
ICIQ 2012, the 17th International Conference on Information Quality

278

KEY-BASED BLOCKING OF DUPLICATES IN

ENTITY-INDEPENDENT PROBABILISTIC DATA
(Research-in-Progress)

Fabian Panse

University of Hamburg, Germany
panse@informatik.uni-hamburg.de

Wolfram Wingerath

University of Hamburg, Germany
wingerath@informatik.uni-hamburg.de

Steffen Friedrich

University of Hamburg, Germany
friedrich@informatik.uni-hamburg.de

Norbert Ritter

University of Hamburg, Germany
ritter@informatik.uni-hamburg.de

Abstract: Currently, in many application areas the demand on probabilistic data grows. Duplicate entity

representations are an essential problem of data quality, for certain databases as well as for probabilistic databases.

Traditional duplicate detection approaches are based on pairwise comparisons. For dealing with large data sets,

however, a comparison of all entity representation pairs is impractical and the search space is usually reduced by

blocking techniques. The majority of blocking techniques is based on the usage of keys created from the original

representations. These techniques, however, are only designed to deal with certain keys and hence cannot be used

for probabilistic data without any adaptation. In this paper, we propose an adaptation of existing blocking techniques

to data uncertainty based on the creation of certain keys from the probabilistic data. Moreover, we discuss some

approaches for adapting the techniques’ core functionalities to handle probabilistic keys. A final set of experiments

evaluates the quality of our certain key based approaches in terms of pairs completeness and pairs quality.

Key Words: Probabilistic Data, Duplicate Detection, Blocking, Sorted Neighborhood Method

1. INTRODUCTION
Today, a large amount of real-life applications [1] [2] naturally produce uncertain, imprecise or vague information.

For accurately storing such imperfect information probabilistic databases [3] [4] [5] have been developed. For

meaningfully integrating probabilistic data originating from different sources or for cleaning a single probabilistic

database, duplicate entity representations
1
 need to be identified. Techniques for duplicate detection are usually based

on pairwise comparisons of entity representations [6] [7]. However, for detecting duplicates in large data sets, a

pairwise comparison of all representations is by far too expensive in storage as well as in time. Instead the search

space has to be initially reduced to a manageable size by the usage of blocking techniques [8] [9] (also known as

indexing [10]) as for example the Sorted Neighborhood Method [11]. The most of these blocking techniques are

based on the usage of key values which are generated by the entity representations’ data (in the following, we use

the words ’key value’ and ’key’ synonymously). In probabilistic entity representations, however, the data used for

key value creation can be uncertain. Thus, from applying a traditional key definition function probabilistic keys, i.e.

keys with multiple possible instances, can result. Existing blocking variants are not designed to deal with

probabilistic keys and hence cannot be used for probabilistic data without any adaptation.

1
 In certain relational data, an entity representation corresponds to an ordinary tuple, but in probabilistic data an entity is usually

represented by more complex constructs as x-tuples [5] or tuple-blocks [3].

mailto:panse@informatik.uni-hamburg.de
mailto:wingerath@informatik.uni-hamburg.de
mailto:friedrich@informatik.uni-hamburg.de
mailto:ritter@informatik.uni-hamburg.de

ICIQ 2012, the 17th International Conference on Information Quality

279

In this paper, we consider an adaptation of existing blocking techniques to the uncertainty and impreciseness

modeled in probabilistic data in two ways. First, by resolving uncertainty during key value creation, i.e. by applying

methods for creating certain keys from probabilistic entity representations, and second by adapting the core

functionality of the blocking technique to probabilistic keys. The advantage of creating certain keys is that the core

functionality of the blocking technique remains substantially unchanged and blocking can be applied as usual. In

contrast, an adaptation to probabilistic keys implies a reimplementation of the whole blocking technique and hence

adaptations to one blocking technique cannot be simply adopted to other ones. Due to a variety of probabilistic data

applications restrict themselves to the usage of entity-independent data models, i.e. representation systems in which

the uncertainties of different entity representations are not correlated, as BID-tables [3] or ULDBs [5] without

lineage, we restrict ourselves to this class of probabilistic data models as well. A consideration of probabilistic data

with entity dependencies is planned for future research.

The main contributions of this paper are:

 Strategies to adapt existing blocking techniques to entity-independent probabilistic data by creating certain

keys from the uncertain (probabilistic) data,

 First discussions on adapting the core functionality of the Sorted Neighborhood Method to probabilistic

keys,

 An exhaustive experimental evaluation on the effectiveness and the accuracy of the proposed adaptations.

1.1. Motivating Example
As a motivating example, we consider the probabilistic entity representations of the three Movies 1-3 presented in

Figure 1. Assume that the key of each movie is generated by concatenating the first three characters of its title and

the last two digits of its production year. The title and the production year of Movie 1 are certain values and hence

creating a certain key does not pose a problem. Although the title of Movie 2 is uncertain, for each of its possible

instances the same key result, i.e. ’Bat01’. In contrast, the title’s three first characters of Movie 3 are either ’Bat’ or

’Ret’ and hence are uncertain. A simple idea to solve this problem is to create a single certain key for each movie,

but it is not clear which certain key represents Movie 3 at best. One intuitive solution is to take the key of the

movie’s most probable instance, which is ’Ret95’. Nevertheless, to take the key which is most probable at all (in this

case ’Bat95’) is maybe more appropriate. Another option is to represent Movie 3 by multiple certain keys, i.e. both

’Ret95’ and ’Bat95’. We also could initially create a probabilistic key, but then the retained uncertainty has to be

resolved during the remaining steps of the considered blocking technique. In summary, there are a lot of

potentialities for handling this problem, but it is unclear which of them solves the problem at best.

title: ‚Catwoman’ 100%

year: 2004

Movie 1

Cat04
key value

title: ‚Batman’ 70%,

,Batman & Robin’ 30%

year: 2001

Movie 2

Bat01
key value

title: ‚Batman Returns’ 30%,

,Batman’s Return’ 20%

‚Return of the Batman’ 40%

year: 1995

Movie 3

???
key value

Figure 1: Probabilistic entity representations of three sample movies containing uncertain information

1.2. Outline
The paper is structured as follows: We start with some basics on probabilistic data, duplicate detection, and existing

blocking techniques in Section 2. Then we present our strategies to adapt blocking to probabilistic data in Section 3.

First we discuss some approaches based on certain keys (Section 3.1). In Section 3.2 we then propose some

adaptations of the Sorted Neighborhood Method to probabilistic keys. We evaluate our newly defined strategies

experimentally in Section 4. Finally, we examine related work in Section 5. Section 6 concludes the paper.

ICIQ 2012, the 17th International Conference on Information Quality

280

2. BASICS
In this section we give a short overview on probabilistic data and introduce some basics on duplicate detection and

search space reduction (blocking). Moreover, we will go into detail with the Sorted Neighborhood Method which we

will use as a blocking technique representative throughout this paper.

2.1. Probabilistic Data
A probabilistic relational database is defined on an ordinary relational database schema. According to the possible

world semantics [12] the instantiation of a probabilistic database is theoretically defined as () where

 { } is a finite set of possible instances of this database (also called as possible worlds) and
(] ∑ () is the probability distribution over these instances.

Entity-independent probabilistic data models are specific probabilistic representation systems that restrict the

possible world space to databases in which the instance and existence of one entity representation is independent

from the instance and existence of any other entity representation. Although entity-independent probabilistic data

models are no complete representation systems, i.e. there are sets of possible worlds which cannot be represented by

such a data model; they are commonly used, because they are easier to manage than a complete one.

The simplest entity-independent probabilistic data model is a tuple-independent probabilistic data model [25] in

which each entity is represented by a single tuple that is assigned with a probability score. In this representation

system only the uncertainty on an entity’s existence can be modeled in the probabilistic data. In this paper, we focus

on entity-independent probabilistic data models that also allow a representation of the uncertainty on the entities’

instantiations as ULDBs [5] and BID-tables [3] in which an entity is represented by an x-tuple or a block of disjoint

tuples respectively.

Without any loss of generality, we use the ULDB model as a representative throughout this paper. The ULDB model

[5] based on the x-tuple concept. Each x-tuple consists of a set of mutually exclusive alternatives each defined as a

certain tuple which is assigned with a confidence score (attribute p). In the following, the set of alternatives

(possible instances) of an x-tuple is denoted as () . Moreover, the alternative of an x-tuple can be

expressed by the form . Maybe x-tuples (tuples for which non-existence is possible, i.e., for which the sum of its

alternatives’ probabilities is smaller than 1) are indicated by ’?’. In the ULDB model different interpretations of the

confidence values exist [5]. In our work we focus on probabilistic data, therefore, we always interpret confidence as

probability. Relations containing one or more x-tuples are called x-relations. A sample movie x-relation with three

x-tuples along with its possible world space is shown in Figure 2. Since x-tuple is a maybe tuple with two

alternatives and x-tuple is a non-maybe tuple with four alternatives, the movie x-relation represents a set of

twelve possible worlds.

When clear from the context, we sometimes simply use ’tuple’ to refer to x-tuples (and hence entity representations

in general) and ’relation’ to refer to x-relations.

Possible World Probability
 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

 { } ()

Figure 2: Sample x-relation (left) and its corresponding set of possible worlds (right)

ICIQ 2012, the 17th International Conference on Information Quality

281

2.2. Duplicate Detection
Duplicate detection means the problem of identifying multiple entity representations that refer to the same real-

world entities. The most approaches for duplicate detection are based on pairwise entity representation comparisons

[7] [6] [13] [14]. Such approaches can be conceptually decomposed into four phases [6]:

1. Search Space Reduction: Since a comparison of all pairs of tuples is mostly too inefficient, the search

space is usually reduced using heuristic blocking techniques (see Section 2.2.1).

2. Attribute Value Matching: Similarity of tuples is usually based on the similarity of their corresponding

attribute values. Despite data preparation, syntactic as well as semantic irregularities remain. Thus, attribute

value similarity is quantified by syntactic and semantic means [6]. From comparing two tuples, we obtain a

comparison vector ⃗ ⟨ ⟩, where represents the value similarity of the ith attribute.

3. Decision Model: The comparison vector is input to a decision model [13] which determines which set a

tuple pair () is assigned to: matching tuples (M) or unmatching tuples (U).

4. Duplicate Clustering: Decision models only made decisions for single tuple pairs. To get a globally

consistent result a clustering technique [6] needs to be applied.

For delimiting from the cheap comparison methods done by search space reduction techniques described later, we

call the combined execution of the attribute value matching and the decision model as an in-depth comparison. We

proposed methods for in-depth comparisons of x-tuples in [15].

Figure 3: The principal functionality of a search space reduction for duplicate detection. The dashed boundaries of the

initial search space and of the set of unmatches indicate that these sets are never materialized.

2.2.1. Search Space Reduction
Without reduction, the search space of a duplicate detection on an input relation { } based on pairwise

comparisons is principally the set of all possible pairs of tuples belonging to (see Figure 3):

 {() | }

Since two tuples only need to be compared once and a tuple does not need to be compared with itself, the initial

search space consists of
| | (| |)

 tuple pairs (complexity ()). In large data sets with millions or more

tuples, the number of tuple pairs to be compared explodes and hence the duplicate detection process becomes

infeasible. For that reason, the search space has to be initially reduced before comparing tuples in-depth. Reduction

is realized by rejecting pairs of tuples being no duplicates for sure and adding them to the set of unmatches.

ICIQ 2012, the 17th International Conference on Information Quality

282

2.2.2. Evaluation Measures
Blocking is effective, if the number of rejected tuple pairs is high. Nevertheless, it is only accurate, if no true

duplicate pair is rejected. In general, blocking is based on cheap comparisons and hence is known to cause two kinds

of errors: false acceptance (short), i.e. leaving an actual unmatch in the search space, and – even worse – false

rejection (short), i.e. removing an actual match from the search space by assigning it to the set of unmatches.

False rejection is worse than false acceptance, because an actual match that is rejected is not considered again and

therefore changes the duplicate detection result for the worse, whereas a false acceptance is eventually corrected

during the in-depth comparison.

To score accuracy and effectiveness we use the two measures pairs completeness (PC) and pairs quality (PQ) as

proposed by Christen [10]. Pairs completeness represents the share of true acceptance (short) in all duplicate

pairs (), and pairs quality represents the share of true acceptances in the accepted tuples pairs ():

| |

| | | |

| |

| | | |

Note, compared to the pairs quality (also known as precision) achieved by in-depth comparison, a pairs quality of

around 0.02 usually resulting from blocking is rather low, but compared to the pairs quality of the initial search

space (), the percentage of increase is really high.

2.3. Existing Blocking Techniques for Certain Data

Currently several blocking techniques have been proposed (see [10] for a survey). The most of these techniques

based on the usage of key values. The goal of this paper is not to present adaptations to probabilistic data for all of

the key-based blocking techniques, but rather to point out different approaches for adaptation and to compare them

with each other. In this paper, we consider three blocking techniques. We use the Sorted-Neighborhood Method

(short SNM), which is a state-of-the-art blocking technique, to illustrate our adaptation strategies based on certain

keys and discuss ways to adapt the SNM to probabilistic keys in Section 3. In our experiments in Section 4, we

additionally use Standard Blocking [8] [14] (short SB) and Robust Suffix-Array Blocking [16] (short SAB).

Figure 4: The three steps of the Sorted Neighborhood Method

2.3.1. The Sorted Neighborhood Method
The standard variant of the SNM [11] reduces the search space in three steps (for illustration see Figure 4):

1. Key Creation: First, for each tuple a key () is computed by concatenating characters of some

identifying attributes as for example identification numbers, names, addresses, etc.. In our example, we

concatenate the first three non-space characters of the title and the last two digits of the production year.

2. Sorting: Second, the tuples are sorted - usually lexicographically - by their respective keys.

3. Windowing: Finally, a window of fixed size w (in our example w=3) slides sequentially over the sorted

tuples. All tuples being within the window at the same time are paired with each other and added to the

resultant search space. Due to the fixed window size, each tuple is compared with at most 2w-2 tuples from

its immediate neighborhood.

ICIQ 2012, the 17th International Conference on Information Quality

283

The underlying assumption of the SNM is that duplicate tuples have similar keys and hence are sorted close

together. According to [11], large window sizes do not lead to a high pairs completeness, but the rate of false

acceptances grows very fast with the window size. For that reason, pairs completeness is often increased by using a

multi-pass approach [11]. In this approach instead one, multiple key definition functions are used, each function in

one pass. The final search space results in all candidate pairs detected for at least one pass (or more than k passes

respectively). It is obvious that the resultant pairs quality is lower than in a single pass approach. However, the risk

of not choosing the best key definition function is lowered and the result is usually more accurate.

Assuming a data set with n tuples and a window of a fixed size w, the total number of tuple pair comparisons

resulting from using the SNM with a single pass is () [11].

3. BLOCKING APPROACHES FOR PROBABILISTIC DATA
In the previous sections we introduced the ULDB model, described the process of duplicate detection in certain data

and went into detail with the SNM. This section is devoted to the adaptation of blocking to the ULDB model. The

one big issue here is that probabilistic entity representations may result in probabilistic keys. So in order to make

blocking applicable to probabilistic data, the uncertainty of the keys has to be resolved. There are basically two

approaches to those adaptations: generating only certain keys and thus resolving uncertainty during the key value

creation, or generating probabilistic keys and so resolving the uncertainty during the remaining steps of the

respective blocking technique (e.g. the sorting step or the windowing step of the SNM). For each of both

approaches, we identified several strategies. With respect to the ULDB model, certain keys as well as probabilistic

keys can be considered as non-maybe x-tuples defined on a single attribute. Whereas, a certain key has exactly one

alternative, a probabilistic key can have multiple alternatives.

An important fact is that if the source data is certain each variant of our proposed adaptations (based on certain keys

as well as probabilistic keys) lead to the same results as the original variants of the corresponding blocking

techniques, i.e. our strategies are generalizations of the already existing techniques.

3.1. Adaptations based on Certain Keys
An adequate strategy for building certain keys from x-tuples is by far not so straight forward as already illustrated in

our motivating example in Section 1.1, because all the uncertainty in the tuple’s data needs to be resolved. For

certain key creation, we discuss four strategies. In the multi-pass over possible worlds (Section 3.1.1) a separate pass

is applied to some of the database’s possible worlds (each a certain relation). In key-per-tuple (Section 3.1.2) for

each x-tuple a certain key is built by applying a traditional key definition function on a certain tuple representative.

In key-per-alternative (Section 3.1.3) we create a key per x-tuple alternative (each a certain tuple). In key-per-

representative (Section 3.1.4) we first compute a set of certain representatives for each x-tuple and then create a key

for each of them. Some variants of these strategies can be also applied to immediately created probabilistic keys

instead of the original x-tuples (concept Uncertain Keys First, see Section 3.1.5).

Figure 5: Basic concept of the multi-pass over possible worlds

ICIQ 2012, the 17th International Conference on Information Quality

284

3.1.1. Multi-Pass over Possible Worlds
The idea for the first strategy is based on the fact that each possible world of an x-relation is an ordinary relation on

which blocking can be applied as usual. Thus, a conceptually simple way to perform blocking with certain keys on

an x-relation is to construct its corresponding set of possible worlds (see Section 2.1), to apply the conventional

blocking technique to each world individually, and to aggregate the resulting search spaces to a single one by the set

union operator or by a voting strategy. The basic concept of the multi-pass over possible worlds strategy is

illustrated in Figure 5.

Figure 6: The variants of constructing the most probable worlds or constructing some dissimilar worlds respectively

The problem is that the number of possible worlds of large x-relations is usually tremendous and running passes on

all possible worlds is infeasible in practice. Moreover, some tuples are not present in some worlds and thus cannot

be paired with other tuples for later in-depth comparison (for instance, in the sample of Figure 2 tuple is missing

in world). Therefore, instead to all blocking is only applied to a set of selected worlds.

The decision which possible worlds should be used is not easy to make; once the first run has been performed on the

most probable world, additional passes over the next few most probable worlds will not improve the result very

much, because the most probable worlds are usually very similar. For a better result, worlds should be considered

that have not only a rather high probability, but are also as dissimilar from one another as possible. We implemented

two variants of this strategy. One is to construct the k-most probable worlds and the other is to construct a set of k

highly dissimilar possible worlds (see Figure 6). Both variants consider only worlds with all x-tuples present.

Input: x-relation , numerical value

1. Let { () () | }

2. Compute for remaining alternatives : () () () ()

3. Rank remaining alternatives into list by ()

4. Let MostProbableWorlds = { }

5. While |MostProbableWorlds|

 (a) Remove top element from

 (b) NewWorlds =

 (c) For each world MostProbableWorlds:

 (()) with () () ()

ii. Add to NewWorlds

 Add to NewWorlds

 (d) Add all NewWorlds to MostProbableWorlds

6. Rank MostProbableWorlds by probability into list

Output: First k elements of

 Algorithm 1: Compute the k most probable worlds

Since all x-tuples are independent to each other, the k-most probable worlds can be built as described in Algorithm

1: First the most probable world is created by taking the most probable alternative from each x-tuple. Second the

ICIQ 2012, the 17th International Conference on Information Quality

285

remaining alternatives are sorted into the list by a weight which is computed from the alternatives probabilities

in descending order. Then as long as we have less than k worlds, we make copies from all already created worlds,

remove the top element of and replace the current alternative of x-tuple in each copied world by .

Finally we rank the set of created worlds
2
 by their probabilities and take the k most probable ones.

Algorithm 2: Compute k dissimilar worlds

The basic idea of the second variant is to perform blocking on several possible worlds that are very dissimilar from

each other. The probabilities of the constructed worlds are only of secondary importance. Here (see Algorithm 2),

the most probable world with all tuples present is constructed for the first pass. Afterwards, a possible world is built

by using only the second most probable alternative of each tuple. Accordingly, a possible world is then built from

the third most probable tuple alternatives, and so on. This procedure is repeated, until all alternatives have been used

or the user-defined threshold k is reached. If for any constructed world a tuple has no more new alternative, the most

probable one is used for the remaining worlds. The number of worlds constructed by this procedure is rather small,

as it cannot be greater than the maximum number of alternatives per tuple. Furthermore, each additional pass is

likely to add many new tuple pairs and thus to improve the result much. So, this variant of the possible world

strategy seems by far more promising than constructing the most probable worlds.

The biggest handicap of the multi-pass over possible worlds is its execution time. However, because all passes are

independent to each other, we plan to reduce execution time by a parallel implementation using the Map-Reduce

framework. The idea is to push each world to another mapper so that all passes can be done at the same time. Finally

we use one reducer per x-tuple pair to decide if this pair belongs to the reduced search space or not. A similar

approach has been already implemented by Kolb et al. [17] who perform a parallel multi-pass Sorted Neighborhood

Method on certain data.

Theoretically, each variant of the multi-pass over possible worlds strategy is identical to a multi-pass over some

variants of the key-per-tuple strategy (see Section 3.1.2), by using a different function for computing an x-tuple

representative in each pass. However, finding a set of functions leading to the same results as the variants presented

above is not trivial. For that reason, we consider this concept as an own strategy.

Figure 7: Key-per-tuple: In this example, a tuple’s representative is computed from its most probable attribute values

2 Note, by this algorithm a same world can be result from changing different worlds, but since we use a set of worlds we consider

such duplicate worlds to be automatically removed. Moreover, the probability computation of the new worlds is only correct for

the copy of the world with the most probable alternative of the considered x-tuple. Thus, we retain the highest probability when

removing duplicate worlds.

Input: x-relation , numerical value

1. Let DissimilarWorlds =

2. For :

 (a) Let CurrentWorld =

 (b) For each x-tuple :

 If (| ()|)

 Add the th most probable alternative of to CurrentWorld

 Else

 Add the most probable alternative of to CurrentWorld

 (c) Add CurrentWorld to DissimilarWorlds

Output: World Set DissimilarWorlds

ICIQ 2012, the 17th International Conference on Information Quality

286

3.1.2. Key-per-Tuple
This strategy resolves the uncertainty by computing exactly one certain key value for each x-tuple. As illustrated in

Figure 7 and Algorithm 3, this strategy is composed of two steps. The simple idea is to compute a certain tuple for

every x-tuple as a representative (Step 1) and then to create a key from this representative (Step 2).

For computing a certain x-tuple representative, metadata such as probabilities as well as the actual attribute values

can be used. Of course, when computing a representative for key value creation, only key attributes have to be

considered. Each x-tuple alternative corresponds to a certain tuple. Thus, computing a certain x-tuple representative

from a set of alternatives is similar to computing a representative for multiple conflicting duplicate tuples in the

fusion of certain data [18]. The only difference here is that x-tuple alternatives are per definition complete and no

handling of null values is required. Moreover, x-tuple alternatives are assigned with probabilities and hence

additional meta data for computing a representative is available. Following Bleiholder et al. [18], there are basically

two strategies of computing a single representative of a whole tuple set: deciding strategies, in which simply one of

the already existing tuples is chosen as a representative, or mediating strategies, in which from the given tuples a

new representative is computed, i.e. the resultant representative does not necessarily belong to the input set.

Input: x-relation , key definition , representative definition , blocking technique

1. Let KeyTuplePairs =

2. For each x-tuple :

 (a) Create the tuple representative ()

 (b) Add ((())) to KeyTuplePairs

3. Let be the search space that results from performing on KeyTuplePairs

Output: Search Space

Algorithm 3: key-per-tuple

Deciding Strategies: A very simple deciding strategy is to pick the most probable alternative for each x-tuple.

This is equivalent to perform blocking on just the most probable world without missing tuples (see Section 3.1.1). A

more complex deciding strategy is based on the Distributional Cluster Feature (DCF). Andritsos et al. [19] use the

DCFs to compute a tuple representative which in turn is used for computing a probability for each tuple of a

duplicate cluster. Since by using this approach, the computed representative is not an element of the considered

domain, the representative itself cannot be used for key value creation, but rather the x-tuple’s alternative having the

lowest distance to the x-tuple representative has to be used. Since this approach is most likely too time consuming

for the blocking purpose and since our experiments showed that using a single key per x-tuple do not lead to best

blocking qualities, we did not implement this variant so far.

function type description

cry with the wolves dec. take the most often occurring value
most probable value dec. take the most probable value
roll the dice dec. pick a value randomly
longest value dec. take the longest value
median/average med. compute the median/average of all values
expectation value med. compute the expected value

Table 1: Conflict resolution functions which can be used for mediating strategies

Mediating Strategies: In many situations an alternative computed with a mediating strategy represents an x-tuple

better than one of the already existing ones. Mediating strategies are usually applied on an attribute-by-attribute

basis. In other words, the tuple representative results from computing a single value representative for each of its

attributes. Functions for merging single attributes are denoted as conflict resolution functions [18], because a

representative is computed from multiple conflicting input values. To each attribute a different resolution function

can be applied. Like the whole strategies, resolution functions can be of a deciding or a mediating style. By using a

deciding function one of the existing values is chosen. Two typical deciding functions are cry with the wolves where

the most often occurring value is taken or roll the dice where one of the given values is picked randomly. By

mediating functions from a set of given values a new value is created. A typical mediating function is meet in the

middle, by which the average value or the median is computed. Since x-tuple alternatives are assigned with

probabilities, additional conflict resolution functions are possible and often more convenient, e.g., a deciding

ICIQ 2012, the 17th International Conference on Information Quality

287

function in which the most probable value is chosen or a mediating function in which the expected value is

computed. A set of conflict resolution functions which can be used for computing a representative of an uncertain

attribute value is listed in Table 1.

Naturally, different techniques may be used for different attributes, e.g. the median or the expectation value can be

used for numbers, while string values can be processed with taking the most probable value. Moreover, we generally

use the roll the dice function as a fallback strategy, when the primary used function delivers an ambiguous result.

To illustrate the difference between deciding strategies and mediating strategies only consisting of deciding

functions, we consider the x-tuple with its four alternatives presented in Figure 6. By choosing the most probable

alternative, is represented by () . In contrast, by choosing the most probable value for each attribute

(mediating strategy with deciding functions) the representative () (’Batman Returns’, 1995) results, which

is not equal to any alternative of the considered x-tuple.

3.1.3. Key-per-Alternative

 In our third strategy, we do not create a single key for each tuple, but for tuple alternatives, so that tuples may have

more than one key computed for them. As a consequence, a tuple can appear several times in the sorted list as shown

in Figure 8. Since tuples may appear several times in one window, the number of different x-tuples per window can

vary. In order to prevent this effect, we redefine the window size as the number of different x-tuples per window

instead of the number of (key,tuple) pairs per window.

Figure 8: The standard variant of the key-per-alternative strategy

There are many approaches to decide which alternatives are used for key value creation. One of them is to simply

use all alternatives. Another idea is to use only a predefined number of alternatives per tuple or to use the most

probable alternative of every tuple and, in addition, a share of the remaining alternatives, e.g. the 100,000 most

probable remaining alternatives in the database.

In this paper, we consider two variants: (a) the standard variant (KpA-All) which creates a key for all alternatives,

and (b) the Top-k-variant (see Algorithm 4), which creates a key for the k most probable alternatives of each x-tuple.

Algorithm 4: Top-k-variant of key-per-alternative

Input: x-relation , numerical value , key definition , blocking technique

1. Let KeyTuplePairs =

2. For each x-tuple :

 (a) For each (| ()|):

 i. Let be the most probable alternative of
ii. Add to NewWorlds ii. Add (()) to KeyTuplePairs

3. Let be the search space that results from performing on KeyTuplePairs

Output: Search Space

3.1.4. Key-per-Representative

Our fourth and newest strategy is basically a generalization of key-per-tuple and key-per-alternative and hence is a

mixture of both concepts. The underlying idea is to create multiple key values per tuple (as in key-per-alternative)

ICIQ 2012, the 17th International Conference on Information Quality

288

each derived from a generated tuple representative (as in key-per-tuple). Thus, in key-per-representative we combine

the concepts of key-per-tuple and key-per-alternative.

Key-per-representative can be specialized to key-per-tuple by generating only a single x-tuple representative, and it

can be specialized to key-per-alternative by generating x-tuple representatives only with deciding strategies.

3.1.5. Concept of Uncertain Keys First
In the concept of Uncertain Keys First, instead of working on the original set of x-tuples, the proposed methods for

certain key value creation are applied on intermediately generated probabilistic keys, each being an x-tuple with one

attribute. Since multiple, maybe each less probable, alternatives of an x-tuple can have the same keys, the most

probable alternative of an x-tuple’s probabilistic key can differ from the key of the most probable alternative of this

x-tuple. As a result, the keys created by using the Uncertain Keys First concept can be more representative for the

considered x-tuples than the keys resulting from applying the key creation strategy commonly.

For illustrating the Uncertain Keys First concept and for demonstrating the differences to the standard approach, we

consider the tuple from Figure 7. Assume that we apply the Top-2-variant of the key-per-alternative strategy.

Instead of creating certain keys for the two most probable alternatives of each x-tuple, we choose the two most

probable alternatives of each x-tuple’s probabilistic key. For that purpose, in a first step, for each x-tuple a

probabilistic key is created. Since the alternatives and of tuple have the same key ’Bat92’, the probability

of the corresponding alternative of the probabilistic key is equal to the sum () () . In the second

step, the intended Top-2-selection is applied to the probabilistic keys. Thus, in our example, the third x-tuple is

represented by the keys ’Bat92’ and ’Ret95’ instead by the keys ’Ret95’ and ’Cat95’.

Before evaluating the quality of this concept by our experiments in Section 4, we first discuss the feasibility of the

Uncertain Keys First concept for the different variants of our certain key based strategies:

 Key-per-Tuple: In deciding strategies the key of one (e.g. the most probable) alternative is taken.

Choosing the most representative alternative of an x-tuple’s probabilistic key seems more qualified than

choosing the key of the most representative x-tuple’s alternative. In contrast, mediating whole instances (x-

tuple alternatives) seems more qualified than mediating single attribute values (probabilistic key

alternatives), because keys are composed by proportion of different attributes and hence have no inherent

semantics. For that reason, we suggest to take the Uncertain Keys First concept for variants only based on

deciding strategies and not to use this concept for mediating variants or mixed ones.

 Multi-Pass of Possible Worlds: The Uncertain Keys First concept should improve the accuracy of the

Top-k variant, because more representative worlds are selected. In contrast, in the variant of dissimilar

worlds, worlds are arbitrarily selected. Thus, we cannot make any appropriate forecast for that variant.

 Key-per-Alternative: For the Top-k-variant the Uncertain Keys First concept should improve accuracy. If

keys for all alternatives are created; the results of both concepts are equivalent.

3.2. The Sorted Neighborhood Method with Probabilistic Keys
In this section, we shortly discuss in which ways the core functionality of the SNM can be adapted to probabilistic

keys. Sorting tuples by their key values corresponds to a tuple rank scenario where the keys serve as ranking scores

and the lexicographic order serves as ranking order. Thus, we consider existent techniques for ranking probabilistic

tuples [20] to resolve the uncertainty in the sorting step by building a sorted list of x-tuples based on their

probabilistic keys or to resolve the uncertainty in the windowing step by sliding the window over a set of possible

sorting lists.

3.2.1. Single Ranking Approaches

In single ranking approaches from probabilistic keys a single certain ranking is computed in the sorting phase.

 Most Probable Ranking (SNMMPR) : The base idea of this adaptation is to rank (sort) the probabilistic tuples

by the most probable ranking of their key values. By using a key definition function , this can be realized by

sorting based on the two relations ‘ ’ and ‘ ’, which are defined as:

 (() ()) (() ()) and () ()

Since just another order relation is used, complexity is dominated by the sorting time ((())).

ICIQ 2012, the 17th International Conference on Information Quality

289

 Expected Position Ranking (SNMExpR) : This approach based on the idea to compute the expected rank

position per x-tuple and then to rank all tuples by this position. For a finite set of possible ranking scores per

tuple this computation can be done in (()) [20].

 Expected Score Ranking (SNMExpS) : This approach based on the idea to transform the blocking key into a

numerical value, to use this value as a ranking score and then to rank the tuples by their expected score. For

simple transformations this approach is dominated by the ranking time ((())).

 Uncertain Rank Aggregation (SNMURA) : In this approach, a ranking is computed which has the minimal

average (expected) distance to all possible rankings. For attribute uncertainty models such an aggregation based

on the footrule distance can be done in polynomial time (()), whereas a computation based on the Kendall

tau distance is known to be NP-Hard [20].

3.2.2. Multiple Ranking Approaches
As multiple ranking approaches, we consider approaches which do not produce a single ranking result, but resolve

uncertainty in the windowing phase.

 Sorted U-Rank Neighborhood (SNMURN) : This approach is based on the rank function l-UTop-Rank(i,j)

which is defined by Ilyas et. al [20]. This rank function returns the l most probable x-tuples that appear at the

rank position i … j. Let w be the used window size, in the Sorted U-Rank Neigborhood we pair all x-tuples that

result from l1-UTop-Rank(i,i) with all x-tuples that result from l2-UTop-Rank(i-w,i+w), where intuitively l2>l1

(for example l2 = w l1).

3.2.3. Comparison

Since the most probable sorting should be more representable than the sorting resulting from the most probable

world, the SNMMPR is expected to supply a better blocking quality than the Top-1 variant of key-per-alternative.

However, by using a single ranking approach each x-tuple is represented only once in the sorted list. Thus, an x-

tuple is only close to a second x-tuple , if is similar to the other neighbors of , too. Therefore, similar to key-

per-tuple, x-tuple uncertainty can be only restrictedly considered, because there exist no single sort position for an x-

tuple with dissimilar alternatives which is appropriate to find all of its duplicate candidates. As a consequence, from

single ranking approaches we can expect a blocking quality which is similar to the quality of key-per-tuple. First

experiments for SNMMPR and SNMExpS confirmed that intuition.

4. EXPERIMENTAL EVALUATIONS
In our experimental evaluations, we analyzed the differences in blocking quality of our proposed adaptations based

on creating certain keys. Hereby, we especially focused on the robustness against a varying data dirtiness and a

varying data uncertainty. Moreover, we evaluated for which variants the Uncertain Keys First concept was actually

valuable. Finally, we compared the quality results of our adaptations for different blocking techniques.

4.1. Probabilistic Test Data
Getting large sets of unclean probabilistic real-life data being labeled, i.e. each duplicate pair is exactly known, is

nearly impossible. For that purpose, we produced some synthetic data sets for revalidating the quality of our

proposed strategies. In order to make the data as realistic as possible, we decided to use real-life data from an

existing certain database. So we extracted title, production year, studio and director of about 300,000 movies from

the online movie database IMDb
3
 with the Java application JMDb

4
 and stored the data to an HSQLDB

5
.

For generating probabilistic data from the duplicate-free certain data, we programmed a Java application named

ProbDataGen
6
. With ProbDataGen it is possible to choose among several HSQL databases holding certain movie

data to generate a probabilistic movie database with duplicates, where the user can make several adjustments, e.g.

the number of duplicates, the maximal number of alternatives per tuple, or the datas’ degree of dirtiness.

To improve the reliability of our experimental results further on, we use a standard data setting for the movie tables

in our experiments. The characteristic of this standard setting is adopted from the characteristic of a real-life CD-

3 The Internet Movie Database (http://www.imdb.com)
4 Java Movie Database (http://www.jmdb.de)
5 HyperSQL DataBase (http://hsqldb.org)
6 http://vsis-www.informatik.uni-hamburg.de/projects/QloUD/ProbDataGen

ICIQ 2012, the 17th International Conference on Information Quality

290

dataset
7
 with duplicates. We adjust the percentage of duplicates, the average duplicate cluster size and the average

similarity of the true duplicates to this real-life data set. In experiments where data characteristics are modified for

experimental reasons, we used this setting as a fixed point and only changed the analyzed characteristic. We think

that these adjustments make our experiments as realistic as possible, even though synthetic data sets are used.

All the data sets (along with descriptions of their characteristics) we used in our experiments are available at

http://vsis-www.informatik.uni-hamburg.de/projects/QloUD/ICIQ2012/TestData.

4.2. Experimental Settings
We performed five experiments. For space limitations, for the first four experiments we show only the results for the

SNM which in our mind were most illustrative. In the last experiment, we also used Standard Blocking (SB) and

Robust Suffix-Array Blocking (SAB) to make an overall comparison between different blocking techniques.

1. In the first experiment, we made an overall comparison of the certain key based variants proposed in this

paper. We evaluated and compared their quality in terms of pairs completeness, pairs quality and runtime.

In this experiment, we used the SNM with a fixed window size w=10 and a key built by the first 12 non-

space characters of the movie title (parameter kl) and the last two digits of the production year. Moreover,

we used movie tables generated with our standard data setting.

2. Duplicate detection is especially required to work on dirty data, i.e. source data with poor quality. Thus, in

Experiment 2, we evaluated the robustness of our variants against a varying dirtiness of the source data. For

that purpose we used six sets of movie tables each generated with different settings for dirtiness. Since we

consider duplicate detection, we measure quality as the average similarity of the true duplicate pairs (the

lower the average duplicate similarity, the dirtier the data). For measuring similarity, we took the Monge-

Elkan distance [6], which is known to work well for most domains. In this experiment, we used kl =12.

Moreover we used the SNM with a specifically chosen w for each strategy so that all strategies produced a

search space of similar size (this should enable a fair comparison of pairs completeness).

3. In the third experiment, we evaluated the robustness against a varying data uncertainty. For that purpose,

we changed the average number of alternatives per x-tuple. We used the SNM with w=10 and kl =12.

4. In the fourth experiment, we evaluated the impact of the Uncertain Keys First concept on the resultant

blocking quality. In this experiment, we used the SNM with w=10 and kl =12.

5. In our final experiment, we compared the results from the SNM with the results from Standard Blocking

(SB) and Robust Suffix-Array Blocking (SAB). For comparison, we conducted runs with two different

experimental objectives. First, we executed the KpA-All variant on several databases with varying quality

to test the robustness of the blocking techniques against poor data quality (Objective 1). Then, we

compared the results for a selected set of adaptation approaches w.r.t. these three techniques on our

standard data set (Objective 2). For the first objective, we took the KpA-All variant, because it was the

adaptation approach performing best for all three techniques. For the second objective, we took our

standard data set and performed for each blocking technique KpT, KpA-All, Diss(10) and Top-1.

For our experiments we consider the adaptation variants listed in Table 2.

shorthand variant description

Top-1 a single pass over the most probable world (identical with MPW-1 and KpA-Top-1)

MPW-10 a multi-pass over the 10 most probable worlds

Diss(k) a multi-pass over k dissimilar worlds

KpT a key-per-tuple variant which build a representative by using the most probable value of each

attribute

KpA-All the standard variant of key-per-alternative using all alternatives for key value creation

KpA-Top-k a key-per-alternative variant which uses the k most probable alternatives for key value creation

KpR a key-per-representative variant which takes all alternatives plus a tuple built by the most probable

attribute values as representatives

Table 2: The variants (along with their shorthand symbols) of our certain key based approaches used in the experiments

7 http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets/cd_datasets.html

http://vsis-www.informatik.uni-hamburg.de/projects/QloUD/ICIQ2012/TestData

ICIQ 2012, the 17th International Conference on Information Quality

291

We applied each experiment on generated data sets of 102,692 x-tuples with 4,380 duplicate pairs. If not stated

otherwise, each x-tuple has at most 10 alternatives (5.46 alternatives in average). All experiments were performed

on a machine with an Intel(R) 3.1GHz quad-core processor, 8GB main memory, and a 64-bit operating system.

4.3. Experimental Results

4.3.1. Experiment 1: Overall Comparison of Adaptation Strategies using the SNM
The absolute values of pairs completeness and pairs quality are shown in Figure 9. Table 3 shows the blocking

quality of different variants in relation to the blocking quality produced by KpA-All. Figure 10 shows the runtime of

the different variants.

As expected and shown by the experimental results, a multi-pass over the k most probable worlds with k > 1 did not

bring any advantage, because no new candidate pairs result from the subsequent passes, but runtime increased linear

with growing k. In contrast, a multi-pass over dissimilar worlds was extremely beneficial. Already for small window

sizes and short keys a good pairs completeness (PC > 0.9) was achieved. The goodness lacked with fewer worlds to

be constructed, but was still of good quality by using 5 dissimilar worlds (see Diss(5) in Figure 9 and in Table 3).

Figure 9: Pairs completeness and pairs quality of different adaptation variants, each performed with the SNM

Interestingly, the used KpT variant which creates an x-tuple representative by using the most probable value of each

attribute performs a little bit better than using the most probable alternative as the representative (Top-1). That

shows that mediating strategies can be useful to create an x-tuple representative. Combining mediating strategies

and deciding strategies for creating a set of x-tuple representatives, as we did it with the KpR variant, was not

successful, i.e. it did not improve the KpA-All variant in any of the performed experimental runs.

The conclusion of this experiment is that for the SNM producing multiple keys per tuple turned out to be more

accurate than creating a single one. Of course, the resultant search space grows with the number of alternatives used

for key value creation, but the resultant values of pairs quality are all of an acceptable size. The trade-off between

accuracy and effectiveness is perfectly illustrated by the results shown in Table 3. The strategies using a single key

per x-tuple (KpT, Top-1) are most effective (smallest search space and lowest runtime), but less accurate than the

strategies using multiple keys per x-tuple (KpA-All, KpA-Top-5, Diss(5), Diss(10)).

In summary, due to the higher priority of pairs completeness, the variants which produce multiple key per tuple

(KpA, Diss(k)) turned out to be best suitable to adapt the SNM to probabilistic data.

strategy: selected true

duplicate pairs:

size of

search space:

runtime:

KpA-All 100% 100% 100%

KpA-Top-5 99.45% 90.26% 73.07%

KpT 76.82% 61.3% 30.33%

Top-1 75.45% 61.3% 23.30%
Diss(5) 98.83% 124.07% 95.58%

Diss(10) 99.75% 149.55% 179.02%

Table 3: Comparison of different variants to KpA-All

(best results are underlined)

0,5

0,6

0,7

0,8

0,9

1

Top-1 MPW(10) Diss(5) Diss(10) KpT KpA-Top-5 KpA-All KpR

(a) Pairs Completeness

0,5

1

1,5

2

2,5

3

3,5

Top-1 MPW(10) Diss(5) Diss(10) KpT KpA-Top-5 KpA-All KpR

(b) Pairs Quality [x 10-3]

0

5

10

15

20

25

30

Top-1 MPW(10) Diss(5) Diss(10) KpT KpA-Top-5 KpA-All KpR

Figure 10: Runtime [in sec] of different adaptation

strategies based on certain key values performed with

the SNM

ICIQ 2012, the 17th International Conference on Information Quality

292

4.3.2. Experiment 2: Robustness against a varying Dirtiness of the Source Data
Since we set all strategies so that they produced search spaces of similar sizes, we present only results on pairs

completeness in Figure 11. As you can see, all the variants produced a result of good quality if the source data were

of good quality (similarity of 0.93), too. Nevertheless, the blocking quality shrank rapidly when the source data

became dirtier. In general, it is easy to see that the five considered variants can be grouped into two classes. The first

class contains KpA-All, KpA-Top-5 and Diss(10). These variants worked acceptable for the three cleanest data sets

and became only bad for the data sets with the poorest quality. The second class contains KpT and Top-1. The

blocking quality of these variants was bad in the most cases. This experiment shows that using multiple keys for x-

tuples makes the blocking process more robust against a varying dirtiness of the source data.

Figure 11: Pairs completeness for different variants of the

adapted SNM w.r.t. a varying quality of the source data.

Figure 12: Pairs completeness for KpA Top-k w.r.t. a

growing number of x-tuple alternatives

4.3.3. Experiment 3: Robustness against a varying Uncertainty of the Source Data
In the results of the previous experiments, the KpA-All variant shows the best performance on pairs completeness.

However, creating a key for each alternative can be very ineffective for databases with a high degree of uncertainty,

i.e. the average number of alternatives per x-tuple is very high. For that reason, we were interested in the loss of

quality we will suffer, if we use only the k most probable x-tuple alternatives instead all of them. To evaluate that

fact, we conducted a set of experiments with different settings for k on four different sets of movie tables, each with

another degree of uncertainty. The experimental results on pairs completeness are depicted in Figure 12. The

notation Ø] on the x-axis denotes that in the corresponding movie table the average number of alternatives

per x-tuple was and the maximal number of alternatives an x-tuple can have was . The values of the individual

variants are computed in relation to the result of the variant KpA-All, i.e. a result of 1.0 for a setting k means that the

Top-k variant detected all the duplicates which have been detected by the KpA-All variant.

The Top-1 variant performed significantly worse than the KpA-All variant, but for k >2 the loss of true positives

compared to KpA-All is less than 5%, even if the maximal number of alternatives per x-tuple is up to 25. Certainly,

the relative number of correctly detected duplicate pairs shrank, if data uncertainty grew, but this loss of quality is of

an acceptable size. To show the complexity which comes along with a high setting of k, we also compared the

absolute size of the resultant search space and the execution time (see Figure 13). The higher k, the more the search

space grew proportional with the uncertainty of the data. In contrast, for low values of k, e.g. k = 1 or k = 3, the size

of the search space was mostly independent from the degree of uncertainty. Moreover, the runtime of KpA-All grew

extremely with a growing number of x-tuple alternatives, whereas the runtime for the other variants grew less

significantly, the lower k.

Figure 13: Absolute search space sizes and runtimes [sec] for different variants of KpA Top-k w.r.t. a growing number of

x-tuple alternatives

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9 0,95

KpA-All

KpA-Top-5

KpT

Top-1

Diss(10)
0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

Ø5,46 [max10] Ø7,91 [max15] Ø10,29 [max20] Ø12,67 [max25]

Top-1

Top-3

Top-5

Top-7

Top-10

9

11

13

15

17

19

21

23

25

Ø5,46 [max10] Ø7,91 [max15] Ø10,29
[max20]

Ø12,67
[max25]

x
10

00
00

Top-1

Top-3

Top-5

Top-7

Top-10

All 0

20

40

60

80

100

120

Ø5,46 [max10] Ø7,91 [max15] Ø10,29 [max20] Ø12,67 [max25]

Top-1

Top-3

Top-5

Top-7

Top-10

All

ICIQ 2012, the 17th International Conference on Information Quality

293

4.3.4. Experiment 4: Uncertain Keys First
To test the idea of Uncertain Keys First, we conducted a set of experiments and tested different variants of the key-

per-alternative strategy and the multi-pass over possible worlds strategy. Recall, these are the two strategies for

which we expected that Uncertain Keys First could have a positive impact (see Section 3.1.5).

As expected, Uncertain Keys First improved the pairs completeness of the KpA-Top-k variants as well as the pairs

completeness of the multi-pass over the k most probable worlds, but surprisingly decreases pairs completeness of the

multi-pass over k dissimilar worlds. We detect that this impact is substantially independent from the window size

and the quality of the data. The most interesting effect of Uncertain Keys First was observed for the KpA-Top-k

variant. The degree of improvement decreased with growing k, i.e. is maximal for k = 1, and increased with the

number of alternatives per x-tuple. The average amount of improvement (scored in percentage of pairs

completeness) w.r.t. different settings of k as well as the average amount of improvement w.r.t. a growing number of

alternatives per x-tuple are shown in Figure 14. In both cases, we aggregated over the remaining dimension.

Figure 14: The improvement achieved by using Uncertain Keys First with respect to (a) different settings of the KpA Top-

k variant and (b) a growing number of alternatives per x-tuple

4.3.5. Experiment 5: Overall Comparison of Different Blocking Techniques
The results of the robustness test are shown in Figure 15. In databases of good quality (similarity > 0.9) all three

techniques achieved an outstanding pairs completeness close to 1. In contrast pairs completeness shrank

significantly for databases with poor quality. SAB was by far the most robustness technique. Even for an average

duplicate similarity of 0.72 SAB achieved a pairs completeness of nearly 0.9. In contrast the pairs completeness of

SB and SNM decreased down to 0.74 (SB) or 0.61 (SNM) respectively. Surprisingly, SB performs better than SNM.

Moreover, SAB achieved by far the highest pairs quality and produced the smallest search space. The pairs quality

of SB and SNM were nearly identical. In general, pairs quality shrank, if the duplicate pairs became more dissimilar.

The results of our second objective are depicted in Figure 16. They show that SAB performed best for all of the

adaptation variants. Second in quality was SB. SNM achieved the poorest results. You can see that the differences in

blocking quality of the certain key variants are the same for all three techniques: KpT performed better than Top-1

what shows that using the most probable alternative is generally not the best variant to create a tuple representative.

Moreover, the resultant qualities of the different blocking techniques vary at most in the variants producing a single

key. In contrast, for KpA-All and Diss(10) all three techniques produced similar results. The single key strategies as

KpT produce a smaller search space and hence had a better pairs quality than the strategies producing multiple keys.

Figure 15: Pairs completeness and pairs quality of KpA-All performed with SAB, SB and the SNM w.r.t. databases of

different qualities (measured by the average similarity of all true duplicates)

3,19

2,04

0,98
0,8

0,55

0

1

2

3

4

Top-1 Top-3 Top-5 Top-7 Top-10

(a) Improvement w.r.t. different settings of k

0,74

1,42 1,44

2,02

0

1

2

3

Ø5,46 [max10] Ø7,91 [max15] Ø10,29 [max20] Ø12,67 [max25]

(b) Improvement w.r.t. data uncertainty

0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9 0,95

(a) Pairs Completeness

SAB SB SNM

1

2

3

4

0,7 0,75 0,8 0,85 0,9 0,95

(b) Pairs Quality [x10-3]

SAB SB SNM

ICIQ 2012, the 17th International Conference on Information Quality

294

Figure 16: Pairs completeness and pairs quality of some adaptation strategies performed with SAB, SB and the SNM

4.4. Experimental Conclusions
The experiments presented above show the feasibility of our approaches. Moreover, with key-per-alternative and the

multi-pass over dissimilar worlds, they lift out two adaptation strategies which were best fitting for all three

considered blocking techniques. Moreover, they were most robust against a poor quality of the source data. Only in

scenarios where the search space must be as small as possible, a single key approach as key-per-tuple is maybe a

better choice. The critical point of KpA is the one discussed in Experiment 4. Using all the alternatives for key value

creation can affect the efficiency of this approach negatively. For that reason a Top-k variant with k>2 is sometimes

better suitable. In that case the concept of Uncertain Key First can improve the effectiveness further on, but slightly

increases the search space. The drawback of Diss(k) is its long runtime for high settings of k. However, this weak

point should be erased by a parallel implementation as we plan it in future research.

5. RELATED WORK
Duplicate detection in general [6] [7] [14] [21] [13] and blocking in particular [10] are handled in several works.

Existing blocking techniques that are based on the use of key values are Standard Blocking [8] [22], the Sorted

Neighborhood Method [11] [23] [24], Q-gram Indexing [9], Suffix-Array Blocking [25] [16], K-way Sorting [26],

Similarity-Aware Inverted Indexing [27], Sorted Blocks [28], String Map based Indexing [29], Priority Queue [30],

TI-similarity [31], and Adaptive Filtering [32]. Further blocking techniques are Locality-Sensitive Hashing [33],

Fuzzy Blocking [34], Canopy Clustering [35] [36], Spectral Neighborhood Blocking [37], and blocking with

MFIBlocks [38]. Kolb et al. [17] consider a parallelization of duplicate blocking using the Map-Reduce

programming model. Approaches for blocking based on semantic relationships between data items are proposed in

[39] (tuple relationships given by foreign keys) and [40] (hierarchical relationships in XML documents). In [41]

blocking data items with heterogeneous data structures is considered. Further interesting and useful work on

blocking can be found in [42] [43] [44] and [45].

Some duplicate detection approaches produce probabilistic data as result data for modeling ambiguous duplicate

decisions [46] [47] or for modeling uncertain merging results [19]. None of these studies, however, handle

probabilistic data as source data. In contrast, in current research on the integration of uncertain data [48],

deduplication is not considered. To the best of our knowledge, we are the first who consider the problem of blocking

in the context of duplicate detection in probabilistic data. Nevertheless, to adapt blocking to probabilistic data we

make recourse to techniques already used in the fusion of certain data tuples as proposed in [18] [19]. Moreover, we

made some first proposals about the in-depth comparison of x-tuples in [15].

6. CONCLUSION
Duplicate tuples are pervasive problems of data quality. To efficiently apply duplicate detection on large data sets,

the search space has to be initially reduced by a blocking technique. Until now, duplicate detection, and especially

blocking, has only be considered for certain data. Nevertheless, duplicates are a quality problem in probabilistic

databases, too. In this paper we propose different strategies to adapt the Sorted Neighborhood Method, which is a

state-of-the-art blocking technique, to probabilistic source data. We present strategies based on certain keys created

from probabilistic entity representations and shortly discuss possible strategies based on probabilistic keys. The

benefit of using certain keys is that these strategies can also be applied to other key-based blocking techniques

without any specific adaptation. In contrast, strategies based on probabilistic keys need to be tailor-made for each

blocking technique. Our experimental evaluations of the certain key approaches show that creating multiple certain

keys per entity representation is more effective than creating a single certain key per entity representation.

Moreover, using multiple keys turned out to be more robust against a varying dirtiness or uncertainty of the source

0,6

0,7

0,8

0,9

1

KpA-All KpT Top-1 Diss(10)

(a) Pairs Completeness

SAB

SB

SNM

0

2

4

6

KpA-All KpT Top-1 Diss(10)

(b) Pairs Quality [x10-3]

SAB

SB

SNM

ICIQ 2012, the 17th International Conference on Information Quality

295

data than using a single key. Finally, we observe that intermediately created probabilistic keys can improve the

efficiency of the approaches based on multiple certain keys further on.

In future research, we aim to accelerate our blocking approaches, especially the multi-pass over possible world

approaches, by using the Map-Reduce framework. Moreover, we plan to focus on strategies for probabilistic key

based blocking adaptations in more detail.

REFERENCES

[1] D. Suciu, A. Connolly and B. Howe, "Embracing Uncertainty in Large-Scale Computational Astrophysics,"

MUD Workshop, pp. 63-77, 2009.

[2] D. Z. Wang, E. Michelakis, M. J. Franklin, M. Garofalakis and J. M. Hellerstein, "Probabilistic declarative

information extraction," ICDE, pp. 173-176, 2010.

[3] D. Suciu, D. Olteanu, C. Re and C. Koch, Probabilistic Databases, Morgan & Claypool Publishers, 2011.

[4] T. J. Green and V. Tannen, "Models for incomplete and probabilistic information," EDBT Workshops, pp. 278-

296, 2006.

[5] O. Benjelloun, A. D. Sarma, A. Y. Halevy and J. Widom, "Uldbs: Databases with uncertainty and lineage,"

PVLDB, pp. 953-964, 2006.

[6] F. Naumann and M. Herschel, An Introduction to Duplicate Detection, Morgan & Claypool Publishers, 2010.

[7] A. K. Elmagarmid, P. G. Ipeirotis and V. S. Verykios, "Duplicate Record Detection: A Survey," TKDE, pp. 1-

16, 2007.

[8] M. Jaro, "Advances in Record Linkage Methodologies as Applied to Matching the 1985 Census of Tampa Bay,

Florida," Journal of American Statistical Society 84, pp. 414-420, 1985.

[9] R. Baxter, P. Christen and T. Churches, "A comparison of fast blocking methods for record linkage," pp. 25-27,

2003.

[10] P. Christen, "A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication," TKDE, pp.

1537-1555, 2012.

[11] M. A. Hernandez and S. J. Stolfo, "The Merge/Purge Problem for Large Databases," SIGMOD Conference, pp.

127-138, 1995.

[12] S. Abiteboul, P. C. Kanellakis and G. Grahne, "On the representation and querying of sets of possible worlds,"

pp. 158-187, 1991.

[13] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies and Techniques. Data-Centric Systems,

Berlin: Springer, 2006.

[14] J. R. Talburt, Entity Resolution and Information Quality, Morgan Kaufmann Publishers, 2011.

[15] F. Panse, M. van Keulen, A. de Keijzer and N. Ritter, "Duplicate Detection in Probabilistic Data," ICDE

Workshops, pp. 179-182, 2010.

[16] T. de Vries, H. Ke, S. Chawla and P. Christen, "Robust record linkage blocking using suffix arrays," CIKM, pp.

305-314, 2009.

[17] L. Kolb, A. Thor and E. Rahm, "Multi-pass sorted neighborhood blocking with mapreduce," Computer Science

- R&D, pp. 45-63, 2012.

[18] J. Bleiholder and F. Naumann, "Data fusion," ACM Comput. Surv., pp. 1-41, 2008.

[19] P. Andritsos, A. Fuxman and R. J. Miller, "Clean Answers over Dirty Databases: A Probabilistic Approach,"

pp. 30-41, 2006.

[20] I. Ilyas and M. A. Soliman, Probabilistic Ranking Techniques in Relational Databases, Morgan & Claypool

Publishers, 2011.

[21] P. Christen, Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate

Detection, Springer, 2012.

[22] P. Lehti and P. Fankhauser, "A precise blocking method for record linkage," DaWaK, pp. 210-220, 2005.

[23] S. Yan, D. Lee, M.-Y. Kan and C. L. Giles, "Adaptive sorted neighborhood methods for efficient record

linkage," JCDL, pp. 185-194, 2007.

ICIQ 2012, the 17th International Conference on Information Quality

296

[24] U. Draisbach, F. Naumann, S. Szott and O. Wonneberg, "Adaptive Windows for Duplicate Detection," pp.

1073-1083, 2012.

[25] A. N. Aizawa and K. Oyama, "A fast linkage detection scheme for multi-source information integration," WIRI,

pp. 30-39, 2005.

[26] A. Feekin and Z. Chen, "Duplicate detection using k-way sorting method," SAC, p. 323–327, 2000.

[27] P. Christen and R. Gayler, "Towards scalable real-time entity resolution using a similarity-aware inverted index

approach," AusDM, pp. 51-60, 2008.

[28] U. Draisbach and F. Naumann, "A Generalization of Blocking and Windowing Algorithms for Duplicate

Detection," ICDKE, pp. 18-24, 2011.

[29] L. Jin, C. Li and S. Mehrotra, "Efficient record linkage in large data sets," DASFAA, pp. 137-152, 2003.

[30] A. E. Monge and C. Elkan, "An efficient domain-independent algorithm for detecting approximately duplicate

database records," DMKD, pp. 0-7, 1997.

[31] S. Y. Sung, Z. Li and S. Peng, "A fast fltering scheme for large database cleansing," CIKM, pp. 76-83, 2002.

[32] L. Gu and R. A. Baxter, "Adaptive filtering for efficient record linkage," SDM, pp. 477-481, 2004.

[33] H. sik Kim and D. Lee, "Harra: fast iterative hashed record linkage for large-scale data collections," EDBT, pp.

525-536, 2010.

[34] J. Nin and V. Torra, "Blocking anonymized data," AGOP, pp. 83-87, 2007.

[35] W. W. Cohen and J. Richman, "Learning to match and cluster large high-dimensional data sets for data

integration," KDD, pp. 475-480, 2002.

[36] A. McCallum, K. Nigam and L. H. Ungar, "Efficient clustering of high-dimensional data sets with application

to reference matching," KDD, pp. 169-178, 2000.

[37] L. Shu, A. Chen, M. Xiong and W. Meng, "Efficient spectral neighborhood blocking for entity resolution,"

ICDE, pp. 1067-1078, 2011.

[38] B. Kenig and A. Gal, "Efficient entity resolution with mfiblocks," Technion, 2011.

[39] J. Nin, V. Muntes-Mulero, N. Martinez-Bazan and J. Larriba-Pey, "On the use of semantic blocking techniques

for data cleansing," pp. 190-198, 2007.

[40] S. Puhlmann, M. Weis and F. Naumann, "Xml duplicate detection using sorted neighborhoods," pp. 773-791,

2006.

[41] G. Papadakis, E. Ioannou, C. Niederee and P. Fankhauser, "Efficient entity resolution for large heterogeneous

information spaces," pp. 535-544, 2011.

[42] M. Bilenko, B. Kamath and R. J. Mooney, "Adaptive blocking: Learning to scale up record linkage," pp. 87-96,

2006.

[43] P. Christen, "Towards parameter-free blocking for scalable record linkage," 2007.

[44] M. Michelson and C. A. Knoblock, "Learning blocking schemes for record linkage," 2006.

[45] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald and H. Garcia-Molina, "Entity resolution with iterative

blocking," pp. 219-232, 2009.

[46] G. Beskales, M. A. Soliman, I. F. Ilyas and S. Ben-David, "Modeling and Querying Possible Repairs in

Duplicate Detection," PVLDB, pp. 598-609, 2009.

[47] M. van Keulen, A. de Keijzer and W. Alink, "A Probabilistic XML Approach to Data Integration," ICDE, pp.

459-470, 2005.

[48] P. Agrawal, A. D. Sarma, J. Ullman and J. Widom, "Foundations of uncertain-data integration," pp. 1080-1090,

2010.

