new infrastructure services. An example for the �rst category are security
annotations, an example for the latter category is web service publishing. The active
component approach has been realized in the Jadex platform, which includes model-
ing and runtime tools for developing active component applications. The usefulness
of active components has been further illustrated by an application from the disaster
management domain.

As one important part of future work the enhanced support of non-functional
properties for active components will be tackled. In this respect it will be analyzed if
SCA concepts like wire properties (transactional, persistent) can be reused for active
components. Furthermore, currently a company project in the area of data integration
for business intelligence is set up, which will enable an evaluation of active components
in a larger real-world setting.
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