Monitoring BPMN-Processes with Rules in a
Distributed Environment

Lothar Hotz!, Stephanie von Riegen1 , Lars Braubach?, Alexander Pokahr?, and
Torsten Schwinghammer?

I HITeC e.V. c/o Fachbereich Informatik, Universitit Hamburg, Germany {hotz,
svriegen}@informatik.uni-hamburg.de
2 VSIS, Fachbereich Informatik, Universitiit Hamburg, Germany {braubach,
pokahr}@informatik.uni-hamburg.de
3 Uniique AG, Hamburg, Germany
Torsten.Schwinghammer@UniiqueAG.com

Abstract. In this paper, we demonstrate an application of rules in a business
process scenario. As business processes, we consider data-intensive applications
which need to move huge data files from server to server. By using the Business
Process Model and Notation (BPMN) in our application, we enable clearly and
hierarchically represented business processes. Such modeled processes can auto-
matically be executed in a distributed environment with the Jadex open source
middleware. Furthermore, the process execution is monitored with declarative
rules, also implemented with Jadex. The demonstration shows the start of BPMN-
modeled processes and their execution monitoring through logs and rules.

1 Introduction

In business intelligence scenarios a huge amount of continuously growing data files
has to be processed in distributed environments. Examples are log-file, database, and
campaign management as they are common in banking or telecommunication organiza-
tions. For such tasks, organizations use data integration approaches. However, (Fried-
man et al., 2008) points out that the "...commitment for implementing and support-
ing custom-coded or semi-manual data integration approaches is no longer reasonable"”
caused by the need for cost control. Consequently, organizations do already use specific
data integration applications, however, for controlling data flows on distributed systems,
manual activities or individual processes are still needed.

The basic principle in such applications consists of an extraction of data files from
an operative system (like a web server), transformation of the data (on a staging server),
and storing it in an analytical platform (like a data warehouse), see Figure 1. Data inte-
gration tools already handle diverse data file formats, however, they blank out that or-
ganizational data primary exist as decentralized, distributed data files. In our approach,
we enable a declarative representation of business processes with the Business Process
Model and Notation (BPMN) (OMG, 2006). With this notation, a user models business
processes on the basis of a predefined application component library. Those components
implement basic tasks needed for file manipulation or similar activities. Such modeled



II

processes can directly (i.e. without further coding) be executed in a distributed environ-
ment, such that subprocesses or tasks run on different servers. Furthermore, monitoring
rules allow to observe the execution of such business processes. Thereby, effective or
failure execution of running processes can be recognized. By using rules, we allow a
declarative representation of such situations and a combination of process results.

= EHE
= = = Web and Application Server

Staging Server

,

Evaluation Server

10

Fig. 1: Example Architecture

We are currently developing a system for automating business processes for gaining
flexibility in process arrangement, quality improvements of data processing, and cost
savings. The system consists of distributed, autonomously acting components, which
are centrally controlled. Besides distributed quality assurance processes and integrative
information life cycle strategy, the system has a process modeling component based on
the BPMN (see Section 2) and a monitoring component (see Section 4), which are pre-
sented in this paper. We use the Jadex system* as a infrastructure supporting distributed
agents and rules (see Section 3). In Section 5 and with a video’, we demonstrate the
processing of agents and rules with a data staging example.

2 BPMN Example

The de facto standard to graphically model applicable business processes is the Business
Process Model and Notation (BPMN) (OMG, 2006). This notation is suited to formulate
e.g. organizational structures or data models with elements such as events, activities,
gateways, data objects, and transactions arranged in a pool and lanes. We use BPMN in
the business intelligence context for distributed management of processes and data.

In the following, we introduce a simple example use case. Figure 1 depicts an ex-
emplary server setting where the first stage of server outputs large amounts of data (for
example customer informations collected by a publicity campaign) which will be pro-
cessed by the staging server. The staging server filters the input data according filters

4 http://jadex-agents.informatik.uni-hamburg.de
5 http://monitoringrules.dyndns.org/



I

like e.g. correct addresses. The quality analysis of data provided by the evaluation server
brings the setting to a close.

Fetch/Check Copy
Copy Data QA >O
(Configuratiol
L

Fig. 2: BPMN model for data staging example

The notational model of the data processing is described in Figure 2. Before pro-
cessing the collected data, the configuration data for the upcoming copy process has
to be fetched and checked, possible configuration contents might be access credentials.
The copy task is a collapsed subprocess (readily identifiable by the plus), in case of
errors within this subprocess the error event leads to the error handling task. The ex-
panded copy process is shown in Figure 3. After the data processing, the analyzing of
quality (QA) step follows.

The expanded copy subprocess contains the following tasks: First the connection
to a specific server has to be established, and before copying the data the existence
is checked. Since of some data only one version is allowed to exist, a delete task is
integrated via the exclusive gateway. Each task is bonded with a error catching event
leading to the error handling task. Because of server-side connection problems, some
errors might be corrected by a simple retry after a couple of minutes, see the timer event
in Figure 3.

Delete File

Connect Check File Copy File @

o TF1 &) F) <
-

delete?

O— }—O
\ \ &0
)
=\
&
~ (@)

Copy Error

Fig. 3: Inner copy model of staging example



v

Properties

Agent
Active Component Required
Service

Provided
Internal Service
Architecture Interfaces Business Interfaces
Logic
based

Internal
Sensors - Architecture Effectors
&
2@1 Subcomponents

Fig. 4: Active Component

3 Jadex

The implementation platform used in this project is the open source platform Jadex
(Braubach and Pokahr, 2011), which is a middleware for distributed systems. Jadex
uses the new notion of active components for programming distributed systems. An ac-
tive component or instance represents a unification of the component with agent and
service concepts (cf. Fig. 4). The basic idea consists in having autonomously acting and
loosely coupled entities in the sense of the actor model, i.e. communication among en-
tities should be asynchronous and data objects should belong only to one actor to avoid
data inconsistencies caused by concurrent accesses. This world model is combined with
component and service ideas to strengthen the software engineering mechanisms that
can be used to build software systems. The beneficial combination of component and
service approaches has recently been put forward by the service component architecture
(SCA) (Marino and Rowley, 2009), which introduces a component based architecture
description framework for service oriented applications. The SCA component model
defines a component with provided and required service interfaces to clearly state of-
fered functionalities and dependencies. Furthermore, such interfaces allow for hierar-
chical (de)composition of complex software systems and foster reuse of software by
building composites from readily available components. An active component further
combines these SCA component concepts with agent characteristics, mainly it adds
an internal architecture to a component. This internal architecture determines the type
of an active component and the way its behavior has to be programmed. In this way
very different kinds of active components such as BPMN workflows and even cognitive
belief-desire-intention (Rao and Georgeff, 1995) agents can interact seamlessly because
they share the same black-box view of each other.

3.1 The Runtime Platform

The Jadex runtime environment consists of the component container called platform and
an additional tool set mainly used for administration, debugging and testing purposes.
The Jadex platform facilitates the development of distributed systems in the following
ways:

— Distribution transparency is established between components, i.e. a component can
invoke a service of another component without having to know if this component
is local or remote.



v

— An overlay network is automatically built by platform awareness. This means that
Jadex platforms automatically find each other in local as well as distributed net-
works employing multiple different techniques such as IP broadcasts for local de-
tection. In this way services of new remote platforms can be found and used as
soon as a new platform has been discovered. Of course, the network building can
be customized or disabled for specific customer settings.

— Platform security is assured. On the one hand Jadex introduces security mecha-
nisms to protected the privacy of user data and services by separating awareness
from communication means, i.e. platforms may detect each other but communica-
tion between them is restricted with respect to security settings. On the other hand
application services can be declaratively equipped with security features so that
authentication, confidentiality and integrity of communication partners is ensured.
This is achieved by relying on established security protocols such as SSL.

3.2 Workflows and Rule Support

BPMN workflow support for Jadex consists of a visual editor based on the open source
eclipse stp editor and the workflow engine that is able to execute modeled workflows.
The editor mainly extends the stp version with new input fields for annotating imple-
mentation data that is necessary for executing the workflow. Such modeled workflows
can be directly loaded and executed within Jadex using the BPMN kernel, which enacts
each workflow as a separate active component instance. A workflow can spawn new
subworkflows either locally or on remote platforms and monitor their execution. Fur-
thermore, as workflows are components, they can invoke services of other workflows
or components via their provided service interfaces. Rule support is based on a typical
forward chaining rule engine called Jadex Rules that is similar to JESS and Drools, but
targeted towards a very lightweight engine solution that can be integrated with other
application parts. One reason for such a lightweight solution was the requirement to
be able to execute a rule engine as part of an active component, i.e. due to the actual
number of such components many rule engines have to run concurrently.

4 Monitoring

The duty of the monitoring component is to observe process execution and signal suc-
cessful or failure execution. This monitoring can depend on application specific at-
tributes like duration of process execution time or transfered file size. As common for
a rule-based approach, working memory elements based on templates and rules can be
used for representing the involved data and knowledge. Templates describe via fields
structured data objects. Rules consist of a condition and action part. If some working
memory elements fulfill the condition part of a rule, the rule system executes its action
part.

In our application, while tasks and processes are executed, logs are created within
application components. We differentiate between effective and failure logs. The effec-
tive logs are grouped by BPMN process, micro agent, rule, and task start and end logs.
Every time an agent, BPMN process, or a task is started or will terminate shortly after,



VI

D Ilog
© log
© Effectivelog
© BPMNProcessLog
® BPMNProcessEndLog
® BPMNProcessStartLog
© MicroAgentlog
© MicroAgentEndLog
© MicroAgentStartLog
® RuleLog
BPMNProcessRuleEffectiveLog
CopyRuleEffectiveLlog
CopySubProcessRuleEffectiveLog
DeleteEffectiveRuleLog
MicroAgentRuleEffectiveLog
® Tasklog
© DatenstagingTaskEffectivelog
© CheckFileTaskEffectivelog
© ConnectionTaskEffectiveLog
® CopyTaskEffectiveLog
® AfterCopyTaskEffectivelog
® BeforeCopyTaskEffectiveLog
DatenQATaskEffectiveLog
DeleteFailureTaskLog
DeleteTaskEffectiveLog
® AfterDeleteTaskEffectiveLog
© BeforeDeleteTaskEffectiveLog

P00

Q0

@ FailureLog
© BPMNProcessFailureLog
® MicroAgentFailureLog
© RuleFailureLog
© CopyRuleFailurelog
© TaskFailureLog
© DatenstagingTaskFailureLog
® CopyTaskFailureLog

Fig. 5: Template hierarchy

a log will be created. In case of a failure within a task, rule, agent, or BPMN process a
failure log is created. The basic layout of a log consists of the creation time, id, type,
message, and parent id, but each log subtype extends this layout. For an overview of the
currently used log types (implemented as Java classes), see Figure 5.

Working memory elements represent logs in the rule system. Consequently, in the
condition part of a rule, types of logs and their fields can be tested. If a certain combina-
tion of logs was created, i.e. corresponding components were executed, a rule can fire
and, thus, signal its execution with a further log. The rule depicted in Figure 6 creates a
log of type CopyRuleEffectiveLog if two logs of type BeforeCopyTaskEffectiveLog and After-
CopyTaskEffectiveLog of the same process exist. Logs created through rule firing can be
used in further rules for hierarchically testing log structures.

Thus, the application component implementor can model logs of a related type and
rules describing certain effective or failure situations of an application component.

The monitoring component itself is implemented as an agent which continuously
receives logs from the executing application agents (see Figure 7). This happens via so



VII

(defrule CopyTaskRuleEffective
;5 Matches log-objects of type BeforeCopyTaskEffectivelog
;5 which deal with files of size not equal O.
?ctlogl <- (BeforeCopyTaskEffectivelog
(taskStartTime ?tst)
(sourceFilesize ?sfs)
(processlID ?pidl)
(test(!= ?sfs 0)))
;5 Matches log objects of type AfterCopyTaskEffectivelog
;5 which deal with of size not equal 0 and has the same
;5 processliD as above.
?ctlog2 <- (AfterCopyTaskEffectivelog
(processlID ?pidl)
(targetFilesize ?tfs)
(taskEndTime ?tet))
;; Task start time must be less task end time
(test (< ?tst ?tet))
(test (1= ?tfs 0))
=>
;5 Creation of a combined working memory element representing
;; the firing of the rule.
(assert (CopyRuleEffectiveLog (logs ?ctlogl ?ctlog2))))

Fig. 6: Example for a rule, written in CLIPS syntax, monitoring the copy task.

called LocalMonitoringRepositories and one central MonitoringRepository that store
the logs for later use. Thus, the monitoring component observes the execution of dis-
tributed acting agents in a central way. It further combines the results of the agents’
activities through firing rules.

LocalMonitoring
Repository

LocalMonitoring
Repository

Fig.7: Collecting logs from distributed agents running on different active instances

The monitoring component is part of a distributed business process execution ap-
plication, which is currently under development. The application is implemented with
JAVA and the extension Jadex for distributed agents.



VIII

5 Demonstrator

In the demonstrating example, we show the execution of an BPMN-modeled process
for file transfer. For this task, following steps are executed:

— Start of the Logging Service agent that initializes the rule engine and waits for
incoming logs.

— The specific working memory element Clock is initially created for representing the
current time and, thus, enabling time-dependent rule firing.

— The BPMN-process is started by the user. Internally, new agents are created which
follow the process model and execute the related basic component implementation.
During the process execution specific logs are created like BPMNProcessStartLog
and BeforeCopyEffectiveLog.

— Created logs and activated rules can be examined in a rule monitor window.

— Each fired rule creates new logs like the CopyRuleEffectiveLog.

— In a further run-through of the demonstrator another rule fires indicating that a copy
task needs too much time to be processed.

6 Discussion and Summary

Other data integration tools already handle diverse data file formats, however, they blank
out that organizational data primary exist as decentralized, distributed data files. User
of such systems are forced to manually move the data files to appropriate places or to
develop scripts and programs that move them around in distributed systems. To the best
of our knowledge, no other business intelligence software is focusing on the process
execution monitoring (via rules).

In this demonstration paper, we present a combination of process modeling based on
BPMN, process execution in an distributed environment, and process execution moni-
toring with rules. The demonstrator shows how these technologies can successfully be
combined to monitor process execution in a distributed environment.

References

Braubach, L. and Pokahr, A. (2011). Addressing challenges of distributed systems using active
components. In Brazier, F., Nieuwenhuis, K., Pavlin, G., Warnier, M., and Badica, C., editors,
Intelligent Distributed Computing V - Proceedings of the 5th International Symposium on
Intelligent Distributed Computing (IDC 2011), pages 141-151. Springer.

Friedman, T., Beyer, Mark, A., and Bitterer, A. (2008). Magic Quadrant for Data Integration
Tools. Technical report, Gartner.

Marino, J. and Rowley, M. (2009). Understanding SCA (Service Component Architecture).
Addison-Wesley Professional, 1st edition.

OMG (2006). Business Process Modeling Notation (BPMN) Specification, Final Adopted Speci-
fication.

Rao, A. and Georgeff, M. (1995). BDI Agents: from theory to practice. In Lesser, V., editor, Pro-
ceedings of the Ist International Conference on Multi-Agent Systems (ICMAS 1995), pages
312-319. MIT Press.



