Chapter 1
The Jadex Project: Simulation

Lars Braubach and Alexander Pokahr

Abstract

Simulation is on the one hand an important application area for multi-
agent systems, but on the other hand also a useful tool for building agent
applications. This chapter investigates constructs and techniques that fos-
ter both usages of simulation in the context of agent technology. The vision
for integrating simulation support consists in establishing simulation trans-
parency, i.e. it should be ensured that applications can be built to a large
extent without simulation specific parts. First, approaches for dealing with
time in simulated and non-simulated agent execution are discussed. After-
wards the role of virtual environments in agent applications is tackled. Both
technical topics are illustrated using concrete applications that further rep-
resent the different usages of simulation.

1.1 Introduction

The combination of agents and simulation forms a mutual benefit. Multi-
agent-based simulation (MABS) is an approach, that uses the concept of an
agent for supporting social simulation. Agents are well suited for e.g. rep-
resenting realistic human behavior in simulation models, such as pedestrian
traffic in a to be constructed train station. Therefore, agents are an accepted
technology in the area of simulation. Viewed from the opposite direction, sim-
ulation is also a useful technology for supporting the construction of agent
applications. In many agent applications, the interaction between the agents
is considered to be an important part of the computational algorithm, e.g. in
negotiations or decentralized coordination. Building such agent applications

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach}@informatik.uni-hamburg.de

2 Lars Braubach and Alexander Pokahr

often requires fine tuning of parameters and making sure that the applica-
tion produces suitable results, which can both be achieved by simulating the
application behavior for testing and evaluation purposes.

This is one of two chapters describing practical applications built with the
Jadex agent framework. This chapter describes techniques and constructs of
Jadex, that particularly focus on supporting simulation while establishing
stmulation transparency to a large extent. Simulation transparency means
that the functional code of an application must not contain any simulation
specific aspects. In this way an easy transistion between simulations and ap-
plications can be achieved, e.g. code from an upstream simulation can be
directly used to implement an application. It has to be noted that the envi-
ronment and its connection to the application cannot be made transparent
as in many cases a virtual one needs to be replaced by a real one.

Each section starts with a short historical background about why a cer-
tain topic was considered important for Jadex, followed by a more general
motivation about the relevance of the concept itself. A related work section
is presented for each concept, trying to give an overview of the field with
pointers to other relevant works in the area. Afterwards the approach as im-
plemented in Jadex is covered in detail and further illustrated by example
applications that have been built. Each section closes with a short summary.

In this chapter, the following topics are tackled. The simulation of agent
systems for supporting analysis and testing of applications is examined in
Section 1.2. A useful supplement for simulation, but also a relevant topic
in itself is the concept of virtual environments as described in Section 1.3.
Finally, in Section 1.4 a conclusion and critical reflection on the described
topics is given.

1.2 Simulation Clocks

One important aspect of simulation is how time passes during simulation
runs. E.g. event-driven simulation allows executing scenarios “as fast as pos-
sible”, because computation only happens for the relevant time points. Using
timed execution, simulation helps comprehending system activities and in-
terrelationships from a global perspective and in a timely condensed fashion.
Analysis of system behavior can be done in different ways. On the one hand
hypotheses about the system behavior can be tested using simulation experi-
ments and on the other hand conclusions can be drawn from experimentation
under different setups e.g. comparing alternative strategies. Finally, verifica-
tion of system behavior is related to hypotheses testing but more concerned
with ensuring that the simulation model complies in its behavior to some
system design specification.

Yet, the connection between simulation and application construction is of-
ten not well established. In many cases simulation is considered on its own

1 The Jadex Project: Simulation 3

as technique for experimentation. If a simulation is part of a real world ap-
plication development project, in many cases simulation is used to analyze
and verify the expected real world system behavior. Hence, the simulation
model determines the design and implementation of the real world applica-
tion, which is typically built from scratch, after simulation model validation
has been taken place. This kind of throw away system construction is prob-
lematic not only for resource wastage reasons and the increased effort due
to double development but also with respect to the preservation of validated
system properties. These cannot be easily guaranteed for the newly built
application if some of the model assumptions are implicit, e.g. hidden as
implementation detail.

1.2.1 Related Work

Corresponding to the two viewpoints, agents for simulation vs. simulation
for agents, solutions can be broadly categorized according to agent-based
simulation toolkits and agent platforms with support for simulations.

The first group includes approaches systems like Repast [2], NetLogo®
and SeSAm [6]. Most of these kinds of systems use a simple time-driven
simulation clock advancement mechanism, which assumes the time passes
in fixed steps. All agents are notified when a new round begins, typically
in a sequential one by one manner, by invoking a behavior method. The
processing of an agent is finished in a round when its behavior method is done.
As communication between agents is handled in an indirect way by using
the environment there are no negotiation based interrelationships between
agents that need to be considered for end of processing determination. The
whole round ends when all agents have finished their executions. In addition,
most simulation frameworks assume a very simple agent architecture so that
simulation scenarios with many simple agents are supported best. The time-
driven clock mode has the advantage of being easy to understand and but
disadvantage of being inefficient when activities of agents are not equally
distributed over time.

Typical representatives in the area of agent platforms with simulation
support are Cybele?, Brahms® and PlaSMA [12]. PlaSMA is an extension
for the JADE agent platform allowing it to be used as simulation runtime
environment. In order to control the JADE agents PlaSMA uses a conserva-
tive time scheduling that resembles the time service protocol introduced in
Section 1.2.2.1. The protocol is hidden from the user by using a simulation
agent base class, which automatically notifies the clock when the agent’s pro-

L http://ccl.northwestern.edu/netlogo/
2 http://www.i-a-i.com/cybelepro/

3 nttp://www.agentisolutions.com/

4 Lars Braubach and Alexander Pokahr

cessing is done. On the other hand, OpenCybele as well as Brahms employ
infrastructure support based on clocks similar to the approach described in
Section 1.2.2.2.

1.2.2 Approach

An important aspect of the solution consists in understanding that time ad-
vancement control is the key concept of simulation environments. The time
advancement mechanism determines the temporal way the application is exe-
cuted, e.g. in real time or in an event driven mode. The general idea is to use
a clock abstraction for encapsulating the logic of time advancement separated
from the rest of the infrastructure. The only simulation related activity in
application code, which is valid for real-time applications as well, consists in
issuing wait actions that interrupt processing until the specified time point
has been reached. This allows executing the same application in different
modes just by switching the underlying clock type. In general there are two
different ways for realizing such a clock as a generic reusable component. It
can either be intimate part of underlying runtime infrastructure or it can
be added at the application layer. The first option has the advantage that
the programming model for applications needs not to be touched at all as
the clock interaction can be integrated in the API (application programming
interface). On the other hand, it is challenging because it has to be anchored
at the heart of the runtime platform. In contrast, the second option is non-
invasive with respect to the infrastructure but requires the programmer to
explicitly handle a time protocol for clock interaction in addition to the exist-
ing platform API. In the following a closer look will be taken at both solution
paths, starting with the time service as incarnation of an application layer
solution.

1.2.2.1 Time Service

The time service concept [1] assumes that a global coordinator is responsible
for time management. Time clients have to contact the coordinator in case
they have finished their activities or want to wait for a specific point in
time. Adapting the notion of synchronous process-oriented simulation, the
participants send to the coordinator a Passivate message to indicate that
they have no scheduled activities, or a Hold(t) message with the time of the
next activity that needs to be scheduled. The coordinator acts in a round
based fashion by waiting for messages of each notified participant. It uses
the messages to update its global list of announced time points. A round is
finished when all participants have sent their decision. The coordinator then
iteratively removes the next entry from this list, advances the clock, and

1 The Jadex Project: Simulation 5

»
Ll

1
request(Register) U

a) I
I refuse
= agree |
| |
| | [started]
< -
inform(Now(t))
b) »
| request(Passivate)
| request(Hold(t)) v |
[triggered] | |
l request(Block) >
¢) - agree
c
by request(Passivate) |
I request(Hold(t)) T
| |
[] |
0 I request(Deregister) |
o
) refuse L]
ol agree '

Fig. 1.1 Time Service Protocol (from [1])

informs the corresponding participants that the time point is reached. Then
the coordinator will wait until all processes have answered again.

Fig.1.1 shows an UML interaction protocol of the time service protocol.
The four different interaction cases are denoted by the characters a to d. The
initialization phase (a) is used by participants to register at the coordinator
using a Register message and will receive an agree message, if they are not
already registered. When a participant terminates it requests a Deregister
(d), receiving a refuse if the participant was not registered. The other two
interactions (b and ¢) may happen repeatedly during simulation runs.

The initial time (Now) is sent to all participants after the simulation has
been started (b). New participants that register while the simulation is run-
ning will immediately receive the Now message with the current simulation
time. While the simulation is running a participant will continuously receive
so called wake-up calls whenever its registered point in time is reached. After
receiving the wakeup the participant is supposed to execute its current activ-
ity and sends back a message afterwards. Either it announces the time point
(t) for its next activity by submitting a Hold(t) request, or it currently has
no activities to be scheduled and therefore submits a Passivate request. If the
participant does not answer in a pre-defined timeout period the simulation
continues with the next event excluding the non-answering candidate.

The participant that has been woken up may interact freely with all avail-
able other participants. Thus, waiting participants can react to messages
received from other participants. In addition, a waiting participant may re-

6 Lars Braubach and Alexander Pokahr

— 7 Simulation specific =~ —

AN

Simulation
Service

advance clock)

Clock
Service

Execution
Service

execute

Fig. 1.2 Infrastructure components

ceive new information leading him to reconsider its activation time point (c).
It can decide to activate itself at the current point in time by sending a Block
request to the time service. The service removes the original time entry and
acknowledges this by sending an agree message. It has to wait until all active
participants declare that they are finished by sending a Passivate or Hold(t)
request.

1.2.2.2 Infrastructure Clock Support

Infrastructure clock support allows completely hiding the timing mechanism
that is needed to control application execution. For this purpose the clock
has to be coupled with the execution machinery of the infrastructure. The
general setup of such an infrastructure is depicted in Fig. 1.2. It consists of
three interacting services, namely the ezecution, stmulation and clock service.
These services control the execution of the application by activating agents
at specific time points. Concretely, the clock service manages an ordered
list of time points which have been announced by the agents calling wait
or idle (if they do not wait). Whenever the simulation clock is instructed
by the simulation service to advance the time, it removes the next time
point from the list and calls wakeup on the corresponding agents. The agents
are subsequently ezecuted by the execution service as long as they wish to
perform tasks at the current point in time. The execution service monitors
overall agent execution activities until no agent wants to be executed any
more. If this is the case, it notifies the simulation service about the reached
quiescence. The simulation service acts as connecting link between execution
and clock service. It allows controlling exactly when the clock is advanced
and normally instructs the clock to advance the time whenever it receives

1 The Jadex Project: Simulation 7

notifications of the execution services. In some situations it can also defer the
clock notification e.g. if the system is running in stepped mode and requires
a human user to trigger the next clock step.

In addition to simulations, Figure 1.2 also shows how normal applications
are executed. In this case the simulation service does not exist and there is
no connection between the execution and clock service. This works because
normal clocks are active by themselves, i.e. in contrast to simulations time
advances automatically and the clock does not need an external trigger. From
the agent’s perspective the execution works in the same way as before by
announcing wait and idle commands so that they can be built agnostic with
respect to the execution mode.

Infrastructure clock support currently is limited to simulations running
on the same platform. In order to support also distributed simulations on
infrastructure level, the clocks of the participating platforms would have to
adhere to a protocol that ensures that a virtual global simulation time is
used. Following a conservative approach, one could employ a master slave
approach, in which the participating clocks first use an election algorithm
to decide about the master role, and afterwards use the master to annouce
timing events in a similar way as in the time service protocol from the last
section. Such a solution is transparent for the agents on the platform as they
need not to be aware of how the clock service derives its current time.

1.2.3 Applications

In the following two example applications will be presented, for which simu-
lation is a necessary prerequisite. The first, called MedPAge, deals with ap-
pointment scheduling in hospitals and the second, named SodekoVS, tackles
software engineering with self organization.

1.2.3.1 MedPAge

Within the “MedPAge” hospital logistics project (cf. the other Jadex chap-
ter in this book), an important requirement was the ability to benchmark
different kinds of hospital appointment scheduling algorithms against each
other. This was needed to better understand the quantitative advantages
and problems of the new decentralized, agent-based approaches with respect
to the established mechanism within hospitals. In order to efficiently execute
the MedPAge application many time with varying parameters and underly-
ing scheduling mechanisms simulation techniques are required. Using event-
driven simulation instead of real-time execute allows conducting the experi-
ments as fast as possible, i.e. computing resources are the only determining
factor for experiment execution time.

8 Lars Braubach and Alexander Pokahr

The second crucial requirement within MedPAge was the ability to use the
system to perform benchmarks and to run it as application prototype within
a real hospital environment. Typically, this would require a huge effort as
simulation and execution platforms rely on a different set of concepts and it is
not easily possibly to adapt code written for one type of platform to the other.
Furthermore, in most cases agent simulation toolkits focus on large number
of simple agents and do not support negotiation protocols and intentional
agent concepts. Hence, from those MedPAge project requirements a runtime
infrastructure should naturally include general simulation support and allow
programming of simulations and applications with a consistent programming
model for both.

The infrastructure clock support described above has been integrated into
the Jadex platform in order to simplify the development of simulation appli-
cations and especially enable the creation of simulations whose code can be
kept for subsequent application development. This capability proved useful
in the context of the MedPAge project. In an earlier project phase the simu-
lation capabilities of Jadex could be exploited to isolate the most promising
appointment scheduling algorithm among several approaches in the hospital
domain. In a later project phase the application was extended in the direc-
tion of an assistance system that concrete helps with deciding which patient
should be called next to a functional unit for treatment. For this purpose
the appointment scheduling mechanism was kept as is and an additional
user interface was added to the system. Using the system clock instead of
a simulation clock the application could directly be tested within its target
environment [14].

The time service approach from Section 1.2.2.1 was an integral part for
simulation control in the so called Agent.Enterprise [3] and Agent.Hospital
[5] initiatives. They were part of the German priority research programme
SPP 1083 and served as integration approaches for the numerous subpro-
jects within the SPP, including MedPAge. The general idea was to create
a complex enterprise or hospital application scenario, in which the projects
work cooperatively together to fulfill higher level objectives. Concretely, the
Agent.Enterprise scenario is an inter-enterprise multi-level supply-chain sce-
nario, including process planning and SCM scheduling as well as tracking
and tracing of supply chains. Agent.Hospital builds on a model with numer-
ous different healthcare actors and consists of detailed partial models of the
healthcare domain. It enables the examination of modeling methods, con-
figuration problems as well as agent-based negotiation strategies and coor-
dination algorithms. The Agent.Enterprise and Agent.Hospital applications
have been realized as so called multi-multi-agent systems, i.e. a multi-agent
system that is composed of further multi-agent subsystems that bring about
specific functionalities. The role of the time service was to timely coordinate
the simulation within the overall multi-multi-agent system by managing the
execution order of the different subsystems.

1 The Jadex Project: Simulation 9

Self- Organlzed Coordination Englneermg

| = ; N ||| \%
T—> \ (=) | ‘
Define Intended | Metaphor Selection : Mechanism Selection : Software Library / ~ Simulation Support /
System Behavior i (+ Combination) i+ Configuration i Execution Platform i System Behavior Validation
. p ; Implemen
Requirements Analysis Design tgtion Test

Fig. 1.3 SodekoVS development process (from [10])

1.2.3.2 SodekoVS

“SodekoVS” [10] is a DFG-funded* project that aims at making self-organization
techniques usable as part of the normal software engineering process. In many
application areas non-functional requirements like fault tolerance and adapt-
ability play an important role. Examples include urban transport systems
consisting of many small vehicles, low cost satellites that are able to perform
a mission together as well as monitoring and automatic reconfiguration of
server farms in case of changing customer demands. From these examples it
becomes apparent that it is a key requirement that single entities may fail at
any point in time, e.g. a hardware error occurs in a server, and these error
must not disturb the overall system functionality. Furthermore, the examples
highlight that a completely decentralized infrastructure is assumed in which a
multitude of autonomous entities act and interact to bring about the system
objectives. No superordinated entity exists, which on the one hand avoid a
single point of failure but on the other hand demands novel software concepts
to realized coordination as a function of peers.

Methodology

The SodekoVS project aims at providing a development process as well as a
middleware for constructing applications with self organization features. The
SodekoVS middleware is based on the Jadex agent framework and especially
depends on the integrated simulation support. In Fig. 1.3 the proposed devel-
opment process is shown. It can be seen that it shares the typical development
phases with traditional processes and adds additional self organization tasks
in each phase. At the heart of the approach distributed control loops are
used to describe the expected macroscopic behavior in terms of role interac-
tions. The control loops describe coordination behavior in terms of system
state variables and causal relationships between them denoting the rates of
change. Starting from the requirements phase the intended system behavior

4 Deutsche Forschungsgemeinschaft (German Research Council): http://www.dfg.de

10 Lars Braubach and Alexander Pokahr

is elicitated. In the following analysis phase it has to be decided which coordi-
nation metaphor fits best the application needs, examples include pheromone
approaches inspired by ant colonies and waggle dances of bee societies (cf.
[11]). Afterwards a catalogue of ready-to-use self organization mechanisms,
in the spirit of software engineering patterns, can be inspected in the design
phase to find a suitable coordination mechanism. The patterns represent im-
plemented coordination strategies for common use cases and can be directly
integrated into an application. A developer has to configure the mechanism
according to the system variables to be used and their update rates. In the
implementation phase the binding between these variables and the agent
states has to be defined. In this respect it has to be concretized in which
situations agents play specific roles according to the macroscopic model and
how transitions between such roles occur, i.e. it has to be defined how single
agent behavior causes coordination actions. After the system has been imple-
mented its behavior especially with regard to the coordination behavior has
to be tested and validated. For this purpose the system is run in simulation
mode in various different scenarios. Often self-organization mechanisms re-
quire parameter adjustment to function as expected. Using simulation these
tasks become manageable and executable in a comparably short amount of
time (compared to real-time application configuration). In case validation is
completed successfully, the system can be deployed in the target environment
and operates in real time.

Middleware

The architecture blueprint of the SodekoVS middleware is depicted in Fig.
1.4. The figure shows a layer model with three layers. At the bottom the
execution infrastructure layer is located. In this layer the agent platforms
are placed, which are responsible for providing fundamental services to the
upper layers, e.g. agent execution and management on possible different net-
work nodes. The topmost application layer realizes the application function-
ality by a set of agents. Between these layers, SodekoVS adds a coordination
layer, which has the task to rather transparently realize the modeled self
organization. For this purpose the concepts of coordination endpoints and
coordination media are introduced. Each coordination endpoint registers it-
self with a coordination medium and is this way a network of endpoints is
created. A coordination endpoint is part of an agent that independent of its
original behavior and is used for two purposes. On the one hand, the endpoint
observes the agent’s state and forwards relevant changes to its associated co-
ordination medium. On the other hand, the endpoint receives information
updates from the coordination medium and influences the agent behavior if
those updates are relevant to the entity. The coordination medium itself re-
alizes the dynamics of information processing and distribution by relying on
specific decentralized coordination mechanisms. The explicit distinction be-

1 The Jadex Project: Simulation

11

Application Layer
(3
Application Functionality
. J
L)) L) L S
i 1 H 1 realize
observe changg
| | Agent] l Agent T || l Agent T] l Agent T |
] Coordination Coordination Coordination
Endpoint Endpoint Endpoint
P ¢ ¢ ¢ interact
Coordination Coordination Media
Layer \ .
i use
[Agent Platforms]
Execution Infrastructure Layer

Fig. 1.4 SodekoVS middleware (from [10])

tween endpoints and media reflects the conceptual separation of local entity
adaptations and coordination based information exchanges.

The SodekoVS middleware has itself been used for the development of
several self-organized simulations and applications. Most notably, the ap-
proach was employed in the logistics domain to optimize parcel routing via
heavy goods vehicles (HGV) between redistribution centers. In this scenario
a market-based negotiation strategy was applied that allowed parcels to bid
for transportation by an HGV with a virtual currency. The HGVs transport
parcels between redistribution centers and try to optimize their own profit
by serving different routes and negotiating prices with goods. More details
about the approach can be found in [7].

1.2.4 Summary

In this section the usefulness of simulation itself and simulation techniques as
part of application development have been discussed. It has been highlighted
that time advancement is of crucial importance for simulation infrastructures
and that it is possible to factor out time management and provide solutions
that operate independently of the programming model. This leads to a con-
sistent agent programming for simulations and applications using the same
concepts. From the programming perspective one is unaware of the time mode
the application is run with and can use a clock type that fits to the scenario
needs.

12 Lars Braubach and Alexander Pokahr

Two conceptually different approaches have been introduced for externally
and internally controlling time advancement. The first introduces an infras-
tructure service called time service, which represents a global clock that is
used by the agents to coordinate their execution according to the simula-
tion time. Concretely, the service manages a list of time points announced
by the agents. In case a time point is due the corresponding agent is awak-
ened and starts processing, which may involve communication with arbitrary
other agents that may also start processing. After the activated agent has
finishing processing it needs to notify the time service so that the clock can
advance and the next agent is activated. All agents may decide to change
their registered time point at any time if new information becomes available.

The second approach is based is tightly integrated with the runtime infras-
tructure and uses the interplay of three services for bringing about simulation
in a completely transparent way. The clock service manages again the list of
registered time points. In this case the execution service, which monitors the
agent activities, triggers the advance of the clock (indirectly via the simula-
tion service) whenever the agents have finished their processing. In contrast
to the time service solution also the interaction with the clock is completely
hidden. This is achieved by making the agent to clock interaction part of the
normal platform level application programming interface.

It has further been shown that both approaches can be used within differ-
ent context beneficially. The time service allows creating simulations within
heterogeneous and possibly distributed environments, in which no direct con-
trol about the execution infrastructure can be exerted. On the other hand,
simulation clocks allow constructing simulations and applications only within
one platform but with much less effort because the agent programmer does
not have to care about simulations and can build its application as if it were
a normal application.

1.3 Virtual Environments

Virtual environments have a number of typical and less common use cases.
Obviously, virtual worlds form an integral part of many computer games,
and similar technologies can as well be found in training applications. Also
for the teaching of agent concepts, virtual worlds are often employed, as the
idealized settings simplify the understanding of the complex concepts. But
even for the development of more conventional (e.g. business) applications,
virtual environments can be a helpful tool. During implementation it can be
helpful to execute parts of the later system in a controlled environment. In
this case, the virtual environment would represent external systems or sub-
systems. Explicitly modeling this environment allows observing the behavior
of implemented components in certain situations. This approach can be re-
garded as similar to mocking techniques as found in software testing, where

1 The Jadex Project: Simulation 13

e.g. special mock objects are built for replacing parts of a real software envi-
ronment during testing. Especially for agent systems, that exhibit pro-active,
autonomous and adaptive behavior, setups based on virtual environments are
helpful for testing and debugging the complete application during the imple-
mentation phase. A virtual representation of the external environment is also
paramount when using simulation as described in Section 1.2. During appli-
cation development, simulation can fulfill a number of different purposes. On
the one hand, it allows intensive testing of an application prior to putting in
into productive use. On the other hand, one can benchmark different imple-
mentations in the same environment or test implemented system behavior in
changing environments. Finally, one may consider the virtual environment as
part of a deployed application in the sense of augmented reality. For example,
a virtual environment could be used for representing digital pheromones as
part of an ant-like path-finding algorithm for a transport logistics application.

1.3.1 Related Work

In line with the use cases for virtual environments mentioned in the previous
section, at least two different strands of research related to agents and vir-
tual environments can be identified. The first concerns specialized simulation
toolkits that often include simple agent frameworks for easy definition of the
behavior of simulated entities. Typical examples are NetLogo® and Repast
Simphony®. These toolkits are well-suited for agent-based simulation, e.g.
for teaching or analysis purposes. In this respect, simulation toolkits usually
offer rich facilities for statistical evaluation. Also visualization, e.g. as 2D vir-
tual worlds are a typical strength of these systems. Some simulation toolkits,
such as SeSAm [6], even offer graphical tools for specifying simulation be-
havior making them usable even by non-programmers. On the other hand,
simulation models developed in these systems are not meant to be part of
deployed applications. Thus unlike middleware platforms like JADE, simula-
tion toolkits do not provide a communication infrastructure or interfaces to
external systems.

Another strand of research investigates the explicit modeling of environ-
ments for agent-based applications. E.g. Weyns et al. argue in [13] that an
explicit representation of an environment in agent applications can be useful
as a part of the application itself, e.g. for a coordination layer. The idea is
that a clean separation between agent and environment implementation sim-
plifies the development and leads to better maintainable code. On specific
model for such an explicit environment is the A&A model, which considers
an application to be composed of agents and artifacts [9].

5 http://ccl.northwestern.edu/netlogo/
6 nttp://repast.sourceforge.net/

14 Lars Braubach and Alexander Pokahr

Space (2p-Grid, 20-Continuous, .. Evaluation
- Space) Timin:
Domain Executor /' Data Data Dk
: Consumer
gz?::t Process Rrovider (Chart, File,..)

Partial Environment Data |

Task

il

Observer
Interaction Partial Environment Da i (2D_P"P:|gf£’egmoens’)
‘ AgentlA.vatar ‘ | Drawable |
Mapping
| Pre-/Post-Layer |
‘ Percept Generator ‘ Percept ‘ J
a Agent Acti
‘ Percept Processor ‘ Action ‘ gem ~oton Agent
» (BDI, Micro, ...
¢ Y Percept ()
‘ Legend D Active Component \:‘ Functional Component

Fig. 1.5 EnvSupport structure (from [4])

1.3.2 Approach

The approach chosen for supporting the development of virtual environments
in Jadex was separating the different aspects and allowing a declarative spec-
ification of each of them [4]. The resulting model is depicted in Figure 1.5.
The space describes the environment itself and is further subdivided into the
domain, i.e. parts of the environment that are independent from agents, and
the interaction, which establishes a connection between the domain and the
agents that are meant to inhabit the environment. The domain representa-
tion of the environment state is used by two further aspects of EnvSupport.
The observer provides a visual representation of the environment, e.g. as a
2D map, and the evaluation component extracts environment data for statis-
tical analysis. All these aspects are described as part of an application XML
file and are interpreted by the Jadex platform at runtime. In the following
sections, each aspect will be explained in more detail.

1.3.2.1 Domain

The underlying assumption regarding the domain is that the state of an
environment can be described as a set of objects, so called space objects. For
each application, the developer can freely define the available object types in
the environment, where each type defines a set of properties for describing
the object, such as position, size, etc. For static environments it is sufficient
to describe the types and instances of all objects. Dynamic environments
may change without any actions being performed by agents. Therefore the
developer can specify such changes in the environment in two ways. Tasks are

1 The Jadex Project: Simulation 15

attached to an object and may continuously change the state of this object
(e.g. movement of a car, growth of a plant) until the task is stopped or the
object is destroyed. Processes are applied to the environment as a whole and
may induce changes on all objects as well as destroy some existing objects or
create new ones. A typical use case is the creation of new objects according
to some predefined stochastic distribution (e.g. arrival of cars at a junction,
when the environment should only represent the junction itself).

1.3.2.2 Interaction

The interaction describes the information flow between the agents and the en-
vironment as represented by the state objects. For making each agent situated
in the environment, an agent usually has an avatar, i.e. a space object that
is owned by the agent. In this constellation, the agent represents the brain
and the avatar space object represents the body of the situated entity. The
interaction is divided into percepts, which are environmental states or changes
observed by the agent’s avatar and forwarded to the agent, and actions, that
allow an agent to manipulate the environment state. Percept generators can
be defined that describe how and when percepts are produced, e.g. by as-
signing a vision range to an avatar object and generating a percept whenever
objects enter or leave the vision range according to the avatars current posi-
tion in the environment. To simplify dealing with percepts, percept processors
further describe how a percept enters the internal reasoning process of the
agent. E.g. a ready-to-use BDI percept processor allows mapping percepts
directly to some belief or belief set of an agent and therefore achieves a seam-
less integration of EnvSupport with the BDI architecture. For simple micro
agents typically custom percept processors are defined by the application
developer for triggering appropriate reactive behavior of the agent. Actions
are requested by the agent and performed by the space executor. The space
executor takes care of proper synchronization of agent actions, object tasks
and environment processes. Depending on the scenario, the developer may
choose a round-based or a continuous time space execution. The first model
allows each agent to perform only one action per time step and is especially
useful in conjunction with simulation clocks. The second model resembles are
natural evolvement of time and only settles conflicts, e.g. if two agents try
to pick up the same item at the same time, the executor will make sure that
only one of these actions succeeds and the other one produces a failure.

1.3.2.3 Observer

The purpose of visualization is usually gaining a better understanding of
the behavior of the application, either to use the application (e.g. a game
or training simulation) or to analyze and debug the application. It largely

16 Lars Braubach and Alexander Pokahr

depends on the structure and properties of the space objects how an envi-
ronment can be visualized. Typically, space objects are assigned a position
in a two-dimensional area. Therefore, common visualizations for 2D maps
are readily available in EnvSupport (e.g. continuous areas or discrete grids).
In a so called perspective, the developer can assign a visual representation
called drawable to each type of space object. A drawable may consist of an
arbitrary number of drawing primitives (geometric shapes, external images,
text), which can be further configured using properties of the space object
(e.g. using different images according to the age of a plant). Pre- and post-
layers can be added to a perspective to show the image of a map behind other
drawables or to paint a grid on top of the visualization. Multiple perspec-
tives can be defined for each application and each perspective can be used to
create a visual representation of all objects or a selected subset according to
data views defined in the domain. Current developments are directed towards
extending the observer for incorporating also 3D visualizations based on the
JMonkey engine.”

1.3.2.4 Evaluation

The observer allows producing an intuitive and highly accessible way of un-
derstanding and analyzing application behavior. For the numerical analysis
of simulations an evaluation component is provided. It allows keeping track of
any space related information during application execution. Just like the ob-
server, the evaluation component takes as input all space objects or a subset
as defined in a data view and continuously extracts property values according
to the specification of data providers. A data provider is a query producing a
database table structure, i.e. for each time point of the application execution,
the data provider takes the state of the environment and produces a row of
data values extracting the relevant information from the space objects. The
data is then used in data consumers that allow, e.g. writing it to a file for
later off-line analysis or plotting it into a chart for real-time observation.

1.3.3 Agent-based Simulation: City Bikes

Nowadays, bicycle sharing systems are deployed in many cities, allowing quick
and easy 24/7 access to bikes for tourists, commuters, or any other person
interested in using a bike for a short period of time. In these systems, the
bikes can be checked out and returned at various stations in a more or less
dense network of stations. E.g. on her journey to work a commuter can check
out a bike near her home location and return it near her work place. An open

7 http://jmonkeyengine.org/

1 The Jadex Project: Simulation 17

problem in these systems is the distribution of bikes to the different stations.
If too many bikes are at a station, no more bikes can be returned there, but
if too few bikes are present, the station might run out of bikes. This problem
is typically addressed using dispatchers, which transport bicycles between
stations by van to establish a balanced distribution of bikes.

In the context of the StadtRAD Hamburg® system in Germany, an agent-
based simulation model was built [8]. The model served the purpose to test
and evaluate different scenarios to determine factors that influence the effec-
tiveness and efficiency of the bicycle sharing system. Two concrete aspects
were further investigated in the performed simulation studies. First, it was
analyzed how the addition of new stations at certain places would affect the
overall bicycle use. Second, several different strategies for dispatching were
evaluated. Therefore, the goal of the model was to obtain realistic behavior
for the bicycle usage that wasn’t based on historical data, but would rather
respond to the changes that were made to the environment for the different
simulation studies.

1.3.3.1 Environment Model

As a virtual environment, the network of StadtRAD stations in Hamburg
was modelled using EnvSupport. Besides the StadtRAD stations, also the
public transportation network was modelled, because it was considered that
for long distances a combination of subway/urban train and bicycle would
be preferred. The simulation model makes use of EnvSupport by defining the
domain and interaction aspects in an XML description as follows.

The StadtRAD bicycle stations as well as train stations are represented as
domain objects with a fixed location on the map. For the bicycle stations, the
number of currently available bikes and the number of total slots? have been
modelled as properties of the station object. Additionally, traffic participants
are domain objects with a dynamic location, i.e. their location changes ac-
cording to their travels. Each participant is assigned a random mobility value
that influences how fast she can travel on foot or with a bike. Furthermore,
train schedules have been modelled as domain processes, i.e. the processes
encode the logic of moving traffic participants that board /unboard trains at
certain locations. When executed, the simulated environment can be visual-
ized as shown in Figure 1.6. For the visualization, drawable representations
such as icon images are assigned to each of the modelled domain objects,
such as train and bicycle stations as well as traffic participants.

The behavior of the traffic participants should be controlled by agents.
Therefore an avatar mapping is defined that specifies the agent type corre-

8 nttp://stadtrad. hamburg. de

9 At the time the model was built, StadtRAD did only support returning bikes at a station,
when there was a free slot. This was changed recently, such that now bikes can also be
returned when there are no free slots.

18 Lars Braubach and Alexander Pokahr

) world ol
Display

¢ r

f -~

space | Object | Perspective | :

Property Value
name lladex.extension. envsuppor.

Processes

G, T o%
TG T 3 X °
] .—'r o '»_ ?

Property | Value . & Si‘?s:h $ ' {::
U Train Station '. M
g Bicycle Station ,".‘ f ‘ @I .\G R
F 3 Traffic Participant J I;v ’ i ngg, L e
O Train gtg]) f M -
M| — Track) J: E@ ﬁ; *E%f
g E@ = L Netstig '&I@U 'ﬁ&iﬂ NG
y EE D ET EZEJ B¢
| _] Us filg e 7€\ 3
LT RN | EE AT .

Fig. 1.6 Screenshot of the simulated StadtRAD environment

sponding to the traffic participant object. As a result, for each traffic par-
ticipant in the simulation, a corresponding agent instance is automatically
created. The agent may use declared actions to interact with the environment.
Actions are modelled as Java classes and referred to from the XML environ-
ment description. The following actions have been defined in the StadtRAD
model. First, the traffic participant may check out or return a bike, if her
location matches the position of the station. Similarly, the participant can
board/unboard trains at train stations. Finally, unless boarded on a train, a
traffic participant can travel by herself to any chosen location, whereby the
traveling speed depends on the participant’s mobility value and if it currently
has checked out a bike.

1.3.3.2 Agent Behavior

The aim of the simulation model is to achieve realistic bicycle usage behavior
for being able to analyze the effect of changes to the StadtRAD system.
Therefore, the traffic participants are represented as goal-directed agents that
autonomously decide about if and how they would use a bike. The agents are
created with a set of recurring goals to visit certain locations for leisure or
commuting purposes. Following the BDI model, the agents perform a reactive
goal/plan decomposition of their traveling activities (cf. Figure 1.7). The
BDI reasoning starts from the top-level goal: visit location. For each target
location, the agent decides to choose a previously used route (plan: use known
route) or to try out a new route (plan try mew route). For this purpose,
the agent has knowledge about its recently travelled routes (belief: previous
routes). Each route is a sequence of segments, i.e. intermediate locations and

1 The Jadex Project: Simulation 19

Visit
Location

Previous
Routes

Use Known
™ e

1 Legend

@Belief
OGoaI
[Walk] [Ride Bike] [Take Train J C]Plan

Fig. 1.7 Goal/plan tree of the traffic participant agent

Travel
Segment

corresponding transportation means. As an example an agent might decide
to switch to using a bike, instead of following a previous route that included a
lot of changes between trains and waiting times. Afterwards the agent would
remember the time taken for this new route and depending on its personal
preferences, would possibly choose the new route again for future travels.

1.3.3.3 Simulation Studies

The behavior of the agents depends on their personal preferences, i.e. max-
imum distances that they would prefer walking, using a bike or taking the
train. Before running the simulation studies, the simulation model was cal-
ibrated to more closely match the real user behavior observed in the field.
Therefore historical data of the StadtRAD system was compared to results of
simulation runs and the parameter distributions for the agents were adapted
until the behavior appeared sufficiently realistic. Afterwards the simulation
studies were performed by altering the environment and observing how the
bicycle usage changes.

The calibration as well as the studies themselves rely on the evaluation fea-
tures of EnvSupport. By specifying data providers in the environment XML
description, various results of the simulation (e.g. mean distance travelled, av-
erage number of bicycle checkouts per day) are automatically gathered during
execution. Additionally specified data collectors consume the data and pro-
vide it to the developer, e.g. as graphical chart views, or export it to files for
offline analysis.

The first study was a simple scenario analysis that investigated the effect of
introducing an additional station in the StadtRAD network. The simulation
allowed estimating the increase of bicycle usages that could be expected by
introducing a new station at an important junction point with many train
lines (“Schlump”). Most importantly, it could be verified, that the new station
would not lead to significantly less bicycle use at other stations in the vicinity.

20 Lars Braubach and Alexander Pokahr

The second study was much more complex as it involved to comparison of
different dispatching strategies. For this study an additional dispatcher agent
was introduced, that performed a certain dispatching strategy by moving
bicycles from overloaded stations to stations with few bicycles. Three strate-
gies were analyzed that differed in the decision when to start moving bikes
between stations. In the first strategy, the dispatcher would become active,
when a station runs out of bikes. It would take a certain amount of bikes from
the fullest station and transport it to the empty one. The second strategy is
an adaptation of the first that introduced a threshold, i.e. already starting to
transport bikes if their number drops below a certain value. The last strategy
uses historic data of bicycle use and would transport bikes based on previ-
ously observed shortages (e.g. from the last day), regardless of the current
situation. Simulation results showed that the threshold strategy performed
best with respect to achieving the highest value of bicycle usage.

1.3.4 Summary

The EnvSupport extension allows defining the structure and behavior (do-
main) of an application environment in terms of objects as well as tasks and
processes. Using avatars and actions, the interaction between the environ-
ment and the application agents can be clearly defined. This allows testing
applications in virtual settings before real deployment. The visualization is
further helpful for understanding application behavior either for teaching
purposes or for debugging during application development. Furthermore, the
visualization may also be part of the application, e.g. for games or training
applications. The evaluation module allows flexible measuring of application
performance by observing interesting application values and producing var-
ious outputs, such as dynamically updated graphical charts or data files for
off-line analysis. In this respect, the evaluation module can e.g. be used for
benchmarking alternative implementations of application components.
EnvSupport is currently implemented for local simulations only, even
though the principles behind it are general enough to be applied for dis-
tributed simulations as well. This requires allowing remote interactions of
agents with the environment space. One simple solution to this problem is
to create a service interface for the environment and let the agent hosting
the environment expose a provided service that the participating agents use
to interact with it. Furthermore, to allow also remote observers the world
and visualization data of the environment need to made accessible per re-
mote service as well. It has to be noted that such a simple solution may
have performance problems due to the high amount of data that needs to be
transferred between clients and environment. To avoid this, more advanced
but also complex schemes have to be taken into consideration, e.g. by letting

1 The Jadex Project: Simulation 21

the clients perform partial calculation and rendering tasks on their own and
synchronize with the environment only at specific rendezvous points.

1.4 Conclusion and Outlook

Simulation is a very interesting technique in combination with multi-agent
systems. First, simulation studies may benefit from a multi-agent perspective
as in scenarios with autonomous entities these can be adequately and indi-
vidually modelled. Second, agent applications may profit from an upstream
simulation analysis of specific application aspects before a real deployment is
targeted. In the following the lessons learnt regarding simulation support for
agent systems is summarized:

e A necessary key technique for supporting simulations is time control. It
should be possible to choose the simulation mode that fits best to the
simulation task to be performed, i.e. use real-time driven, time-driven
or event-driven time advancement. For example if high efficient simula-
tions are necessary due to long periods of time to be simulated or due
to extraordinary complexity of the secario a fast-as-possible simulation
execution is advantageous.

e An important part of simulations is the simulation environment, which
is many cases requires much attention and effort to be built. For this
reason, specific support for developing simulation environments should be
available. Simulation environments are useful for several reasons. First,
they allow describing the boundary of the system and thus its external
interface. Second, the environment can help understanding if a system
works properly. Especially, visualizing the environment facilitates a better
understanding of the system dynamics.

The guiding principle for simulation support consists in establishing simu-
lation transparency, i.e. the application code should not be polluted with
simulation specific aspects. This serves two purposes. On the one hand it
enables code reuse, as the implementation of a simulation model that can
later serve as basis for the implementation of the target system (with excep-
tion of the environment). Furthermore, if the simulation is used to test the
system implementation, exact reuse of the code assures that no implementa-
tion details of a reimplementation, that would normally have to be created,
cause malfunctions. On the other hand, no simulation specific programming
language or environment needs to be learnt. Following this principle led to
a non-invasive approach towards time as well as environment mechanism re-
alization. Time control has been built in on infrastructure layer in order to
hide timing aspects from the agents. The clock abstraction allows for keeping
the agent code unaware of timing aspects. Different clocks are supplied which
bring about the different simulation modes so that it can be determined at

22 Lars Braubach and Alexander Pokahr

runtime if the application should be executed time-driven, event-driven or
real time. Also environment support has been designed to be an optional
part of applications. Therefore, the platform supports a general extension
mechanism that allows for creating custom functionalities of an agent. The
EnvSupport has been designed to follow this extension mechanism and offers
its own description model. In general EnvSupport cleanly separates the do-
main model from its visualization in order to be able to create different views
for one application.

References

1. L. Braubach, A. Pokahr, W. Lamersdorf, K.-H. Krempels, and P.-O. Woelk. A generic
time management service for distributed multi-agent systems. Applied Artificial In-
telligence, 20(2-4):229-249, 2 2006.

2. N. Collier. RePast: An Extensible Framework for Agent Simulation. Working Paper,
Social Science Research Computing, University of Chicago, 2001.

3. D. Frey, T. Stockheim, P.-O. Woelk, and R. Zimmermann. Integrated Multi-agent-
based Supply Chain Management. In Proceedings of the 12th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE 2003), pages 24-29. IEEE Computer Society, 2003.

4. K. Jander, L. Braubach, and A. Pokahr. Envsupport: A framework for developing
virtual environments. In Seventh International Workshop From Agent Theory to Agent
Implementation (AT2AI1-7). Austrian Society for Cybernetic Studies, 2010.

5. S. Kirn, C. Heine, R. Herrler, and K.-H. Krempels. Agent.Hospital - agent-based open
framework for clinical applications. In G. Kotsis and S. Reddy, editors, Proceedings of
the 12th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2003), pages 36—41. CS Press, 2003.

6. F. Kliigl and F. Puppe. The Multi-Agent Simulation Environment SeSAm. In H. Kleine
Biining, editor, Proceedings of SiWiS’98: Simulation in Wissensbasierten Systemen,
1998. Technical Report tr-ri-98-194, Universitdt Paderborn.

7. A.Pokahr, L. Braubach, J. Sudeikat, W. Renz, and W. Lamersdorf. Simulation and im-
plementation of logistics systems based on agent technology. In T. Blecker, W. Kersten,
and C. Gertz, editors, Hamburg International Conference on Logistics (HICL’08): Lo-
gistics Networks and Nodes, pages 291-308. Erich Schmidt Verlag, 2008.

8. D. Reichelt. Agentenbasierte Simulation von Fahrradverleihsystemen . Bachelorarbeit,
Distributed Systems and Information Systems Group, Computer Science Department,
University of Hamburg, December 2011. (in German).

9. A. Ricci, M. Viroli, and A. Omicini. The A&A programming model and technol-
ogy for developing agent environments in MAS. In Mehdi Dastani, Amal El Fallah
Seghrouchni, Alessandro Ricci, and Michael Winikoff, editors, Programming Multi-
Agent Systems, 5th International Workshop (ProMAS 2007), pages 89-106. Springer
Berlin / Heidelberg, 2007.

10. J. Sudeikat, L. Braubach, A. Pokahr, W. Renz, and W. Lamersdorf. Systematically en-
gineering self-organizing systems: The sodekovs approach. In M. Wagner, D. Hogrefe,
K. Geihs, and K. David, editors, Proceedings des Workshops tiber Selbstorganisierende,
adaptive, konteztsensitive verteilte Systeme (KIVS 2009), page 12. Electronic Com-
munications of the EASST, 3 2009.

11. J. Sudeikat and W. Renz. Building complex adaptive systems: On engineering self-
organizing multi-agent systems. In G. Hunter, editor, Strategic Information Systems:

1 The Jadex Project: Simulation 23

12.

13.

14.

Concepts, Methodologies, Tools, and Applications, pages 767—-787. IGI Publishing, 2
2010.

T. Warden, R. Porzel, J. D. Gehrke, O. Herzog, H. Langer, and R. Malaka. Towards
ontology-based multiagent simulations: The plasma approach. In In Proceedings of the
24th European Conference on Modelling and Simulation (ECMS 2010), pages 50-56,
2010.

D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5-30, 2007.
A. Zoller, L. Braubach, A. Pokahr, T. Paulussen F. Rothlauf, W. Lamersdorf, and
A. Heinzl. Evaluation of a multi-agent system for hospital patient scheduling. In-
ternational Transactions on Systems Science and Applications (ITSSA), 1:375-380,
2006.

