
Jadex A
tive Components: A Uni�ed Exe
utionInfrastru
ture for Agents and Work�owsLars Brauba
h, Alexander Pokahr, and Winfried LamersdorfDistributed Systems and Information SystemsComputer S
ien
e Department, University of Hamburg{pokahr | brauba
h | lamersd}�informatik.uni-hamburg.deSummary. Agent te
hnology has proven to
ontribute ri
h abstra
tions that fa
ili-tate the
onstru
tion of
omplex systems. Espe
ially, in
ase of
hallenges regardingdistribution and
on
urren
y aspe
ts, agents provide high-level solution
on
eptsthat are intuitive to understand and dire
tly transferable from design to implementa-tion. Despite these advantages agent te
hnology
urrently has not found widespreadappli
ation in industry settings. One important reason for the slow adoption is thatthe
on
eptual integration of agents with other prevalent software engineering ap-proa
hes like software
omponents or servi
e oriented ar
hite
ture is still low anddoes not permit the easy usage of agents in
on
ert with other te
hnologies. In this
hapter, with the notion of a
tive
omponents, a new
on
eptual abstra
tion is pre-sented that
ombines agent and
omponent
hara
teristi
s in order to foster theintegration of both strands. The a
tive
omponent
on
ept has been implementedwithin the Jadex A
tive Components middleware, whi
h is an infrastru
ture thatpermits the exe
ution of di�erent types of a
tive
omponents like agents and work-�ows. The underlying ar
hite
ture of this middleware is presented and illustratedby example s
enarios.Key words: agents, work�ows, a
tive
omponents1 Introdu
tionSin
e its beginnings in the nineties, agent te
hnology has evolved into an a
-tive resear
h and engineering �eld that provides
on
epts and solutions forbuilding
omplex distributed systems [12, 14℄. Software agents - as a designmetaphor for open, distributed and
on
urrent systems - are
ommonly
har-a
terized as being autonomous (independent of other agents), rea
tive (ad-vertent to
hanges in the environment), proa
tive (pursue their own goals),and so
ial (intera
t with other agents) and may be realized using mentalisti
notions (e.g. beliefs and desires)[27℄. Using this design metaphor, an agent-based software appli
ation
an be realized as a multi-agent system (MAS),

2 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorfwhi
h is a set of agents that intera
t using expli
it message passing, possiblyfollowing sophisti
ated negotiation proto
ols.Current te
hnology trends, su
h as in
reasing hardware
on
urren
y anddelegation of tasks to
omputer programs [14, 27℄, reinfor
e the need of
on-
eptually ri
h abstra
tions for building
omplex software. While agent te
h-nology o�ers this kind of abstra
tions, the integration with existing softwarete
hnology like obje
t-orientation, servi
e-oriented
omputing, work�ow man-agement systems, appli
ation servers, et
. is essential for being able to qui
klybuild industry-quality solutions in adequate
ost and time frames.This
hapter presents one approa
h of su
h an integration of agent
on-
epts with existing software te
hnology: The Jadex A
tive Components (AC)infrastru
ture. The basi
 idea of Jadex is providing a uni�ed exe
ution in-frastru
ture for di�erent kinds of entities (e.g. agents or work�ows). Besidesa seamless integration of these
omponents, the uni�
ation further fa
ilitates
ross-fertilization between the di�erent
on
epts. Foundation of this approa
his the newly
on
eived notion of a
tive
omponents, whi
h unify base
on
eptsof software
omponents with that of a minimal agent.The remainder of this
hapter is stru
tured as follows. Se
tion 2 introdu
esthe main obje
tives and the overall approa
h of the Jadex proje
t. In Se
tion3 the
on
epts and
omponents for building appli
ations with Jadex are pre-sented. The
urrent state of the realization is des
ribed in Se
tion 4. Se
tion5 presents sample proje
ts in whi
h Jadex is used and Se
tion 6
on
ludes the
hapter with a summary and an outlook.2 Design RationaleThe main goal of the Jadex proje
t is simplifying the development of
om-plex distributed appli
ations. The approa
h towards a
hieving this aim isproviding a middleware that aids in addressing
ommon
hallenges of su
hdistributed appli
ations. This middleware on the one hand delivers sound
on-
eptual metaphors for the design of distributed systems. On the other handthe implementation of these
on
epts is supported by a software infrastru
-ture in
luding reusable
omponents and frameworks as well as developmentand runtime tools. Among others, the following
hallenges are prominentlyaddressed by Jadex:
• Dealing with
on
urren
y and distribution
• Realizing appli
ations
omposed of heterogeneous
omponents
• O�ering versatile intera
tion styles
• Being
onfronted with a multitude of exe
ution s
enarios
• Monitoring and debugging distributed appli
ationsThe �rst three
hallenges are addressed by the abstra
t notion of an a
tive
omponent and its
on
rete in
arnations. The a
tive
omponent
on
ept is in-spired by aspe
ts of the agent metaphor for addressing
on
urren
y and distri-bution on the
on
eptual level. As ea
h a
tive
omponent is an autonomous

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 3(i.e. independently exe
uting) entity, the risk of
on
urren
y-related prob-lems, su
h as ra
e-
onditions or deadlo
ks, is redu
ed already during appli-
ation design. Di�erent
omponent types are suitable for di�erent types ofappli
ations (e.g. agents vs. work�ows). Jadex addresses this heterogeneity of
omponents by providing a uni�ed exe
ution infrastru
ture, whi
h allows ex-e
uting di�erent
omponents in the same appli
ation. Also,
omponent typesdi�er in their modes of intera
tion (e.g. message-based vs. method-
all-based).Jadex allows all
omponent types to make use of di�erent intera
tion styles asneeded. Besides syn
hronous and asyn
hronous method
alls, message-basedasyn
hronous intera
tion is supported by the infrastru
ture. Moreover, several
omplex intera
tion s
enarios, su
h as well-known negotiation proto
ols, areprovided in a reusable fashion for di�erent
omponent types.The last two
hallenges are
aptured by the way, a
tive
omponents relateto their exe
ution platform. Clearly de�ned interfa
es between the
omponentand the exe
ution platform allow both being developed independently. Con-sidering the multitude of potential exe
ution s
enarios, ea
h imposes di�erent
hallenges, e.g. a ba
kend server solution requires s
alability and transa
tionwhile deployment on a mobile devi
e has to deal with limited resour
es. Dueto the independen
e of
omponents and platform, di�erent exe
ution envi-ronments
an be built whi
h spe
i�
ally ta
kle the respe
tive
hallenges, yetallow exe
uting all available
omponent types. Besides di�erent exe
ution en-vironments, also runtime tools
an make use of the
ommon interfa
e for all
omponent types. This fa
ilitates building sophisti
ated tools, whi
h not onlyoperate on any
omponent type, but also allow observing heterogeneous ap-pli
ations
omposed of di�erent
omponent types in a uni�ed way.3 Design Con
eptsIn the following se
tions the
entral design
on
epts of Jadex A
tive Com-ponents (AC) are presented. On the infrastru
ture layer the notions and thedistin
tive
hara
teristi
s of platforms and kernels is important and will beintrodu
ed �rst. Thereafter, a de�nition for an a
tive
omponent as base ele-ment of the ar
hite
ture is given followed by an overview of
urrently availablea
tive
omponent kernels.3.1 Platform, Kernel and A
tive Component NotionsThe Jadex infrastru
ture basi
ally distinguishes between platforms, kernelsand a
tive
omponents that are exe
uted on this infrastru
ture (
f. Fig. 1).De�nition 1. A platform is the management infrastru
ture for
omponents,whi
h is responsible for their exe
ution as well as for providing administration
apabilities like a messaging system or a
omponent servi
e registry.

4 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf
Fig. 1. Platforms, kernels and
omponentsA platform itself provides all its fun
tionalities in terms of platform servi
es,i.e. it
an be easily
ustomized by
hanging the o�ered servi
es in a
on�gu-ration �le. This allows in
luding exa
tly those servi
es that deem appropriatein a given setting. On mobile devi
es one would e.g. use resour
e minimal ver-sions of platform servi
es and redu
e the number of available servi
es whereason a ba
kend server with high storage and performan
e
apa
ities e.g. servi
eswith persisten
y and transa
tion support may be a good �t. Publi
 servi
es
an be a

essed from a
tive
omponents via the platform. A
tive
omponentsmay use servi
es by invoking methods on obje
t oriented servi
e interfa
es.Di�erent platform implementations are already available that allow exe
ut-ing
omponents in a Standalone Java appli
ation as well as on top of thewell-known JADE agent framework [2℄. A platform for exe
uting a
tive
om-ponents in Java EE appli
ation servers is
urrently under development.De�nition 2. A kernel en
apsulates the internal behavior de�nition of a spe-
i�
 a
tive
omponent type.Thus a kernel realizes a spe
i�
 internal ar
hite
ture determining the
om-ponent type. The separation of platforms and kernels allows the independentdevelopment of kernels that
an then be used in
onjun
tion with arbitraryJadex platform implementations. A kernel thereby has
omplete
ontrol aboutthe way its a
tive
omponents are spe
i�ed and is thus responsible for loadinga
omponent and
reating
omponent instan
es out of this model information.Ea
h kernel implements a distin
t behavior model so that the full range frompurely rea
tive to deliberative
omponents
an be realized. The exe
ution ofall
omponents is kernel independent and performed by the underlying plat-form. It is assumed that ea
h
omponent is exe
uted sequentially, i.e. true
on
urren
y exists only between a
tive
omponents. Within an a
tive
ompo-nent a kernel may o�er quasi-parallel exe
ution by interleaving the exe
utionof a
tive behaviors. On the one hand this has the advantage of simple a
tive
omponent programming without the need for
on
urren
y language elementslike lo
ks and on the other hand it is also a
ommon requirement of existingmanagement infrastru
tures su
h as Java EE. The exe
ution of a
tive
ompo-nents without
onsideration of their
on
rete type is possible due to a
ommonbase
on
ept for all variants of a
tive
omponents.

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 5Basi
ally, an a
tive
omponent is de�ned as a mixture of minimal agentand software
omponent properties. Adapted agent
hara
teristi
s are au-tonomous entity behavior (i.e. self-a
ting) as well as message-based
ommu-ni
ation means. In addition they share with software
omponents that theyare seen as at the same time as servi
e provider and
onsumer and may be
omposed to
omposite
omponents using servi
e dependen
ies. A
tive
om-ponents
an be a

essed via method-
alls using provided servi
e interfa
esand are managed within a
ontainer infrastru
ture. This yields to the follow-ing de�nition of an a
tive
omponent:De�nition 3. An a
tive
omponent is an autonomous and managed softwareentity that may expose publi
ly a

essible servi
e interfa
es and is
apable ofintera
ting with other a
tive
omponents in di�erent modes in
luding messagepassing and method
alls.Further details about the rationale for
hoosing these
hara
teristi
s of a
tive
omponents and further explanations
an be found in [19℄.In Fig. 1 also the
ardinalities of Jadex entities are shown. It is highlightedthat on a platform any number of kernels
an be exe
uted. This allows het-erogeneous appli
ations being developed, whi
h are
omposed of entities ofdi�erent kernel types, e.g. a work�ow based appli
ation that also employsagents for spe
i�
 tasks. One kernel
an also be used with arbitrary plat-forms thanks to the loose
oupling between both
on
epts. It is also shownon the right hand side that an a
tive
omponent instan
e always belongs toone dedi
ated kernel, whi
h takes over the aforementioned tasks regarding this
omponent. It has to be noted that no spe
i�
 appli
ation element is shown inthe �gure, as appli
ations are themselves
omponents that may in
lude other
omponents. This means that
omponents are a hierar
hi
al
on
ept similarto holons [10℄, fa
ilitating the re
ursive
onstru
tion and de
omposition ofsystems.3.2 Available Kernel TypesIn Jadex
urrently three kinds of kernels exist: agent kernels, work�ow ker-nels and other kernels. Agent kernels are used to realize internal agent ar
hi-te
tures, whereby kernels for belief-desire-intention (BDI) and simple re�exagents,
alled mi
ro agents, exist. Work�ow kernels implement pro
ess exe-
ution logi
 and provide a business level perspe
tive on task exe
ution. Inthis
ategory a BPMN (business pro
ess modeling notation) kernel as well asa goal-oriented (GPMN) pro
ess kernel are available. In the third group ofkernels, espe
ially the appli
ation kernel is of relevan
e be
ause it fa
ilitatesthe de�nition of a
tive
omponent systems.BDI Agent KernelIn former versions of Jadex, BDI was the only
omponent ar
hite
ture avail-able. As the way agents are des
ribed using BDI has not
hanged mu
h with

6 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorfregard to earlier versions, here only a short des
ription is given (for more de-tails refer to [5, 22℄). BDI agents
onsist of beliefs (subje
tive knowledge), goals(desired out
omes) and plans (pro
edural
ode for a
hieving goals). Jadex BDIagents are based on the PRS (pro
edural reasoning system) ar
hite
ture [23℄,whi
h has been substantially modi�ed and extended in previous works to sup-port the full pra
ti
al reasoning pro
ess [21, 20℄. Pra
ti
al reasoning has twomain tasks, namely goal deliberation and means-end reasoning [26℄, wherebyonly the latter is
onsidered in original PRS. Goal deliberation is used bythe agent to determine a
onsistent, i.e.
on�i
t-free goal set it
an pursueat the
onsidered moment. In Jadex the Easy Deliberation strategy is used,whi
h introdu
es goal
ardinalities and inhibition ar
s between goals [21℄. Forea
h sele
ted goal means-end reasoning is employed to a
hieve that goal byexe
uting as many plans as ne
essary. More spe
i�
ally, means-end reasoning�rst
olle
ts appli
able plans and then sele
ts a
andidate among these thatis subsequently exe
uted. Given that this plan is not able to ful�ll the goal,e.g. be
ause it fails, means-end reasoning tries to a
tivate other plans.To support a wide spe
trum of use
ases di�erent goal kinds have beenintrodu
ed, from whi
h a
hieve, maintain, query and perform are the mostimportant ones. A
hieve goals are used to bring about a spe
i�
 world state,whi
h
an be des
ribed as de
larative target
ondition. The goal is
onsideredas ful�lled when this target
ondition be
omes true. In
ontrast, maintaingoals are utilized to preserve a spe
i�
 world state and reestablish this statewhenever it gets violated. Query goals
an be used to retrieve information.If the requested pie
e of knowledge is already known to the agent the goalis immediately �nished, whereas otherwise plan exe
ution is started to fet
hthe needed data. The perform goal kind is a purely pro
edural goal that isdire
tly
onne
ted to a
tions, i.e. a perform is
onsidered as ful�lled when atleast one plan
ould be exe
uted. A detailed des
ription of these goal kinds
an be found in [6, 3℄.Jadex BDI agents are spe
i�ed using XML and Java, allowing to separatethe des
riptive knowledge of the agent stru
ture from the pro
edural knowl-edge of plans. An agent type is de�ned in an agent de�nition �le (ADF),whi
h follows a BDI metamodel des
ribed as XML s
hema. The agent plansare normal Java �les that have to extend a given framework
lass and overrideat least one method that
ontains the plan domain logi
. From within Javaplans agent fun
tionality
an be a

essed via API (appli
ation programminginterfa
e)
alls, whi
h e.g. allow a

essing beliefs or dispat
hing goals.ExampleAs an illustrating example of a BDI agent the
leanerworld appli
ation (�rstdes
ribed in [6℄) is shortly presented. The basi
 s
enario idea is that
leaningrobots look for waste in a given terrain and bring it to waste bins nearby. Ad-ditionally, the robots have to monitor and re
harge their battery given thatits value is below a spe
i�ed threshold. At night, the robots do not sear
hfor waste but patrol in de�ned routes to guard the area. The robot obje
tives

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 71 <agent name="Cleaner" pa
kage="...">2 <beliefs>3 <beliefset name="wastes"
lass="Waste" />4 ...5 </beliefs>67 <goals>8 <a
hievegoal name="a
hieve
leanup" retry="true" ex
lude="never">9 <parameter name="waste"
lass="Waste">10 <value>$waste</value>11 </parameter>12 <
reation
ondition language="j
l">13 Waste $waste && $waste.position!=null14 </
reation
ondition>15 </a
hievegoal>16 ...17 </goals>1819 <plans>20 <plan name="
leanup">21 <parameter name="waste"
lass="Waste">22 <goalmapping ref="a
hieve
leanup.waste"/>23 </parameter>24 <body
lass="CleanUpWastePlan"/>25 <trigger>26 <goal ref="a
hieve
leanup"/>27 </trigger>28 </plan>29 ...30 </plans>31 ...32 </agent> Fig. 2. Cleaner agent ADF
utout
an intuitively be modeled using a goal-oriented approa
h and lead to the four
orresponding top-level goals:maintainbatteryloaded, a
hieve
leanup, perform-lookforwaste, and performpatrol. The goal names already denote the di�erentgoal kinds (e.g. a
hieve and perform) used for goal modeling and implemen-tation. The relationships between these goals have been further
onstrainedusing inhibition ar
s. E.g. the maintainbatteryloaded goal is
onsidered asmost important and inhibits goals of the other types in order to guaranteethat the robot does not break down. In Figure 2 a small
utout of the
leaneragent ADF is shown. It
an be seen that the agent mainly has beliefs, goalsand plans se
tions. As part of its beliefs the agent e.g. remembers alreadyspotted wastes (line 3) in a beliefset
alled wastes. The a
hieve
leanup goalis de�ned as a
hievement goal (lines 8-15) with
reation
ondition (line 14).This
ondition is triggered whenever the agent senses a new pie
e of waste.The goal remembers the triggering pie
e of waste within a parameter also
alled waste (lines 9-11). In the plans se
tion (lines 19-30), the
leanup planhas been de�ned to rea
t on a
hieve
leanup goals via a
orresponding triggerde
laration (lines 25-27). It also de�nes a parameter for the waste that theplan has to
olle
t (lines 21-23). The value of this parameter is automati
allymapped to the waste parameter of the goal using a goalmapping des
ription

8 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf(line 22). Finally, the plan head in
ludes a referen
e to the plan body thatrealizes the plan logi
 (line 24). In this
ase the Java
lass CleanUpWastePlan(not shown) is utilized. For a more
omplete des
ription of
leanerworld thereader may
onsider reading [6℄, whereby deliberation aspe
ts are ta
kled in[21℄.Mi
ro Agent KernelMi
ro agents represent a very simple internal agent ar
hite
ture that basi
allysupports an obje
t-oriented behavior spe
i�
ation. A mi
ro agent is very sim-ilar to an obje
t with life
y
le and message handling methods. Thus, it hasmu
h in
ommon with the notion of an a
tive obje
t [13℄, whi
h
ould be
onsidered as a
on
eptual prede
essor of agents. One main di�eren
e withrespe
t to a
tive obje
ts is that a mi
ro agent
an be a

essed not only in anobje
t-oriented way via method invo
ation, but also by sending agent-orientedmessages to it. Mi
ro agents do not o�er mu
h fun
tionality, but they haveadvantages with respe
t to minimal resour
e
onsumption and performan
e
hara
teristi
s. Hen
e, using mi
ro agents
an be bene�
ial whenever the re-quired agent fun
tionality is simple and resour
e restri
tions may apply or alarge number of agents is required.Mi
ro agents are spe
i�ed as an extension of a prede�ned agent framework
lass. It is mandatory that at least one method (exe
uteBody()) is overridden,whi
h will
ontain the domain logi
 of the agent. In addition, further methods
an be supplied with
ode that are
alled on
e at startup (agentCreated())and when termination of the agent is triggered (agentKilled()). Whenever anagent re
eives a message a spe
i�
 agent method is
alled (messageArrived())that
an also be
ustomized in order to rea
t to in
oming requests.ExampleMi
ro agents play out their strengths in s
enarios that �t to their
hara
ter-isti
s, i.e. s
enarios that e.g. only require simple tasks being exe
uted and ex-hibit devi
e or environmental resour
e
onstraints. Examples in
lude wirelesssensor networks (WSNs) and RFID (radio-frequen
y identi�
ation) systems.As these te
hnologies are subje
t to frequent te
hnologi
al
hanges in [1℄ a
ommon event-based middleware for WSNs and RFID systems has been pro-posed, whi
h aims at hiding low level aspe
ts like hardware and basi
 eventpro
essing details. The middleware follows a layered ar
hite
ture that o�erson the appli
ation layer an event based pro
essing model purely based on ap-pli
ation level, i.e. domain relevant, events. Lower layers are in
harge of pre-pro
essing basi
 sensor and RFID data and employ
omplex event pro
essing[15℄ to generate higher level domain events. One element of this middleware isa dupli
ate �ltering agent shown in Figure 3. It has the purpose to
olle
t lowlevel events from event sour
es and forward them to other event pro
essingagents. As event sour
es like sensors frequently produ
e events with the same

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 91 pa
kage ...;2 import ...34 publi

lass SensorAgent extends Mi
roAgent5 {6 prote
ted long interval ;7 prote
ted List events;89 publi
 void messageArrived(Map msg, MessageType mt)10 {11 removeOutdatedEvents();12 if (!(events.
ontains (msg)))13 {14 events. add(new Tuple(new Long(getTime()), msg));15 msg.put(SFipa.RECEIVERS, getArgument("re
eivers"));16 msg.put(SFipa.SENDER, getComponentIdenti�er());17 sendMessage(msg, mt);18 }19 }2021 publi
 void removeOutdatedEvents()22 {23 // Iterate over list starting from oldest entries24 // and remove due entries until �rst non−due is found.25 }26 ...27 } Fig. 3. Dupli
ate �lter agent
utout
ontent the �lter agent stores events for a spe
i�ed time interval and onlyforwards those with new information. The agent is derived from the frame-work
lass Mi
roAgent and only overrides the messageArrived() method thatis automati
ally
alled whenever the agent re
eives a new message. It has twomember variables storing the time interval and a list for already
onsumedevents (lines 6-7). On message arrival the agent �rst removes outdated events(line 11) and then
he
ks if the event is
ontained in the events list (line 12). Ifthis is not the
ase the agent stores the event in the list (line 14) and modi�esthe re
eivers and senders of the event to forward it to its prede�ned re
eivers(lines 15-17). Theses re
eivers are fet
hed as value of an agent argument andare thus passed to the agent at startup.BPMN Work�ow KernelThe BPMN work�ow kernel allows the exe
ution of business pro
esses de-s
ribed in BPMN [16℄. A BPMN pro
ess mainly
onsists of a
tivities thatare
onne
ted with di�erent kinds of gateways in order to steer the
ontrol�ow. Furthermore, events play an important role, as they signal importanto

urren
es within a pro
ess, e.g. starting, terminating a pro
ess instan
e orsignaling message sending and re
eival. Elements
an be allo
ated to poolsand lanes, whi
h allow a pro
ess to be aligned a

ording to underlying orga-nizational stru
tures. BPMN was initially
on
eived as a modeling languagefor business pro
ess that primarily serves do
umentation and
ommuni
ations

10 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorfmeans, but
an also be made dire
tly exe
utable, if elements are annotatedwith exe
ution information and are equipped with a stri
t semanti
s.The BPMN work�ow kernel supplies its a
tive
omponents with a BPMNinterpreter, whi
h is able to read BPMN models stored in an XML format. Themodeling of BPMN diagrams is
urrently supported by an extended versionof the graphi
al BPMN editor available in e
lipse (stp)1. The extended editormainly adds the
apability of property views for all kinds of elements. Inthese properties exe
ution relevant details
an be spe
i�ed so that the diagramremains simple and readable also for non IT experts.Example

Fig. 4. Delivery pro
ess exampleAs an example a small pie
e of a
ommer
ial appli
ation s
enario is pre-sented. It is assumed that a
ompany exists that sells items to
ustomers. Be-sides the
ore pro
esses that are
on
erned with selling goods and marketingspe
ial o�ers also the delivery of goods and a

ounting has to be
onsidered.In Figure 4 the delivery pro
ess is shown modeled in BPMN using the Jadexe
lipse editor. It
an be seen that the pro
ess �rst ships the items and sendsan invoi
e to the
ustomer. Thereafter, a multi event is used to disambiguatebetween di�erent pro
ess
ontinuations. In
ase the payment arrives, it is en-tered into the books and the pro
ess �nishes. If instead the
ustomer returnsthe items e.g. due to quality problems, a spe
i�

omplaint management sub-pro
ess is started to solve the issues. A su

essful
orre
tion of defe
ts leads toreshipping the goods, whereas the pro
ess terminates otherwise. It may alsohappen that the
ustomer does not rea
t at all and the payment target is ex-
eeded. In this
ase, up to three dunnings are sent and the pro
ess then againwaits for a
ustomer response. If the
ustomer still does not rea
t, she will bebla
klisted and a debt
olle
ting agen
y will be instru
ted. In order to makethe pro
ess exe
utable, element spe
i�
 Jadex properties are introdu
ed (notshown in Figure 4). Most importantly, a
tivities are
onne
ted to Java
lassesimplementing the
orresponding domain logi
, e.g. the send invoi
e a
tivity
1 http://www.e
lipse.org/bpmn/

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 11prepares an invoi
e do
ument from a template and sends it per email to the
ustomer. In addition, the data�ow,
onsisting of lo
al and global parameters,has to be de�ned. One example is the number of sent dunnings that is savedin a global parameter in order to make it a

essible for the
he
king gatewayas well as the send dunning a
tivity, whi
h in
rements the
ounter.GPMN Work�ow KernelBasis of the GPMN kernel is the goal-oriented pro
ess notation, whi
h is de-veloped in the ongoing Go4Flex proje
t [4℄ together with Daimler AG. Theobje
tive of GPMN
onsists in providing an additional modeling notation forpro
esses that abstra
ts away from work�ow details and instead fo
uses onthe underlying aims a pro
ess shall bring about. For this purpose GPMN in-trodu
es di�erent goal types as
on
eptual elements. These goals are arrangedin goal hierar
hies for des
ribing how top-level goals
an be de
omposed intosubgoals and plans. A goal hierar
hy represents the de
larative properties ofthe pro
ess (
onditions to be ful�lled), while plans
apture pro
edural aspe
ts(sequen
es of a
tions to be exe
uted). The representation and exe
ution se-manti
s for GPMN work�ows has been dire
tly adapted from the notion ofgoals in mentalisti
 BDI agents as des
ribed in Se
tion 3.2. This means thatthe same goal kinds are available for modeling (a
hieve, maintain, query, per-form) and also deliberation based inhibition ar
s
an be used. In
ontrast to
onventional BDI, GPMN introdu
es di�erent modeling patterns
apturingre
urrent design
hoi
es. These patterns e.g. in
lude sequential and parallelsubgoal de
omposition, i.e. in GPMN a goal may have dire
t subgoals, whi
h
an be de
lared to be exe
uted one by one or in parallel. It has to be notedthat, if the top-level goal has a target
ondition, subgoal pro
essing will be ter-minated as soon as the
ondition be
omes true, independent of the pro
essingstate of the subgoals.Goal oriented work�ows are exe
uted by a GPMN kernel that
onvertsGPMN to BDI agent models. In this way the GPMN kernel does not have toprovide its own exe
ution logi
. GPMN diagrams
an be graphi
ally modeledby a newly developed e
lipse based GPMN editor. The editor allows draw-ing goal hierar
hies and
onne
ting them with BPMN diagrams for
on
retesubpro
esses. The usage of the GPMN editor is very similar to the BPMNversion so that an integrated usage of both tools is adequately supported.ExampleIn the following, an example GPMN manufa
turing pro
ess will be sket
hed.Assume a
ompany has spe
ialized in manufa
turing
leaner robots. Cus-tomers
an
ompose their own
leaners by sele
ting from a number of
on-�guration options (engine, sensors, garbage
laws, et
.). Ea
h
leaner has a
ontrol unit, whi
h is a generi

omponent of a 3rd-party supplier, but requires
ustom software to be installed, depending on the
leaner
on�guration. Fig-ure 5 shows how this pro
ess
an be modeled in GPMN. For simpli
ity, only

12 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorfthe subpro
ess for building a
ontrol unit is shown. The root goal of thissubpro
ess is 'Control Unit Built '. It is a sequential a
hieve goal as denotedby the '1..n' at the bottom. This means that the two subgoals 'Control UnitReady ' and 'Software Installed ' need to be exe
uted in order. The 'ControlUnit Ready' goal has two subgoals but does not impose a sequential ordering.Thus the 'Control Software Available' and 'Control Unit Available' goals
anbe exe
uted in parallel.

Fig. 5. Cutout of a manufa
turing pro
ess in GPMNThe �ve goals des
ribed above make up the goal hierar
hy of the pro
ess.The three leaf goals (i.e. goals whi
h are not further de
omposed into sub-goals) are mapped to
on
rete plans or subpro
esses. The 'Control SoftwareAvailable' goal is a query goal, whi
h means that when an appropriate soft-ware version is readily available, no plan needs to be exe
uted at all. If anappropriate software version is not available lo
ally, yet exists in some reposi-tory, the 'Download Software from Repository ' plan is exe
uted. Otherwise nospe
i�
 software exists for the
leaner
on�guration sele
ted by the
ustomerand a new software version has to be developed ('Develop New Software' sub-pro
ess).The
ontrol units from the 3rd party supplier are kept in a sto
k. Thus the'Control Unit Available' goal
an be a
hieved by a simple 'Take Control Unitfrom Sto
k ' plan. Besides the main goal hierar
hy, the separate 'Control Unitsin Sto
k ' maintain goal has the responsibility to assure that there are alwaysenough
ontrol units in sto
k. Whenever the number of units drops below athreshold, the 'Order Control Units ' plan is exe
uted. When there are no unitsin sto
k, the maintain goal will inhibit the 'Control Unit Available' goal. Thus

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 13the
onstru
tion pro
ess will not fail, but wait until there are new
ontrolunits in sto
k.Appli
ation KernelThe appli
ation kernel belongs to the �other kernels�
ategory. Its main pur-pose is to provide required fun
tionality for de�ning appli
ations, e.g. spe
i-fying the required
omponents and their interrelations. An appli
ation spe
-i�
ation thus mainly
ontains stru
tural information about the appli
ationtype. A key
on
ept of an appli
ation type de�nition is that of ne
essary
om-ponent types. Additionally, so
alled spa
e types are introdu
ed, whi
h havebeen inspired by the
ontext and proje
tion
on
epts of the Repast simulationtoolkit [8℄. A spa
e is a very general
on
ept for the representation of non-a
tive elements. It is a stru
ture that
ontains appli
ation spe
i�
 data andfun
tionality independently from a single
omponent. Therefore a spa
e pro-vides a
onvenient way of sharing resour
es among
omponents without usingmessage-based
ommuni
ation. The spa
e
on
ept
an be seen as an addi-tional stru
turing element. It does not impose
onstraints on
omponents,i.e.
omponents from the same or di�erent appli
ations
an
ommuni
ate viaother means su
h as messages. Spa
es also
an be seen as an extension pointof the
omponent platform as spa
es o�er appli
ation fun
tionality, indepen-dent of
omponent behavior. Please note that the
on
rete fun
tionalities of aspa
e depend on its
on
rete type and are not dire
tly part of the appli
ation
on
epts. In order to de�ne in what way an appli
ation instan
e should be
reated from an underlying appli
ation type, the
on
ept of
on�gurationsis introdu
ed. A
on�guration des
ribes whi
h runtime entities
omprise aspe
i�
 appli
ation instan
e, i.e. whi
h
omponents and spa
es should be
re-ated at startup time. At runtime an appli
ation represents a
omponent inits own right, whi
h mainly a
ts as a
ontainer for
omponents and spa
es.Components that are part of an appli
ation
an a

ess the spa
es via the
ontaining appli
ation instan
e. In this way the a

ess to spa
es is restri
tedto
omponents from the same appli
ation
ontext. Representing appli
ationsas
omponents also allows for handling them at the tool level, i.e. insteadof starting or stopping many single
omponents, whole appli
ations
an bemanaged.The spa
e
on
ept is very general and
an be interpreted e.g. in stru
turalor behavioral ways. Several spa
e types are provided as part of Jadex that
apture di�erent re
urring fun
tional requirements. A simpli�ed version ofFerber's agent-group-role model [9℄ allows de�ning group stru
tures for
om-ponents and assigning roles to
omponent instan
es. Another spa
e type is
urrently under development for weaving de-
entralized
oordination me
ha-nisms in the appli
ation without
hanging the
omponent's behavior des
rip-tions [25℄. The most elaborated spa
e type is the so
alled EnvSupport [11℄.This spa
e is a virtual 2d environment for situated agents, in whi
h they
anper
eive and a
t via an avatar obje
t
onne
ted to them. The spa
e fa
ili-

14 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorftates the
onstru
tion of simulation examples, as it takes over most parts ofvisualization and environment/
omponent intera
tion.In Jadex, appli
ations and their spa
es are des
ribed using an XML de-s
riptor �le following a metamodel de�ned as XML s
hema. An appli
ation ismainly
omposed of spa
e and
omponent types as well as initial instan
es ofboth. Component types represent referen
es to other
omponent spe
i�
ation�les, whi
h will be in
luded with a logi
al name in the appli
ation
ontext.At startup of an appli
ation the kernel will
reate the de
lared
omponentinstan
es and spa
es of the given
on�guration.ExampleAn example appli
ation is shown in Figure 6. It represents a virtual environ-ment for testing
leaner robots. The example makes use of the EnvSupportspa
e as explained in the following. The environment is de�ned as a
ontin-uous 2D area (lines 3-27), in whi
h spa
e obje
ts su
h as
leaners,
hargingstations and waste items are lo
ated (lines 4-10). The
leaner obje
ts,
alledavatars, are
onne
ted to the
leaner agents and allow them to a
t and per-
eive in the environment via user de�ned a
tions (lines 11-14) and per
epts(omitted for brevity), e.g. for spotting and pi
king up waste. Furthermore,tasks (lines 15-18)
an be dire
tly atta
hed to spa
e obje
ts, su
h as movingthe
leaner robot or
harging its battery. Besides obje
t behavior, also globalbehavior
an be spe
i�ed in terms of environment pro
esses (omitted for spa
ereasons), whi
h may operate on all obje
ts of the environment. Su
h pro
esses
an e.g. be used to model environmental a
tivities, like random appearan
eof waste. Using the aforementioned
on
epts the appli
ation domain
an bedes
ribed. In addition, also the visualization
an be spe
i�ed in terms of pos-sibly di�erent perspe
tives (lines 19-26). A perspe
tive basi
ally
onsists ofdrawables, whi
h spe
ify a graphi
al representation of a spa
e obje
t type,e.g. of the
hargingstation obje
t (lines 21-23).The appli
ation further de�nes the
omponent types to be used, su
h asthe
leaner robot and a tru
k, whi
h periodi
ally empties waste bins (lines 30-33). Finally, appli
ation
on�gurations are spe
i�ed (lines 35-51) that denotehow an appli
ation should be started. Possible settings are initial obje
ts andtheir lo
ations (e.g. pla
ement of a
hargingstation is done in lines 40-42) aswell as the initially started
omponents (two
leaner agents are
reated in line48).4 RealizationIn this se
tion details of the Jadex a
tive
omponents infrastru
ture implemen-tation will be given. Con
retely, it will be shown how the platform ar
hite
-ture has been
on
eived and the Standalone Platform has been implemented.Thereafter, the generi
 kernel ar
hite
ture will be presented and further ex-plained exemplarily by the BPMN kernel.

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 151 <appli
ationtype name="CleanerWorldSpa
e" pa
kage="jadex.bdi.examples.
leanerworld">2 <spa
etypes>3 <env:envspa
etype name="2dspa
e"
lass="ContinuousSpa
e2D"width="1"height="1">4 <env:obje
ttypes>5 <env:obje
ttype name="
leaner">6 <env:property name="vision_range">0.1</env:property>7 ...8 </env:obje
ttype>9 ...10 </env:obje
ttypes>11 <env:a
tiontypes>12 <env:a
tiontype name="pi
kup_waste"
lass="Pi
kupWasteA
tion"/>13 ...14 </env:a
tiontypes>15 <env:tasktypes>16 <env:tasktype name="move"
lass="MoveTask" />17 <env:tasktype name="load"
lass="LoadBatteryTask" />18 </env:tasktypes>19 <env:perspe
tives>20 <env:perspe
tive name="i
ons"
lass="Perspe
tive2D" opengl="true">21 <env:drawable obje
ttype="
hargingstation" width="0.06" height="0.06">22 <env:texturedre
tangle imagepath="
leanerworld/images/
hargingstation.png"/>23 </env:drawable>24 ...25 </env:perspe
tive>26 </env:perspe
tives>27 </env:envspa
etype>28 </spa
etypes>2930 <
omponenttypes>31 <
omponenttype name="Cleaner" �lename="
leanerworld/
leaner/Cleaner.agent.xml"/>32 <
omponenttype name="Tru
k" �lename="
leanerworld/tru
k/Tru
k.agent.xml"/>33 </
omponenttypes>3435 <appli
ations>36 <appli
ation name="Two
leaners">37 <spa
es>38 <env:envspa
e name="my2dspa
e" type="2dspa
e" width="1.0" height="1.0">39 <env:obje
ts>40 <env:obje
t type="
hargingstation">41 <env:property name="position">new Ve
tor2Double(0.8, 0.8)</env:property>42 </env:obje
t>43 ...44 </env:obje
ts>45 </env:envspa
e>46 </spa
es>47 <
omponents>48 <
omponent type="Cleaner" number="2"/>49 </
omponents>50 </appli
ation>51 </appli
ations>52 </appli
ationtype> Fig. 6. Cutout of an appli
ation.xml4.1 Platform Ar
hite
tureThe overall Jadex AC platform ar
hite
ture is shown in Figure 7. Its setupdire
tly
ontributes to two of the initial design
hallenges. First, it fa
ilitatesthe exe
ution of appli
ations
omposed of heterogeneous
omponents, be
ausethe kernel is realized as a separate layer on top of the platform layer. Both lay-

16 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf

Fig. 7. Platform ar
hite
tureers form the
ore of the Jadex
omponent infrastru
ture but are only loosely
oupled. This
oupling is based on a set of
ommon interfa
es de�ned as un-derlying bridge between both layers, i.e. both layers have a

ess to the bridgeinterfa
es. Se
ond, the usage of servi
es for providing platform fun
tionalitiesallows Jadex to be used in a multitude of exe
ution s
enarios due to the highadaptability of the platform layer. Espe
ially, it allows existing middlewareto be reused by wrapping o�ered fun
tionalities in terms of Jadex platformservi
es. In order to exe
ute di�erent
omponent ar
hite
tures within a singleplatform it is ne
essary to spe
ify the responsibilities of the kernel and theplatform. A platform is mainly in
harge of exe
uting a
omponent, deliver-ing messages to the
omponent and notifying the
omponent at
ertain timepoints. From kernel side it is ne
essary to have a

ess to the platform servi
es.4.2 Standalone Platform ImplementationThe Jadex Standalone Platform is a lightweight pure Java SE based exe
u-tion environment that is not based on an underlying middleware. It realizes aservi
e
ontainer
on
ept, whi
h means that it only exposes basi
 fun
tional-ities for managing platform servi
es. The servi
e
ontainer allows for adding,removing servi
es and fet
hing servi
es by their type. A servi
e
lient thusonly has to know the interfa
e of the needed servi
e in order to retrieve it.Platform servi
es
an be
ustomized freely and hen
e the platform
anbe individualized with regard to the
on
rete appli
ation s
enario by simply
hanging its de
larative
on�guration. On startup the Standalone Platformreads
on�guration �les and evaluates them with respe
t to the initial servi
esand
omponents to start.The Jadex platform servi
es in
lude internal servi
es as well as publi
 ser-vi
es, whereby internal servi
es are only used from other platform servi
es.Publi
 servi
es are available to a
tive
omponents as well. Internal servi
esin
lude a thread pool servi
e and an exe
ution servi
e that are responsiblefor running a
tive
omponents. Publi
 servi
es en
ompass infrastru
ture fun
-

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 17tionalities similar to FIPA agent spe
i�
ations2, i.e. a
omponent managementservi
e for
omponent
reation and termination, a dire
tory fa
ilitator thatrepresents a servi
e registry as well as a message transport servi
e. Further-more, a
lo
k and a simulation servi
e exist to enable appli
ation exe
utionin real-time as well as in event-driven or time-stepped simulation modes.4.3 Kernel Ar
hite
ture

Fig. 8. Kernel ar
hite
tureIn Figure 8 the basi
 Jadex kernel ar
hite
ture is depi
ted. It mainly
om-prises implementations of interfa
es for the
omponent fa
tory (IComponent-Fa
tory), the
omponent model (ILoadableModel), the
omponent instan
e(IComponentInstan
e) as well as the external a

ess point (IExternalA

ess).The
omponent fa
tory provides fun
tionalities for loading
omponentmodels as well as
reating instan
es of those models. In this regard a
om-ponent model represents the type information about a spe
i�
 user de�neddomain
omponent, e.g. whi
h belief, plan and goal types belong to a
ustomBDI agent. The asso
iated ILoadableModel interfa
e allows model
onsumerssu
h as the Starter tool to handle all models in the same way without knowl-edge about the underlying kernel type used. Ea
h a
tive
omponent
onsistsof two parts that intera
t
losely: the
omponent instan
e and the
omponentadapter. The
omponent instan
e
ontains the exe
ution logi
 of the spe
i�

omponent type and uses its asso
iated
omponent adapter as platform medi-ator e.g. for lo
ating platform servi
es. The
omponent adapter holds platformrelated information like the
omponent identi�er and delegates exe
ution re-quests from the platform to the
omponent instan
e. A detailed des
riptionof the intera
tion relationship between
omponent instan
e and adapter
anbe found in [18℄.
2 http://www.fipa.org/

18 Lars Brauba
h, Alexander Pokahr, and Winfried LamersdorfFor a

essing a
omponent from external threads, e.g. from a user interfa
e,a dedi
ated external a

ess view on the
omponent exists. It
an be retrievedby the
omponent instan
e and o�ers general as well as kernel spe
i�
 methodsfor
omponent intera
tion, e.g. in
ase of a BDI agent an external pro
ess
ana

ess beliefs or
reate and dispat
h a goal. The integration of a kernel is donevia a platform
on�guration �le in whi
h the
omponent fa
tory is announ
edas new platform servi
e, i.e. kernels are pluggable by
on�guration.4.4 BPMN Kernel implementation
Fig. 9. Loading a BPMN modelThe BPMN kernel implementation basi
ally provides BPMN spe
i�
 im-plementations of the kernel interfa
es des
ribed in the last se
tion. In Figure9 it
an be seen how a BPMN diagram is pro
essed from the kernel in or-der to exe
ute a pro
ess instan
e on basis of this diagram. Starting point isthe e
lipse BPMN editor, whi
h saves the diagram in a proprietary XML �leformat, whi
h
onsists of two �les: one representing the model and one de-s
ribing the layout information.3 The �rst one serves as input for the BPMN
omponent fa
tory, whi
h reads the �le and generates a BPMN Java model.On basis of this model the
omponent fa
tory
an
reate BPMN pro
ess in-stan
es (interpreter
omponents), whi
h may be exe
uted on the Jadex a
tive
omponents infrastru
ture.The interpreter follows a lightweight and extensible approa
h for realizingthe BPMN fun
tionality. Internally, it uses so
alled pro
ess threads for man-aging
on
urrent �ows within a pro
ess. Su
h a pro
ess thread represents avirtual thread in
ontrast to a real one managed by the operating system. Avirtual pro
ess thread re
ords the exe
ution and memory state of a pro
ess�ow and is used to steer the exe
ution of pro
ess a
tivities. Due to their virtual
hara
ter, a pro
ess instan
e is exe
uted in a quasi-parallel way like all a
tive
omponents. The interpreter fun
tionality is realized using handlers and tasks.Handlers exist for ea
h prede�ned BPMN element, like gateway types and dif-ferent kinds of events, and implement their internal behavior. A parallel splitgateway e.g.
reates virtual pro
ess threads for ea
h of the outgoing parallelbran
hes. The
orresponding join gateway then waits for all in
oming threads

3 In future versions BPMN 2.0 will allow using a standard XML format.

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 19and uni�es them to one that follows the outgoing edge. Changing or addinghandlers allows �exibly
ontrolling the exe
ution behavior of the interpreter.Tasks are used for implementing a
tivity behavior. Several prede�ned tasksare available for standard a
tivities like printing on the
onsole or requestinguser input. Besides these ready-to-use tasks, user-de�ned tasks
an be
reatedby extending a spe
i�
 framework
lass. E.g. a work�ow management sys-tem (WfMS) is
urrently being developed based on the BPMN kernel, whi
hprovides
ustom tasks for
onne
ting the modeled pro
esses to other aspe
tsof the WfMS infrastru
ture, su
h as a worklist
lient (for manual tasks) andexternal appli
ations (for automated tasks).5 Example Proje
tsThe Jadex a
tive
omponent infrastru
ture has been developed and is
on-tinued to be used in various real-world appli
ation proje
ts. Three of theseproje
ts will be des
ribed exemplarily in the following.5.1 MedPAge: Agent-based Hospital S
hedulingThe MedPAge (medi
al path agents) proje
t was part of the German priorityresear
h programme �intelligent agents and realisti

ommer
ial appli
ations
enarios� (SPP 1083), whi
h was funded by the Deuts
he Fors
hungsgemein-s
haft (DFG) from 1999-2006. The aim of the resear
h programme was toshow the appli
ability and advantages of intelligent agent te
hnology in realworld appli
ations from the hospital and manufa
turing logisti
s domains. Asa joint proje
t between the University of Mannheim and the University ofHamburg, in the MedPAge proje
t a demonstrator was developed that im-proved treatment s
heduling for patients in hospitals. The main approa
hwas representing patients and hospital resour
es as Jadex BDI agents thatnegotiate treatment slots. The approa
h assures that patient goals (low wait-ing times) and resour
e goals (high utilization) are equally respe
ted. Detailsabout the s
heduling algorithm and the appli
ation
an be found e.g. in [17℄.The main fo
us of the Jadex framework at that time was BDI-based agents.During the
ourse of the MedPAge proje
t, the Jadex framework has beenevaluated in depth (see e.g. [7℄). As a result of this evaluation, two importantfa
tors where identi�ed for further improvement, whi
h required tedious anderror-prone manual work in MedPAge: 1) the support for non-fun
tional re-quirements su
h as persisten
e and s
alability and 2) the integration of agentte
hnology with other mainstream te
hnology like software
omponents andwork�ows. Both fa
tors led to the development of the Jadex a
tive
omponentsinfrastru
ture, whi
h broadens the s
ope of the original Jadex framework andis an essential foundation for our
urrent appli
ation proje
ts des
ribed next.

20 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf5.2 Go4Flex: Agile Pro
ess ManagementThe DFG te
hnology transfer proje
t Go4Flex (goal-orientation for �exibleand agile pro
esses) [4℄ is
ondu
ted in
ooperation between Daimler AGand the University of Hamburg and aims at providing advan
ed
on
eptualand software te
hni
al means for modeling and exe
uting
omplex businesspro
esses. In pra
ti
e, experien
e has shown that modeling means o�ered bytraditional work�ow languages su
h as event pro
ess
hains (EPCs) or BPMNare insu�
ient for many pro
esses at large
ompanies like Daimler AG. Whilepro
esses
an be do
umented with EPCs or BPMN, they are not dire
tlyadopted by the work�ow parti
ipants. One major issue is the strong fo
us ona
tivities and their ordering. As pro
esses are typi
ally prone to frequently
hange, the abstra
tness of the pro
ess des
riptions is essential for their long-term usefulness.The Go4Flex framework is based on
on
epts, whi
h have been developedin the area of agents and multi-agent systems. The main resear
h questionof the DFG-funded Go4Flex proje
t is to isolate interesting multi-agent ideasand make them usable also for work�ows. Most importantly, Go4Flex fo
useson the behavior and
ontext perspe
tives, whi
h su�er among other thingsfrom their low
on
eptual
onne
tivity. Thus Go4Flex introdu
es the goalpro
ess modeling notation (
f. Se
tion 3.2) for abstra
t modeling of �exiblework�ows. The Jadex a
tive
omponent infrastru
ture forms the basis of theGo4Flex work�ow management system and allows using seemingly disparate
on
epts like agents and work�ows seamlessly.5.3 SodekoVS: Systemati
ally Engineering Self�OrganizingSystemsThe DFG-funded resear
h proje
t SodekoVS (self-organisation based on de-
entralized
o-ordination) [24℄ is a
ooperation of the University of AppliedS
ien
es Hamburg and the University of Hamburg and aims at ta
kling
oordi-nation problems by utilizing nature-inspired design paradigms. These provide
oordination strategies to equip software ar
hite
tures with adaptability androbustness, based on de
entralized self-organization prin
iples. Basis of theapproa
h are a newly
on
eived generi
 referen
e ar
hite
ture as well as anadapted development methodology for the systemati

onstru
tion of su
hsystems. Coordination me
hanisms are made available as middleware servi
esand a minimally intrusive programming model allows developers to
on�g-ure and integrate representations of nature-inspired
oordination strategies intheir appli
ations. The systemati
 utilization of these development tools re-quires support to design, i.e. model, sele
t,
ombine and re�ne self-organizingdynami
s, and to simulate the resulting appli
ation prototypes.The proje
t heavily relies on many features of the Jadex a
tive
omponentinfrastru
ture. The
oordination algorithms require large numbers of
ompo-nents being exe
uted in parallel. This kind of s
alability is provided by the

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 21mi
ro agent kernel. The external a

ess fa
ility (
f. Se
tion 4.3) is used forthe programming model to integrate the
oordination layer with the appli
a-tion fun
tionality, whi
h
an further be realized using any
omponent type.Finally, the support for simulated exe
ution is used as a basis of a validationtool to automati
ally
he
k if the employed
oordination strategies
onvergeand adapt as desired.6 Summary and OutlookIn this
hapter a
tive
omponents have been presented as novel notion forbuilding
omplex distributed and
on
urrent systems. The a
tive
omponent
on
ept has emerged from an integration of agent and software
omponent
on
epts and thus tries to
ombine the strength of both. A
tive
omponentsare the
on
eptual basis of the Jadex middleware, whi
h has been
on
eivedto be able to exe
ute arbitrary types of a
tive
omponents. The internal ar
hi-te
ture of a
tive
omponents is realized in di�erent kernels that
an be usedtogether on the same
omponent platform allowing heterogeneous appli
ationsbeing
onstru
ted. Currently, agent, work�ow and appli
ation kernels exist,whi
h have been presented in detail a

ording to their ar
hite
ture as well asusage by drawing on typi
al example s
enarios. Furthermore, the underlyingimplementation
on
epts of a kernel have been dis
ussed, whi
h mainly relyon a
omponent fa
tory that is able to load a
tive
omponent models and in-stantiate them. The a
tive
omponent
on
ept has been further illustrated bysele
ted resear
h proje
ts, whi
h make use of di�erent platform features. Med-PAge, a de
entralized appointment s
heduling solution for hospitals, makesheavy use of agent-based negotiation
apabilities. In
ontrast, in Go4Flex, aproje
t aiming at �exible work�ow des
ription and exe
ution, the integrationof work�ow and agent
on
epts helped solving the agility demands. Finally, forthe SodekoVS proje
t, whi
h aims at providing self-organization algorithmsas reusable patterns, the s
alability of the mi
ro agent kernel and the simula-tion features of the platform are essential. Future work will espe
ially ta
klethe
on
eptual integration
hallenges of the servi
e oriented ar
hite
ture anda
tive
omponents.Referen
es1. Dirk Bade and Winfried Lamersdorf. An agent-based event pro
essing middle-ware for sensor networks and r�d systems. Computer Journal, Spe
ial Issue on"Agent Te
hnologies for Sensor Networks", 2009.2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systemswith JADE. John Wiley & Sons, 2007.3. L. Brauba
h and A. Pokahr. Representing long-term and interest bdi goals.In Thangarajah Brauba
h, Briot, editor, Pro
eedings of International Workshopon Programming Multi-Agent Systems (ProMAS-7), pages 29�43. IFAAMASFoundation, 5 2009.

22 Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf4. L. Brauba
h, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister. Go4�ex:Goal-oriented pro
ess modelling. In Pro
eedings of the 4th International Sym-posium on Intelligent Distributed Computing (IDC 2010). Springer, 2010.5. L. Brauba
h, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent SystemCombining Middleware and Reasoning. In R. Unland, M. Calisti, and M. Klus
h,editors, Software Agent-Based Appli
ations, Platforms and Development Kits,pages 143�168. Birkhäuser, 2005.6. L. Brauba
h, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representationfor BDI Agent Systems. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah-Seghrou
hni, editors, Pro
eedings of the 2nd International Workshop on Pro-gramming Multiagent Systems (ProMAS 2004), pages 44�65. Springer, 2005.7. Lars Brauba
h, Alexander Pokahr, and Winfried Lamersdorf. A universal
rite-ria
atalog for evaluation of heterogeneous agent development artifa
ts. Inter-national Journal of Agent-Oriented Software Engineering (IJAOSE), 2009. toappear.8. N. Collier. RePast: An Extensible Framework for Agent Simulation. WorkingPaper, So
ial S
ien
e Resear
h Computing, University of Chi
ago, 2001.9. J. Ferber, O. Gutkne
ht, and F. Mi
hel. From Agents to Organizations: an Orga-nizational View of Multi-Agent Systems. In P. Giorgini, J. Müller, and J. Odell,editors, Pro
eedings of the 4th International Workshop on Agent-Oriented Soft-ware Engineering IV (AOSE 2003), pages 214�230. Springer, 2003.10. K. Fis
her, M. S
hillo, and J.H. Siekmann. Holoni
 multiagent systems: Afoundation for the organisation of multiagent systems. In Vladimír Marík, Dun-
an C. M
Farlane, and Paul Val
kenaers, editors, HoloMAS, volume 2744 ofLe
ture Notes in Computer S
ien
e, pages 71�80. Springer, 2003.11. K. Jander, L. Brauba
h, and A. Pokahr. Envsupport: A framework for devel-oping virtual environments. In Seventh International Workshop From AgentTheory to Agent Implementation (AT2AI-7). Austrian So
iety for Cyberneti
Studies, 2010.12. N. R. Jennings. An agent-based approa
h for building
omplex software systems.Communi
ations of the ACM, 44(4):35�41, April 2001.13. G. Lavender and D. S
hmidt. A
tive obje
t - an obje
t behavioral pattern for
on
urrent programming. In J. Vlissides, J. Coplien, and N. Kerth, editors,Pattern Languages of Program Design 2. Addison-Wesley, 1996.14. M. Lu
k, P. M
Burney, O. Shehory, and S. Willmott. Agent Te
hnology: Com-puting as Intera
tion (A Roadmap for Agent Based Computing). AgentLink,2005.15. David C. Lu
kham. The Power of Events: An Introdu
tion to Complex EventPro
essing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-lishing Co., In
., Boston, MA, USA, 2001.16. Obje
t Management Group (OMG). Business Pro
ess Modeling Notation(BPMN) Spe
i�
ation, version 1.1 edition, February 2008.17. T. Paulussen, A. Zöller, F. Rothlauf, A. Heinzl, L. Brauba
h, A. Pokahr, andW. Lamersdorf. Agent-based patient s
heduling in hospitals. In P. Lo
kemannO. Spaniol S. Kirn, O. Herzog, editor, Multiagent Engineering - Theory andAppli
ations in Enterprises, pages 255�275. Springer, 6 2006.18. A. Pokahr and L. Brauba
h. From a resear
h to an industrial-strength agentplatform: Jadex V2. In Hans-Georg Fill Hans Robert Hansen, Dimitris Kara-giannis, editor, Business Servi
es: Konzepte, Te
hnologien, Anwendungen - 9.

Jadex A
tive Components: An Infrastru
ture for Agents and Work�ows 23Internationale Tagung Wirts
haftsinformatik (WI 2009), pages 769�778. Öster-rei
his
he Computer Gesells
haft, 2 2009.19. A. Pokahr, L. Brauba
h, and K. Jander. Unifying agent and
omponent
on
epts- jadex a
tive
omponents. In J. Dix and C. Witteveen, editors, Pro
eedingsof the 8th German
onferen
e on Multi-Agent System TE
hnologieS (MATES-2010). Springer, 2010.20. A. Pokahr, L. Brauba
h, and W. Lamersdorf. A Flexible BDI Ar
hite
tureSupporting Extensibility. In A. Skowron, J.-P. Barthès, L. Jain, R. Sun,P. Morizet-Mahoudeaux, J. Liu, and N. Zhong, editors, Pro
eedings of the2005 IEEE/WIC/ACM International Conferen
e on Intelligent Agent Te
hnol-ogy (IAT 2005), pages 379�385. IEEE Computer So
iety, 2005.21. A. Pokahr, L. Brauba
h, and W. Lamersdorf. A goal deliberation strategy forbdi agent systems. In T. Eymann, F. Klügl, W. Lamersdorf, M. Klus
h, andM. Huhns, editors, Pro
eedings of the 3rd German
onferen
e on Multi-AgentSystem TE
hnologieS (MATES-2005). Springer, 2005.22. A. Pokahr, L. Brauba
h, and W. Lamersdorf. Jadex: A BDI Reasoning Engine.In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrou
hni, editors, Multi-Agent Programming: Languages, Platforms and Appli
ations, pages 149�174.Springer, 2005.23. A. Rao and M. George�. BDI Agents: from theory to pra
ti
e. In V. Lesser,editor, Pro
eedings of the 1st International Conferen
e on Multi-Agent Systems(ICMAS 1995), pages 312�319. MIT Press, 1995.24. J. Sudeikat, L. Brauba
h, A. Pokahr, W. Renz, and W. Lamersdorf. Systemat-i
ally engineering self�organizing systems: The sodekovs approa
h. In M. Wag-ner, D. Hogrefe, K. Geihs, and K. David, editors, Pro
eedings des Workshops überSelbstorganisierende, adaptive, kontextsensitive verteilte Systeme (KIVS 2009),page 12. Ele
troni
 Communi
ations of the EASST, 3 2009.25. A. Vileni
a, A. Pokahr, L. Brauba
h, W. Lamersdorf, J. Sudeikat, and W. Renz.Coordination in multi-agent systems: A de
larative approa
h using
oordinationspa
es. In Seventh International Workshop From Agent Theory to Agent Imple-mentation (AT2AI-7). Austrian So
iety for Cyberneti
 Studies, 2010.26. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.27. M. Wooldridge. An Introdu
tion to MultiAgent Systems. John Wiley & Sons,2001.

