
Goal Delegation without Goals

BDI Agents in Harmony with OCMAS Principles

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{pokahr, braubach}@informatik.uni-hamburg.de

Abstract. The BDI model is concerned with the rational action of an
individual agent. At the multi-agent layer especially coordination among
agents is an important factor that determines how overall system goals
can be accomplished. Thus, from a software engineering perspective it is
desirable to extend the BDI programming model to the multi-agent layer
and make BDI concepts also useable for coordination among agents. A
severe problem with existing approaches that tried to follow this path
e.g. by proposing a BDI teamwork model is that they violate the OCMAS
principles stating that no assumptions on agent architectures should be
made on the multi-agent level. If OCMAS principles are violated the
kinds of agents that can participate in coordination is limited ab initio
to a specific sort such as BDI. In this paper we propose a new goal
delegation mechanism that allows for both. On the one hand, BDI agents
can delegate their normal goals to other agents and on the other hand
these goals are not represented explicitly on the multi-agent level so that
also non-BDI agents can act as receivers and help accomplishing a goal.

1 Introduction

The belief-desire-intention model (BDI) of Bratman [3] was inspiration source for
one of the most successful agent architectures called PRS (procedural reasoning
system) initially proposed in [9]. Main appeal of the BDI agent architecture
is its folk psychological grounding that allows developers to naturally describe
agent behavior in terms of beliefs (what is known of the world), goals (what is
to be achieved), and plans (how goals can be achieved) in a similar way humans
think that they think [12]. The traditional BDI architecture from [15] (cf. Fig.
1 left hand side) reduces the core process of BDI - called practical reasoning -
to the means-end reasoning phase. Means-end reasoning refers to the process of
deciding how to accomplish a goal or how to treat an event. Software-technically
this is interpreted as plan selection and execution process, i.e. for a given goal the
agent searches relevant plans (fitting to the goal type) and further inspects their
applicability in the current context (referring to its beliefs). From this knowledge
an applicable plan list is created and plans are executed one by one until the
goal is achieved or no more plans are available causing the goal to be failed.



Fig. 1. BDI deliberation

In previous work the traditional BDI architecture has been extended to-
wards supporting the full practical reasoning cycle consisting of the phases goal
deliberation and means-end reasoning (cf. Fig. 1 middle). In the upstream goal
deliberation phase an agent deals with the question which of its goals it should
pursue at the current point in time. The main aspect of goal deliberation consists
in generating a conflict-free goal set for the agent as some of the existing goals
interfere with each other. Prerequisites for supporting the full practical reasoning
cycle consist in introducing explicitly represented goals [6,4], a goal deliberation
strategy [14] and an extended BDI architecture with a new deliberation cycle
[13]. These extensions allow for programming goal-driven agents that are able to
autonomously deliberate about their goals and pursue them in flexible context
dependent ways but do not touch the area of inter-agent dependencies.

Thus, in the envisioned BDI architecture (cf. Fig. 1 right hand side), be-
sides the aforementioned intrinsic aspects of goal deliberation and means-end
reasoning, also goal delegation should be covered. This transforms a multi-agent
system into a distributed goal-oriented reasoning engine and allows for natural
cooperation among cognitive agents. In contrast to previous extensions, goal del-
egation renders the deliberation process much more difficult. Basically, it has to
be decided in which cases a goal should be delegated and to which agent. Fur-
thermore, also timing aspects become more important because goal deadlines
might influence the goal delegation decisions. In contrast to the aforementioned
two-phased process of practical reasoning, goal delegation requires a new BDI
deliberation approach.

As a first step towards such general architecture in this paper the foundations
of goal delegation will be laid out. In the next Section related work is discussed.
In this context, the concept of goal delegation is explained and contrasted with
similar but nonetheless different approaches from the teamwork area. In Section 3
the principles and architecture of the new goal delegation approach are presented.
Finally, in Section 4 some concluding remarks and aspects of planned future work
are given.

2 Related Work

For the treatment of related work, first goal delegation is placed it into a larger
context regarding the general coordination of BDI agents. Afterwards existing
works with regard to goal delegation are presented.



Table 1. Comparison of coordination approaches

2.1 BDI Agents and Coordination

Coordination among BDI agents in a multi-agent system can take a number
of forms. A fundamental property of BDI agents is their definition in terms
of mental attitudes such as belief, goals and plans. Therefore an interesting
question concerns the role of such mental attitudes in any coordination approach.
A large family of BDI coordination approaches can be derived by following the
general assumption that when some mental attitudes are shared, the individual
reasoning processes will lead to coordinated behavior. This idea is appealing
due to a number of reasons. On the one hand, using mental attitudes also for
coordination purposes is conceptually in line with the intuitive, folk psychological
interpretation of BDI. On the other hand, the BDI reasoning process is already
quite sophisticated and it is expected that introducing extensions for sharing
mental attitudes is technically less challenging than to develop a new reasoning
process specifically for coordination.

Table 1 differentiates some existing coordination approaches with regard to
the question, which mental attitudes are shared among agents. The approaches
have been selected as examples for their respective category. The selection of
approaches should not be considered exhaustive and an in-depth treatment of
the individual representatives is out of the scope of this paper. Instead, the fol-
lowing descriptions try to elaborate the general implications of sharing some
mental attitude(s). In particular, the criteria of coupling and communication
are considered. Coupling refers to how directly one agent is able to influence the
behavior of another agent. In addition, the communication overhead of coordi-
nation results from both the communication load (i.e. the amount of transferred
data) and the communication frequency (i.e. how often agents need to engage in
communication). The result of this analysis is illustrated in Figure 2.

In Hive BDI [1] agents can share some of their beliefs and thus induce indirect
coordination similar to the way ant-like agents influence each other using digital
pheromones. The approach aims at supporting large-scale agent systems com-
posed of huge numbers of agents and features a high robustness and scalability.
The sharing of beliefs represents a low coupling, because agents only influence
each other indirectly. The communication overhead is relatively high, due to the
communication frequency, which e.g. follows from the dynamics of the environ-
ment. Goal delegation has been defined in [2] as the delegation of commitment,
i.e. an agent adopting a commitment of another agent, and the delegation of



Fig. 2. Communication and coupling implications of shared mental attitudes

strategy, i.e. the agent on the receiving and has full control over how it pursues
the delegated goal. In consequence, goal delegation incurs a rather low commu-
nication overhead, because at the start of the goal delegation, only the commit-
ment needs to be communicated and after the delegated goal is achieved, some
result might be passed back. Goal delegation allows medium influence on the
behavior of other agents, because goal delegation states what the agent should
achieve (commitment), but not how (strategy). Tight coupling can be produced
by plan sharing approaches. E.g. Coordinated Sapa [10] allows resolving con-
flicts between plans, such that two cooperative agents can pursue their goals
without accidentally executing actions detrimental to the other agent. This is
facilitated by one agent sending its plan to the other and the other agent choos-
ing its own actions in a way that avoids any conflict. Therefore tight coupling
is established that requires communicating complete plan structures. There are
also combined approaches that incorporate sharing of more than one attitude.
E.g. in joint intentions [7], the notion of a shared goal is extended to require
also shared knowledge about the state of the goal. Joint responsibility [11] takes
these ideas further by also incorporating the plan level. These approaches lead to
increased coupling, that may be advantageous, e.g. to improve the performance
of teamwork, but comes with the cost of increased communication overhead.

2.2 Goal Delegation Approaches

The work presented in this paper aims at exploiting the intuitive BDI concepts
for the development of open multi-agent systems. The above analysis shows that
goal delegation represents a good trade-off between coupling and communication.
With the initial delegation of the goal and the returning of some final result, it has
clear interaction points with an intuitive semantics. Yet, for open and extensible
systems the principles of organization-centered multi-agent systems (OCMAS) as
laid down in [8] are considered very important as well. OCMAS advocates to treat
agents as black boxes and therefore prohibits the use of mental attitudes at the
MAS level. For a combination of both, two aspects are important. First, on the
MAS-level, goal delegation needs to be represented in a standardized interaction
that is open to non-BDI agents, too. Second, on the BDI-level, the standardized
interaction scheme needs to be mapped to goals, which are delegated to and
from other agents. Finally, the BDI reasoning cycle needs to be extended to



Fig. 3. Goal delegation concept

incorporate decisions regarding the delegation and acceptance of goals. In the
following, some existing goal delegation approaches are discussed with respect
to their support for either of those aspects.

In [2] the authors propose a FIPA-compliant protocol for goal delegation.
While being FIPA-compliant means that syntactically, any kinds of agents may
engage into conversations according to this protocol, the motivation of the proto-
col is explicitly capturing the semantics of goal delegation in the protocol itself.
It is therefore a heavy-weight approach that violates OCMAS principles in fa-
vor of a clearly defined semantics for each message. Furthermore, no suggestions
regarding the implementation of BDI agents according to the protocol are made.

An explicit distinction between the MAS and the BDI level is considered
by [16]. In addition to the goal inside an agent, the notions of task and service
are introduced. A task represents a concrete goal instance to be delegated to
another agent (i.e. on the delegator side), whereas a service describes the abil-
ity of an agent to receive task requests (delegatee side). To perform the actual
delegation of tasks, the usage of a contract-net negotiation is proposed. Fur-
thermore, a reasoning cycle has been conceived that triggers delegation of goals,
when no local plans are found. The approach is interesting due to the explicit
separation of the three aspects of goals (goal, task, service). Yet, the approach
is not fully generic, because of the contract-net-oriented interaction and goal
delegation being hard-coded into the reasoning cycle.

3 OCMAS Goal Delegation

There are two main requirements for our goal delegation approach. The first
requirement is that BDI agents should be enabled to use the notion of goal
delegation to outsource some of their goals to other agents. This means that the
specification of BDI agents needs to be extended to incorporate details about
which goals can be delegated at which moments to what agents. The second
requirement mandates that the goal delegation approach should be in line with
the OCMAS principles, i.e. the approach should not make any assumptions about



Fig. 4. Goal delegation with means-end reasoning

the internal architectures of the participating agents. These two requirements
seem to be naturally contradicting as using notions such as shared goals or
plans requires all possible goal adopters to understand that notion and in this
way restricts the heterogeneity of the participating agents.

The proposed solution path builds on the idea of having a common black-box
view for all kinds of agents (BDI, task-based, etc.) that adds provided and re-
quired service specifications known from component based software engineering.
These required and provided service descriptions are based on interface defini-
tions with method signatures so that the interoperability of different components
is clearly defined. The idea now is to treat goal delegation as a process of three
perspectives that can be considered separately. From the perspective of the del-
egating agent, which is assumed to be a BDI agent, a mechanism is added to
route a goal to another agent, After having delegated the goal it is guaranteed
that a result of this delegation process is eventually received and the goal state
is updated. From the perspective of the receiving agent goal delegation may lead
to the exogenous creation of a goal from another agent. The receiving agent can
reason about goal acceptance and afterwards can process the goal in the same
way as it does with its own goals. In between the goal is not explicitly repre-
sented - hence “goal delegation without goals” - but is abstracted to a simple
service invocation, i.e. the delegating agent invokes one of its required services.
This required service is potentially dynamically bound to the provided service
of another agent which if being BDI automatically maps the call to a goal.

This general invocation scheme is graphically depicted in Fig. 3. It further
illustrates that on the receiving side the service must not recreate a goal but can
also be perceived as normal service invocation. In this way also other types of
agents, like task-based ones or even other types of systems such as web services
can be naturally used as goal executors.

3.1 Reasoning Integration

As already presented in the introduction, goal delegation makes the BDI reason-
ing process of an agent more complicated, because ’who’ and ’when’ questions
need to be answered and it is not clear at what points in the reasoning process
this should be done. Rather, it seems that a very flexible approach is needed that
allows for answering these questions at different stages in the decision process,
i.e. during goal deliberation as well as as part of the means-end reasoning. In



this paper we will not present a complete solution to this intricate aspect but
will approach it with a conservative extension to the means-end reasoning part
only. To install goal delegation at the mean-end reasoning phase a new generic
delegation plan is introduced (cf. Fig. 4), which actually performs the delegation
by automatically searching and invoking one or more services according to the
user specification. In this way the means-end reasoning process determines if
and when goal delegation in used. Plan priorities can be employed to determine
the relation between own plans and goal delegation, i.e. if it should be tried to
outsource a goal as soon as possible or rather as last available option. In addi-
tion pre- and context conditions can be used to define in which situations goal
delegation is applicable. On the other side the incoming service call is handled
by a generic goal creation service, which first checks if goal adoption is wanted
by the agent and afterwards creates the exogenous goal for further processing.

In case the agent has decided to delegate a goal to another agent the question
arises to which agent is should be sent if more than one option is available. It
should be possible to base this decision upon functional as well as non-functional
criteria. In our proposed solution the decision is not part of the goal delegation
mechanism but belongs to the underlying service matching between required
and provided services of agents. A required service specification is functionally
defined via a service interface and additionally declares a search scope (e.g.
platform or global scope) in which the search is performed. Depending on the
required service specification, the search for suitable service providers (and hence
goal delegation targets) can be done dynamically on each request or only once
in case of a static scenario with fixed sets of service providers. Currently, non-
functional criteria cannot be explicitly specified as part of the required service,
but only by using custom classes that extend the search mechanism. Declarative
specifications of non-functional criteria are an important part of future work.

3.2 Implementation

The goal delegation concept has been implemented using the Jadex agent plat-
form [5]. The specification details will be presented in the following and they
will be further illustrated by a small example application. The artificial scenario
is called the money painter application. It consists of two agent types. The first,
called rich agent, has the objective to become rich by getting a certain amount of
money. It decomposes this goal to get the specified amount of money by creating
a number of subgoals each responsible for getting one euro. To get one euro two
different means are available. Either the agent can decide to paint one euro by
itself or it can delegate the goal to paint one euro to another agent type called
painter. It has to be noted that each agent can only paint one euro at the same
time and it also needs some time to accomplish this task. In this scenario painter
agents refuse to work on a new task as long as they are busy with an old one.

At the initiator agent side (i.e. an agent that wants to delegate a goal) merely
a small extension to the plan element is necessary that allows for specifying a
goal delegation plan. The delegation plan description differs from usual plan



01: <goals>
02: <achievegoal name=”get_one_euro” recur=”true” recurdelay=”1000”>
03: </goals>
04:

05: <plans>
06: <plan name="let_another_paint_one_euro">
07: <body service="paintservices" method="paintOneEuro"/>
08: <trigger>
09: <goal ref="get_one_euro"/>
10: </trigger>
11: </plan>
12: </plans>
13:

14: <services>
15: <requiredservice name="paintservices" class="IPaintService" multiple="true">
16: <binding dynamic=”true”, scope=”platform”>
17: </requiredservice>
18: </services>

Fig. 5. Cutout of the rich agent file

descriptions in the way the plan body is defined.1 For normal plans, a class
name is used to refer to the class that should be instantiated and executed. In
case of a delegation plan, a service name and a method name have to be declared.
The service name is a local name that corresponds to a required service definition
from the services section of the agent and the method name is used to identify
the method of the required service that should be called when a goal delegation
is started.

In Fig. 5 a cutout of the rich agent is depicted. It can be seen that a goal
to get one euro (lines 1-3), a delegation plan (lines 5-12) and a required service
definition (lines 14-18) need to be specified. For each get one euro goal instance
that agent possesses (creation not shown) it tries to accomplish it by executing
the delegation plan (cf. the plan trigger in lines 8-10). This plan uses the new
body description introduced above and links the delegation to the paintOneEuro
method of the required service called paintservices. The required service speci-
fication defines the type of service should be bound (here of type IPaintService,
line 15), that all instances of that services should be returned (multiple, line 15)
and dynamic search should be applied (line 16) and that all components from
the agent platform should be included into the search (scope platform, line 16).
In case the delegation plan fails due to the fact that all painters are busy, the
goal will pause and retry after one second (recur settings, line 2).

At the participant side (i.e. the agent that handles a goal delegation ser-
vice call) an extension has been introduced to publish a goal as specific service
method. Furthermore, a parameter mapping has been introduced that can be
used to describe how a service argument is mapped to a parameter of a goal. In
this way the method arguments can be passed to the goal also selectively or in
a different order.

In Fig. 6 a cutout of the painter agent is shown. It owns a belief with name
painting (line 1-3) of type boolean that indicates whether the agent is currently

1 The plan body refers to the class that implements the domain logic of a plan. If the
BDI interpreter executes a plan as first step it creates the plan body and afterwards
executes it stepwise.



01: <beliefs>
02: <belief name=”painting” class=”boolean”>
03: </beliefs>
04:

05: <goals>
06: <achievegoal name=”get_one_euro”>
07: <publish class=”IPaintService” method=”paintOneEuro”>
08: </achievegoal”>
09: </goals>
10:

11: <plans>
12: <plan name="paint_one_euro">
13: <body class="PaintOneEuroPlan"/>
14: <trigger>
15: <goal ref="get_one_euro"/>
16: </trigger>
17: <precondition>!beliefbase.painting</precondition>
18: </plan>
19: </plans>

Fig. 6. Cutout of the painter agent file

busy with painting a euro. Furthermore, it has one goal (lines 5-9) for painting a
euro and a corresponding plan (lines 11-19). The goal is equipped with the new
publish declaration, which defines it as an exogenous goal that is instantiated
when a method call (“paintOneEuro”) to the IPaintService is received (line 7).
Always when a new goal is created, goal processing will start and look for a
suitable plan. In this example the agent only has one fitting plan that reacts to
the goal (cf. plan trigger in line 15). Furthermore, a precondition is used to check
whether the agent is already painting (line 17). The painting belief is modified
by the painting plan itself when it starts and ends working. If a goal is created
and the agent is busy the precondition evaluates to false and the plan cannot
be used. As the agent has no other plan the goal is considered as failed and the
service caller is automatically notified that goal delegation did not succeed.

4 Conclusion

This paper has tackled the question how goal delegation can be introduced with-
out violating the OCMAS principles and forcing all agents of a multi-agent
system to be BDI agents. The proposed solution distinguishes between the per-
spectives of the delegating agent, the multi-agent layer, and the receiving agent.
Only at the delegating and possibly at the receiving agent goals are explicitly
represented, whereas in between no goals occur and service calls are used as in-
teraction means. As services are a common property of all kinds of agents (and
especially of active components) the receiving side can interpret them in differ-
ent ways, e.g. a BDI agent can recreate the goal, while a task based agent can
execute a behavior. The contract between both sides is kept minimal and only
requires the receiver to answer the service call with a result or an exception.
This provides interoperability between BDI agents and other agent types as well
as legacy systems, e.g. using web services. Taken together, the contributions of
this paper therefore achieve goal delegation transparency on the intra-agent and
inter-agent level. On the intra-agent level, transparency is achieved by treating



endogenous and exogenous goals the same way. On the inter-agent level, goals
are made transparent using service calls. In future work, especially the devel-
opment of a new BDI architecture will be targeted, which is able to use goal
delegation at different stages and not only as part of means-end reasoning.

References

1. M. Barbieri and V. Mascardi. Hive-bdi: Extending jason with shared beliefs and
stigmergy. In Proc. Int. Conf. on Agents and Artificial Intelligence (ICAART).
SciTePress, 2011.

2. F. Bergenti, L. Botelho, G. Rimassa, and M. Somacher. A FIPA compliant Goal
Delegation Protocol. In Proc. Workshop on Agent Communication Languages and
Conversation Policies (AAMAS 2002), Bologna, Italy, 2002.

3. M. Bratman. Intention, Plans, and Practical Reason. Harvard Univ. Press, 1987.
4. L. Braubach and A. Pokahr. Representing long-term and interest bdi goals. In

Proc. of (ProMAS-7), pages 29–43. IFAAMAS Foundation, 5 2009.
5. L. Braubach and A. Pokahr. Addressing challenges of distributed systems using

active components. In Proc. of the Int. Symp. on Intelligent Distributed Computing
(IDC 2011), pages 141–151. Springer, 2011.

6. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for
BDI Agent Systems. In Proc. of (ProMAS 2004), pages 44–65. Springer, 2005.

7. P. R. Cohen and H. J. Levesque. Teamwork. Technical Report Technote 504, SRI
International, Menlo Park, CA, March 1991.

8. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: an Or-
ganizational View of Multi-Agent Systems. In Proc. of Int. Workshop on Agent-
Oriented Software Engineering IV (AOSE 2003), pages 214–230. Springer, 2003.

9. M. Georgeff and A. Lansky. Reactive Reasoning and Planning: An Experiment
With a Mobile Robot. In Proceedings of the 6th National Conference on Artificial
Intelligence (AAAI 1987), pages 677–682. AAAI, 1987.

10. M. Hashmi and A. El Fallah Seghrouchni. Coordination of temporal plans for the
reactive and proactive goals. Web Intelligence and Intelligent Agent Technology,
2:213–220, 2010.

11. N. Jennings and E. Mamdani. Using Joint Responsibility to Coordinate Collabo-
rative Problem Solving in Dynamic Environments. In AAAI, pages 269–275, 1992.

12. E. Norling. Folk Psychology for Human Modelling: Extending the BDI Paradigm.
In Proc. Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS), 2004.

13. A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDI Architecture Support-
ing Extensibility. In Proc. of the Int. Conference on Intelligent Agent Technology
(IAT 2005), pages 379–385. IEEE Computer Society, 2005.

14. A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for bdi
agent systems. In Proc. of Conf. on Multi-Agent System TEchnologieS (MATES-
2005). Springer, 2005.

15. A. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. of the Int.
Conf. on Multi-Agent Systems (ICMAS), pages 312–319. MIT Press, 1995.

16. M. Scafes and C. Badica. Distributed goal-oriented reasoning engine for multi-
agent systems: Initial implementation. In Intelligent Distributed Computing III,
pages 305–311. Springer Berlin / Heidelberg, 2009.


