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Abstract. Duplicate detection is an important process for cleaning or integrat-
ing data. Since real-life data is often polluted, detecting duplicates usually comes
along with uncertainty. To handle duplicate uncertainty in an appropriate way,
indeterministic duplicate detection approaches, i.e. approaches in which ambigu-
ous duplicate decisions are probabilistically modeled in the resultant data, have
been developed. To rate the goodness of a duplicate detection approach, its detec-
tion results need to be evaluated in their quality. In this paper, we propose several
semantics to apply traditional quality evaluation measures to indeterministic du-
plicate detection results and exemplarily present an efficient evaluation for one of
these semantics. Finally, we present some experimental results.

Keywords: indeterministic duplicate detection, probabilistic duplicate detection,
quality evaluation, probabilistic clustering, entity resolution.

1 Introduction

Duplicate detection [4,8] is an important task in cleaning a single data source or in
meaningfully combining data from different sources. Due to deficiencies like missing
data, typos or data obsolescence, it often cannot be determined with absolute certainty
from the data itself that two or more representations belong to the same real-world en-
tity. This principally hinders duplicate detection and is a crucial source of uncertainty.
Most current duplicate detection approaches [4] acknowledge many kinds of uncer-
tainty and often apply fuzzy matching techniques, but in the end they still are determin-
istic: finally an absolute decision needs to be taken either by (1) deferring the situation
to domain experts which is expensive and time consuming, or (2) choose the most likely
configuration thereby risking a wrong choice with all consequences this may have.

To better deal with uncertainty in duplicate detection, several approaches [2,6,9] have
been proposed that avoid ambiguous decisions, but instead try to model all significantly
likely configurations in the resultant data. Hence any query answer or other derived data
will reflect the inherent uncertainty. Since in such approaches duplicate decisions are
handled in an indeterministic way, we refer to them as an indeterministic duplicate de-
tection. This concept may protect against negative impact resulting from false duplicate
decisions made under ambiguous circumstances.

For effectively comparing deterministic- and indeterministic duplicate detection ap-
proaches new methods for quality evaluation are required, because existing evaluation
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measures are not designed to deal with indeterministic results. As we think, the qual-
ity of an indeterministic duplicate detection result generally depends on the intended
handling of the datas’ inherent uncertainty. For that reason, in this paper we define dif-
ferent semantics for evaluating the quality of indeterministic duplicate detection results
and propose strategies to compute these evaluations in an efficient way.

The paper is structured as follows. In Section 2, we formally introduce the concepts
of deterministic duplicate detection and indeterministic duplicate detection. Moreover,
we present measures for evaluating the quality of deterministic duplicate detection re-
sults. In Section 3, we introduce different semantics on how the quality of an indeter-
ministic duplicate detection result can be scored and exemplarily discuss one of them
in detail. In Section 4, we present an efficient quality computation for this semantics.
Section 5 shows some experimental results. In Section 6 we present related work. Fi-
nally, Section 7 concludes the work.

2 Duplicate Detection

Duplicate detection [8,4] is the process of identifying multiple representations in a
database relation referring to the same real-world entity.

Definition 1 (Real World): We postulate a real world, denoted by W, as the set of all ex-
isting real-world entities. The mapping ω :R→W maps tuples of a database relation
R on entities of W.

In our linguistic use, two tuples t1, t2 ∈ R are called duplicates, iff ω(t1) = ω(t2).

2.1 Deterministic Duplicate Detection

Deterministic duplicate detection is a partitioning of the input relation into clusters
(equivalence classes or partition classes) such that all tuples of one cluster refer to the
same real-world entity and hence are duplicates.

Definition 2 (Deterministic Duplicate Detection): Deterministic duplicate detection is
a function δdet that maps a relation R to a clustering C = {C1, . . . , Cl} such that⋃ C = R (each tuple is assigned to a cluster) and (∀C1, C2 ∈ C) : C1 ∩ C2 = ∅ (the
clusters are disjoint). The duplicate detection is considered to be perfect, iff:

• (∀C ∈ C ∀t1, t2 ∈ C) : ω(t1) = ω(t2) , i.e., all tuples of one cluster represent the
same real-world entity (the duplicate detection is correct ⇒ precision=1)

• (∀C1, C2 ∈ C ∀t1 ∈ C1 ∀t2 ∈ C2) : C1 �= C2 ⇒ ω(t1) �= ω(t2), i.e., all tuples
of different clusters represent different real-world entities (the duplicate detection
is complete ⇒ recall=1)

To evaluate the quality of a duplicate detection process performed on R, its resultant
clustering C is compared with the clustering Cgold which would result from a perfect
duplicate detection process (called the gold standard) on R.

As a running example throughout this paper, we consider a duplicate detection on a
relation REx with the ten tuples t1, . . . , t10. Figure 1 presents the gold standard and a
certain clustering resultant from a non-perfect deterministic duplicate detection process.
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Fig. 1. The gold standard and a non-perfect deterministic clustering result on REx
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Fig. 2. The possible clusterings Ci ∈ ΓEx of our sample probabilistic clustering CEx = (ΓEx, PEx)

2.2 Indeterministic Duplicate Detection

In contrast to a deterministic duplicate detection approach where two tuples have to be
declared as duplicates or not, in an indeterministic approach duplicate decisions can
be made in a probabilistic way, i.e. tuples can be declared as duplicates with a given
probability. For example, the two tuples t1 and t2 can be declared to be duplicates with
a probability of 60% (and hence to be non-duplicates with a probability of 40%).

The result of an indeterministic duplicate detection is a probability distribution on a
set of possible clusterings where each clustering corresponds to a deterministic dupli-
cate detection result.

Definition 3 (Indeterministic Duplicate Detection): Indeterministic duplicate detection
is a function δidet that maps a relation R to a probabilistic clustering C=(Γ, P ) where:

• Γ is a set of possible clusterings so that (∀C ∈ Γ ) : (∃δdet) : C = δdet(R),

• P : Γ → (0, 1],
∑

C∈Γ P (C) = 1 is a probability distribution on Γ

A sample probabilistic clustering CEx = (ΓEx = {C1, . . . , C12}, PEx) of our sample in-
put relation REx = {t1, . . . , t10} is graphically presented in Figure 2.

Definition 4 (Cross Product of Probabilistic Clusterings): The cross product of two prob-
abilistic clusterings Ci = (Γi, Pi) and Cj = (Γj , Pj) is the probabilistic clustering
Cij = Ci × Cj = (Γij , Pij) where Γij = {Ci ∪ Cj | Ci ∈ Γi, Cj ∈ Γj} and the prob-
ability of each resultant possible clustering C = Ci ∪ Cj is Pij(C) = Pi(Ci) · Pj(Cj).
The n-ary cross product is defined accordingly.
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Fig. 3. The four factors of CEx: CF1, CF2, CF3 and CF4

Because the data of individual clusterings often considerably overlaps and it is some-
times even impossible to store them separately (in our experiments we work on proba-
bilistic clusterings with |Γ |→7.6 · 1044), a succinct representation has to be used. For
that reason, a probabilistic clustering is usually represented in a factorized way.

Definition 5 (Factorization of a Probabilistic Clustering): A factorization of a proba-
bilistic clustering C = (Γ, P ) defined on a relation R is a set of probabilistic cluster-
ings (called factors) F(C) = {CF1, . . . ,CFn} where each factor is defined on a tuple
set Fi ⊂ R (called factor set) so that the following three requirements are satisfied:
• Each tuple t ∈ R is covered by a factor (the factorization is lossless):

⋃
CF∈F(C) F

• The overall probabilities of the individual clusterings are preserved (the factoriza-
tion is probability correct): (∀CF ∈ F(C) ∀CF ∈ CF ) : PF (CF ) =

∑
C∈Γ,CF⊆C

P (C)
• Each two factors CFi and CFj are independent to each other (the factorization is

correct): (∀C1 ∈ CFi ∀C2 ∈ CFj) : PFi(C1) · PFj(C2) =
∑

C∈Γ,C1∪C2⊆C P (C).
This implies that each two factors CFi and CFj are defined on disjoint factor sets,
i.e. Fi ∩ Fj = ∅.

The factorization is complete, iff none of its factors can be further factorized. Due to a
factorization is correct and lossless, Theorem 1 is valid:

Theorem 1. A probabilistic clustering C = (Γ, P ) can be rebuilt from the cross prod-
uct of its factors: C = ×CF∈F(C)CF

Proof. The proof directly results from the definition of the cross product and the defi-
nition of a correct and lossless factorization.

Due to the number of possible clusterings is usually overwhelming, existent approaches
of indeterministic duplicate detection [2,6,9] are designed in a way that they already
produce a factorized representation as output.

Figure 3 shows the four factors of our sample probabilistic clustering CEx = (ΓEx,
PEx) along with their factor sets and their sets of possible clusterings.



Evaluating Indeterministic Duplicate Detection Results 437

2.3 Quality Evaluation Measures

Existing quality measures for deterministic duplicate detection [5,7,11] can be classified
into decision-based evaluation measures and cluster-based evaluation measures.

Decision-Based Evaluation. Traditional approaches for duplicate detection [8] are
based on pairwise tuple comparisons. For that reason, the quality of a duplicate de-
tection approach is often measured based on the pairwise duplicate decisions made by
this approach. The two most known decision-based evaluation measures are recall and
precision [11] which originate from the area of information retrieval.

Before a decision-based evaluation measures can be applied to a clustering, the clus-
tering needs to be transformed into a set of pairwise decisions. A transformation from
a clustering C to the corresponding set of duplicate decisions1 (the set of proposed
matches M and the set of proposed unmatches U ) can be defined as:

M(C) = {(ti, tj) | ti, tj ∈ R ∧ (∃C ∈ C) : {ti, tj} ⊆ C} (1)

U(C) = {(ti, tj) | ti, tj ∈ R ∧ (� ∃C ∈ C) : {ti, tj} ⊆ C} (2)

From these two sets three decision classes, the true positives (TP), the false positives
(FP), and the false negatives (FN) can be derived as:

TP(C, Cgold) = M(C) ∩M(Cgold) (3)

FP(C, Cgold) = M(C) ∩ U(Cgold) = M(C)−M(Cgold) (4)

FN(C, Cgold) = U(C) ∩M(Cgold) = M(Cgold)−M(C) (5)

Using these three classes, recall (Rec) and precision (Prec) can be defined as:

Rec(C, Cgold) =
|TP(C, Cgold)|
|M(Cgold)| =

|TP(C, Cgold)|
|TP(C, Cgold)|+ |FN(C, Cgold)| (6)

Prec(C, Cgold) =
|TP(C, Cgold)|

|M(C)| =
|TP(C, Cgold)|

|TP(C, Cgold)|+ |FP(C, Cgold)| (7)

A third measure that combines precision and recall into a single quality score by com-
puting their harmonic mean is the F1-score:

F1-score(C, Cgold) = 2 · Rec(C, Cgold) · Prec(C, Cgold)

Rec(C, Cgold) + Prec(C, Cgold)
(8)

=
2 · |TP(C, Cgold)|

2 · |TP(C, Cgold)|+ |FP(C, Cgold)|+ |FN(C, Cgold)| (9)

Further decision-based evaluation measures are proposed in [5,7]. When clear from
context, we often simply use TP, FP, FN, Rec, Prec and F1-score instead of TP(C, Cgold),
FP(C, Cgold), FN(C, Cgold), Rec(C, Cgold), Prec(C, Cgold) and F1-score(C, Cgold).

1 Note, most often only the positive duplicate decisions need to be computed.
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Cluster-Based Evaluation. In measures for cluster-based evaluation the quality of
a duplicate detection process is scored by the similarity of its final clustering to the
perfect clustering. The more similar both clusterings (partitions) are, the better is the
process’s quality. The most of these approaches [11], e.g. the Rand Index, the Adjusted
Rand Index, and the Talburt-Wang Index, are based on the partition overlap of the two
clusterings to be compared. According to [11], the partition overlap V of two partitions
CA and CB is the set of all nonempty intersections between the clusters of CA and the
clusters of CB and is defined as:

V (CA, CB) = {Ai ∩Bj | Ai ∈ CA, Bj ∈ CB ∧ Ai ∩Bj �= ∅} (10)

Whereas the Rand Index and the Adjusted Rand Index are computationally intensive,
the Talburt-Wang Index (short TWI) is simply to calculate, because it does not use the
size of the overlaps, but only the number of overlaps:

TWI(CA, CB) =
√|CA| · |CB|
|V (CA, CB)| (11)

In this paper, we will use the TWI as a representative for cluster-based evaluation mea-
sures. Table 1 depicts the quality scores of the twelve possible clusterings of our sample
probabilistic clustering CEx w.r.t. the four presented evaluation measures.

Table 1. Quality scores of the possible clusterings of CEx

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 min max exp

Rec .333 .333 .333 .333 .667 .667 .667 .667 .667 .667 .667 .667 .333 .670 .600
Prec 1.00 .500 .333 .250 1.00 .667 .500 .400 .667 .500 .400 .333 .250 1.00 .648
F1-score .500 .400 .333 .286 .800 .667 .571 .500 .667 .571 .500 .444 .286 .800 .592
TWI .882 .881 .831 .778 .935 .875 .875 .810 .875 .810 .810 .740 .740 .935 .864

3 Quality of Indeterministic Duplicate Detection Results

In this section, we analyze the different types of on-top applications which can process
indeterministic duplicate detection results and define specific quality semantics for each
of them (Section 3.1). For exemplary reasons, we go then into detail with one of these
semantics in Section 3.2. A closer consideration of the other semantics is intended for
future publications.

3.1 Quality Semantics

The quality of data generally depends on its intended use, i.e. a database can be of good
quality w.r.t. a given application and can be of bad quality w.r.t. another one. The same
holds for the quality of a duplicate detection process, because its goodness is automati-
cally a quality yardstick of the data resulting from deduplication, i.e. the more error the
duplicate detection process produces, the worse is the quality of the resultant data.

We identify four different ways of handling uncertainty in data processing and hence
classify four different types of on-top applications (see Figure 4):
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Fig. 4. The four types of database applications along with their corresponding quality semantics

1. Traditional Database Applications (Uncertainty Ignorance): Most of tradi-
tional database applications cannot process probabilistic data and need certain data
as input. In this case, uncertainty must be ignored by evaluating queries only on
one of the possible worlds (most meaningful: one of the most probable worlds).

2. Probabilistic Database Applications (Uncertainty Preservation): Another way
an application can handle data uncertainty is to consider any kind of uncertainty
during query evaluation and to produce an uncertain query result. Evaluating a
query on a probabilistic database follows the principles of the possible world se-
mantics [10]. This means that the query is evaluated in each world individually and
each result represents a possible world of the probabilistic query answer.

3. Certain Query Answer based Applications (Uncertainty Consideration): A lot
of applications require query answers as input, which are (nearly) dead certain. For
that reason consistent query answering [1] (also known as certain query answering
or sure information answering) need to be applied to the uncertain data. In this case,
uncertainty is resolved by processing a query only on the certain facts, or at least
on the facts which are certain with a given level of tolerance, of the probabilistic
database. It is important to note that indeterministic duplicate detection allows a
more correct evaluation of certain query answering than it is possible by querying a
deterministic duplicate detection result, because the query answering algorithm can
distinct between ambiguous duplicate decisions and certain duplicate decisions.

4. Uncertainty Analyzing Applications (Uncertainty Aggregation): The last type
includes applications which are designed to directly analyze the uncertainty of
the data, as for example to compute the minimal/maximal/expected number of
database tuples which satisfy a specific selection criterion (e.g.: What is the mini-
mal/maximal/expected number of persons living in Germany). In this case, aggre-
gation functions are used to resolve data uncertainty.

Since the quality of an indeterministic duplicate detection result essentially depends on
the way the resultant datas’ inherent uncertainty is processed by an on-top application,
we define the following four corresponding quality semantics:
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1. Most Probable World Semantics (short MPWS): The most probable world se-
mantics is designed to score the quality of an indeterministic duplicate detection
result w.r.t. traditional database applications. If the application picks one of the
most probable clusterings (worlds) randomly, it is most meaningful to score the fi-
nal quality as the average quality of the most probable clusterings. Of course, if any
other selection criterion is used, another quality definition can be more meaningful.
For our sample probabilistic clustering CEx the two possible clusterings C5 and C9
are most probable. These clusterings along with the final quality scores are pre-
sented in Figure 5.
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Fig. 5. CEx: its most probable clusterings (a), its gold standard (b) and the quality scores (c)

2. Possible World Semantics (short PWS): If the data is processed according to
the possible world semantics, it seems most meaningful to define the quality of an
indeterministic duplicate detection result as a probability distribution on all possible
scores (the possible worlds of the datas’ quality). Moreover, this approach allows
a subtle analysis of the probabilistic clustering’s quality. For example, it allows
to determine to what probability is the quality score greater than a user specific
threshold. Nevertheless, this semantics is computationally intensive.
For our sample probabilistic clustering CEx, the resultant probability distribution on
possible F1-scores is presented in Figure 6.

0.286 0.333 0.4 0.444 0.5 0.571 0.80.667

probability

(0.016)
(0.064) (0.024) (0.032)

(0.256)
(0.176)

(0.24)
(0.1925)

quality (F1-score)

Fig. 6. Probability distribution on possible F1-scores of CEx

3. Certain World Semantics (short CWS): The certain world semantics is tailor-
made for applications based on certain query answers. Thus, in the CWS the quality
of the duplicate detection result is only scored on clustering information which is
postulated to be certain. The CWS is extensively discussed in Section 3.2.

4. Aggregated World Semantics (short AWS): For uncertainty analyzing applica-
tions, it is most meaningful to score the final quality of an indeterministic duplicate
detection result by the quality of the analysis result and hence by aggregating (e.g.
bymin, max or exp) the quality scores of all its possible clusterings. This semantics
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allows a rough analysis of the datas’ quality. For example it allows to query: What
is the worst case scenario (minimal quality score), the expected scenario (expected
quality score), and the best case scenario (maximal quality score). The aggregated
quality scores of CEx are listed in Table 1.

It is important to note that these semantics are no competitors in general, but each of
them fits best for a specific application scenario.

3.2 Certain World Semantics

In the certain world semantics we evaluate the quality only on the facts postulated to be
dead certain (or more probable than 1−ε respectively). We have to differentiate between
a cluster-based interpretation and a decision-based interpretation. Whereas the cluster-
based interpretation considers only clusters with a certain existence, the decision-based
interpretation considers certain duplicate decisions.

Cluster-Based Interpretation. Intuitively, a cluster C with |C| > 1 can be considered
to be certain, if in each possible clustering there exists a cluster C′ with C ⊆ C′.
However, under a closer consideration, we will see that this intuitive definition is not
appropriate, because a certain cluster {t1, t2, t3} not only means that t1, t2 and t3 are
certainly duplicates, but it also implicitly means that these three tuples are certainly no
duplicates with any other tuple what in reality muss not be a certain fact at all.

As a consequence, we consider the certain clustering componentCcert.ε(C) of a prob-
abilistic clustering C = (Γ, P ) to be the set of clusters which belong to every possible
clustering of C with a probability equal to 1-ε or greater.

Definition 6 (Certain Clustering Component): Let C = (Γ, P ) be a probabilistic clus-
tering. The certain clustering component of C with the tolerance setting ε is a traditional
clustering defined as:

Ccert.-ε(C) = {C |
∑

C∈Γ,C∈C P (C) ≥ 1− ε} (12)

By definition, the certain clustering component of a probabilistic clustering C = (Γ, P )
can be contain less tuples than R and hence less tuples than the gold standard. To
enable a meaningful execution of a cluster-based evaluation measure as the Talburt-
Wang index, we have to modify Cgold so that it shares the same tuples as Ccert.-ε(C). For
that purpose, we discard all clusters from Cgold which do not have a tuple belonging to
Ccert.-ε(C) and then drop from the remaining clusters all tuples which do not belong to
any cluster of Ccert.-ε(C). Formally, the modifications are defined as:

Tcert.-ε(C) =
⋃

Ccert.-ε(C) = {t | (∃C ∈ Ccert.-ε(C)) : t ∈ C} (13)

C∗
gold = {C ∩ Tcert.-ε(C) | C ∈ Cgold} − ∅ (14)

Let q be the cluster-based quality measure to score, the quality of the probabilistic
clustering C to Cgold using q under the CWS with the tolerance setting ε is scored as:

q(C, Cgold)CWS,ε = q(Ccert.-ε(C), C∗
gold) (15)
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As an example consider Figure 7. The certain clustering component of CEx with the tol-
erance setting ε = 0.3 is Ccert.-0.3(C) = {{t3}, {t7, t8}, {t9}, {t10}}. The modified gold
standard is C∗

gold = {{t3}, {t7, t8}, {t9}, {t10}}. Thus, the F1-score as well as the TWI
of CEx are 1.0. In contrast, by using the tolerance setting ε = 0.4 the certain clustering
component is equivalent to C9 and the gold standard remained unchanged. Thus, the
resultant scores of CEx are 0.667 (F1-score) and 0.875 (TWI).
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Fig. 7. Ccert.-ε(C) and C∗
gold for the tolerance settings ε = 0.3 and ε = 0.4

Decision-Based Interpretation. The set of certain decisions of a probabilistic cluster-
ing C is the set of decisions which are postulated with a probability greater than 1− ε.

Definition 7 (Certain Duplicate Decisions): Let C = (Γ, P ) be a probabilistic cluster-
ing. The set of certain positive (negative) duplicate decisions of C with the tolerance
setting ε are defined as:

Mcert.-ε(C) = {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈M(C) P (C) ≥ 1− ε} (16)

Ucert.-ε(C) = {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈U(C) P (C) ≥ 1− ε} (17)

= {(ti, tj) | ti, tj ∈ R∧
∑

C∈Γ,(ti,tj)∈M(C) P (C) ≤ ε} (18)

The three decision classes TP, FP, and FN can be then computed as follows:

TPcert.-ε(C, Cgold) = Mgold ∩Mcert.-ε(C) (19)

FPcert.-ε(C, Cgold) = Mcert.-ε(C)−Mgold (20)

FNcert.-ε(C, Cgold) = Mgold ∩ Ucert.-ε(C) (21)

Recall, precision and F1-score are then computed according to Equations 6-9 by using
TPcert.-ε, FPcert.-ε, and FNcert.-ε instead of TP, FP, and FN.

Let q be the decision-based quality measure to score, let m be the evaluation method
performed in q having the three decision classes TP, FN, and FP as input: q(C, Cgold) =
m(TP(C, Cgold), FP(C, Cgold), FN(C, Cgold)). The quality of C to Cgold using q under the
CWS with the tolerance setting ε is scored as:

q(C, Cgold)CWS,ε = m(TPcert.-ε(C, Cgold), FPcert.-ε(C, Cgold), FNcert.-ε(C, Cgold)) (22)

The sets of certain decisions of CEx with ε = 0.2 are (for illustration see Figure 8):

Mcert.-0.2(CEx) = {(t1, t4), (t7, t8)}, and

Ucert.-0.2(CEx) = {(a, b) | a, b ∈ REx} − {(t1, t2), (t1, t4), (t2, t4), (t5, t6), (t7, t8)}
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(t1,t4) (t7,t8) (t1,t2) (t2,t4) (t5,t6) (t9,t10) (t1,t5)(t1,t3)

1.0
1-ε=0.8

ε=0.2

Mcert.-0.2 Ucert.-0.2
probability to
be a match

Fig. 8. Mcert.-0.2(CEx) and Ucert.-0.2(CEx) for the tolerance setting ε = 0.2

Hence: TPcert.-0.2 = {(t1, t4), (t7, t8)}, FPcert.-0.2 = ∅, and FNcert.-0.2 = {(t3, t5)}. The
F1-score of CEx using the CWS with the tolerance setting ε = 0.2 is thus 0.8.

An important fact of the CWS is that the equations M = FN+TP and U = FP+TN
are not valid anymore and other quality measures, e.g. the number of false decisions
(FN + FP), can capture quality aspects which are not captured by precision, recall or
F1-score anymore.

Tolerance Setting. It is to note that a tolerance setting ε ≥ 0.5 has to be used carefully,
because it can lead to inconsistent duplicate clusterings, i.e. a tuple can belong to mul-
tiple clusters (cluster-based interpretation) or two tuples can be declared as a match and
as an unmatch at the same time (decision-based interpretation).

4 Efficient Quality Computation for the Certain World Semantics

The certain world semantics proposed in the previous section is defined on a complete
probabilistic clustering C. However, as discussed in Section 3.1, instead of C usually its
factors are available. To rebuild C from its factors is most often not practical. For that
reason, in this section, we figure out how the quality of a probabilistic clustering C can
be scored based on the quality scores of its factors.

Cluster-Based Interpretation

Theorem 2. The certain clustering component of a probabilistic clustering C = (Γ, P )
can be computed by the union of the certain clustering components of its factors:

Ccert.-ε(C) =
⋃

CF∈F(C)
Ccert.-ε(CF ) (23)

Proof. All factor sets are disjoint. Hence any possible cluster belongs to a single factor.
By Definition 5, for every subset (cluster) C of the factor set F of a factor CF =
(ΓF , PF ) holds:

∑
C∈ΓF ,C∈C PF (C) =

∑
C∈Γ,C∈C P (C). Hence a cluster is certain for

C, if it is certain for its corresponding factor.

Due to Theorem 2, the costs for computing the certain clustering component of a prob-
abilistic clustering can be reduced to the costs required for computing the certain clus-
tering component of its factor with the greatest number of possible clusterings.
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Decision-Based Interpretation

Theorem 3. The set of certain matches Mcert.-ε of a probabilistic clustering C = (Γ, P )
can be computed by the union of the corresponding sets of its factors:

Mcert.-ε(C) =
⋃

CF∈F(C)
Mcert.-ε(CF ) (24)

Proof. Two tuples can be only a match, i.e. be in a same cluster, if they belong to the
same factor set. By Definition 5, for every two tuples {ti, tj} of the factor set F of a
factor CF = (ΓF , PF ) holds:

∑
C∈ΓF ,{ti,tj}∈C PF (C) =

∑
C∈Γ,{ti,tj}∈C P (C). Hence

a tuple pair is certainly a match in C, if it is certainly a match in its corresponding factor.

Theorem 4. The decision classes TPcert.-ε and FPcert.-ε of a probabilistic clustering
C=(Γ, P ) can be computed by the union of the corresponding classes of its factors:

TPcert.-ε(C, Cgold) =
⋃

CF∈F(C)
TPcert.-ε(CF , Cgold) (25)

FPcert.-ε(C, Cgold) =
⋃

CF∈F(C)
FPcert.-ε(CF , Cgold) (26)

Proof. We prove the theorem only for TPcert.-ε (FPcert.-ε can be proved accordingly).

TPcert.-ε(C, Cgold) = Mgold ∩Mcert.-ε(C)
(Theorem 3)
= Mgold ∩

⋃

CF∈F(C)
Mcert.-ε(CF )

=
⋃

CF∈F(C)
(Mgold ∩Mcert.-ε(CF )) =

⋃

CF∈F(C)
TPcert.-ε(CF , Cgold)

In contrast to TPcert.-ε and FPcert.-ε, the decision class FNcert.-ε cannot be restricted to
the individual factors, because it could happen that some true duplicates do not belong
to the same factor set. However, we can distinct between inter-factor false negatives
(FNinter), i.e. a not detected duplicate pair which tuples belong to different factors (e.g.
the tuple pair (t3, t5) in our running example) and intra-factor false negatives (FNintra),
i.e. a not detected duplicate pair which tuples belong to the same factor.

All inter-factor false negatives are dead certain decisions, because they do not belong
to a same cluster in any possible clustering C ∈ Γ . Thus, the set (and hence number)
of inter-factor false negatives is the same for all possible clusterings of C and can be
simply computed from the factor sets: FNinter(C, Cgold) = FN({F | CF ∈ F(C)}, Cgold).
In contrast, the set of intra-factor false negatives results per definition from the union of
the false negative decisions of each factor where each factor CF is only compared with
the tuple-equivalent part of the gold standard: CF

gold = {C ∩ F | C ∈ Cgold}.

Using FNinter and FNintra
cert.-ε, the class of certain false negatives can be computed by:

FNcert.-ε(C, Cgold) = FNinter(C, Cgold) ∪ FNintra
cert.-ε(C, Cgold) (27)

= FN({F | CF ∈ F(C)}, Cgold) ∪
⋃

CF∈F(C)
FNcert.-ε(F, CF

gold) (28)
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Thus, the number of certain TP, certain FP and certain FN can be simply computed as:

|TPcert.-ε(C, Cgold)| =
∑

CF∈F(C)
|TPcert.-ε(CF , Cgold)| (29)

|FPcert.-ε(C, Cgold)| =
∑

CF∈F(C)
|FPcert.-ε(CF , Cgold)| (30)

|FNcert.-ε(C, Cgold)| = |FNinter(C, Cgold)|+
∑

CF∈F(C)
|FNcert.-ε(CF , CF

gold)| (31)

In summary, the costs for computing the number of certain TP, certain FP and certain
FN and hence the costs for computing the recall, the precision and the F1-score of the
certain facts of a probabilistic clustering can be reduced to the costs required for com-
puting the certain TP, certain FP and certain FN of its factor with the greatest number
of possible clusterings.

5 Experimental Evaluation

To experimental evaluate our quality semantics, we use a duplicate detection scenario
extensively discussed in [9]. In this scenario, on a real-life CD data set several inde-
terministic duplicate detection processes have been performed. Each process is char-
acterized by its number of indeterministically handled decisions (#inDec). In Figure 9,
we present the F1-score and the TWI of these processes each scored with our different
quality semantics (PWS is not considered, because it does not supply a single value).

The most probable world was the same for all processes and hence the MPWS re-
turned a constant result. Moreover, the quality of the MPWS was equivalent to the
quality of a deterministic approach (#inDec =0). The minimal (maximal) possible score
was always lower (greater) than by using MPWS and decreased (increased) with grow-
ing uncertainty. The CWS without tolerance (ε = 0) performed the better than the
MPWS, the more uncertainty was modeled in the indeterministic result. Only for less
uncertainty, the CWS was worse than MPWS using the F1-score. In general, the TWI
was not that restrictive than the F1-score (all scores were between 0.984 and 0.998),
but show similar results than the F1-score. Solely the CWS was always better than the
MPWS (sometimes even better than the maximal possible quality score).
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Fig. 9. F1-score and TWI of several indeterministic duplicate detection results
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6 Related Work

Quality evaluation of deterministic duplicate detection results has been considered in
several works [5,7,11], but none of them take an uncertain clustering into account.
De Keijzer et al. propose measures for scoring the quality of uncertain data [3]. The
expected precision and the expected recall for scoring the quality of uncertain query
results are similar to a variant of our aggregated world semantics. Further semantics,
especially the certain world semantics are not covered by this work. Moreover, they
restrict themselves to probabilistic results with independent events (in our case, deci-
sions), which is not useful for duplicate detection scenarios.

7 Conclusion

Duplicate detection usually comes along with a high degree of uncertainty and often
it cannot be determined with absolute certainty whether two tuples are duplicates or
not. Indeterministic duplicate detection approaches have been proposed to handle un-
certainty on duplicate decisions by storing multiple possible duplicate clusterings in the
resultant data. In this paper, we introduced a framework for scoring the quality of in-
deterministic duplicate detection results. For that purpose, we presented four different
quality semantics, each defined for a special class of data processing tasks.

In this paper, we only went into computation details for a single semantics. In future
work, we aim to focus on an efficient computation of the remaining three semantics.
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