Jadex Active Components: A Unified Execution
Infrastructure for Agents and Workflows

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach | lamersd}@informatik.uni-hamburg.de

Summary. Agent technology has proven to contribute rich abstractions that facili-
tate the construction of complex systems. Especially, in case of challenges regarding
distribution and concurrency aspects, agents provide high-level solution concepts
that are intuitive to understand and directly transferable from design to implementa-
tion. Despite these advantages agent technology currently has not found widespread
application in industry settings. One important reason for the slow adoption is that
the conceptual integration of agents with other prevalent software engineering ap-
proaches like software components or service oriented architecture is still low and
does not permit the easy usage of agents in concert with other technologies. In this
chapter, with the notion of active components, a new conceptual abstraction is pre-
sented that combines agent and component characteristics in order to foster the
integration of both strands. The active component concept has been implemented
within the Jadex Active Components middleware, which is an infrastructure that
permits the execution of different types of active components like agents and work-
flows. The underlying architecture of this middleware is presented and illustrated
by example scenarios.

Key words: agents, workflows, active components

1 Introduction

Since its beginnings in the nineties, agent technology has evolved into an ac-
tive research and engineering field that provides concepts and solutions for
building complex distributed systems [12, 14]. Software agents - as a design
metaphor for open, distributed and concurrent systems - are commonly char-
acterized as being autonomous (independent of other agents), reactive (ad-
vertent to changes in the environment), proactive (pursue their own goals),
and social (interact with other agents) and may be realized using mentalistic
notions (e.g. beliefs and desires)[27]. Using this design metaphor, an agent-
based software application can be realized as a multi-agent system (MAS),

2 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

which is a set of agents that interact using explicit message passing, possibly
following sophisticated negotiation protocols.

Current technology trends, such as increasing hardware concurrency and
delegation of tasks to computer programs [14, 27], reinforce the need of con-
ceptually rich abstractions for building complex software. While agent tech-
nology offers this kind of abstractions, the integration with existing software
technology like object-orientation, service-oriented computing, workflow man-
agement systems, application servers, etc. is essential for being able to quickly
build industry-quality solutions in adequate cost and time frames.

This chapter presents one approach of such an integration of agent con-
cepts with existing software technology: The Jadex Active Components (AC)
infrastructure. The basic idea of Jadex is providing a unified execution in-
frastructure for different kinds of entities (e.g. agents or workflows). Besides
a seamless integration of these components, the unification further facilitates
cross-fertilization between the different concepts. Foundation of this approach
is the newly conceived notion of active components, which unify base concepts
of software components with that of a minimal agent.

The remainder of this chapter is structured as follows. Section 2 introduces
the main objectives and the overall approach of the Jadex project. In Section
3 the concepts and components for building applications with Jadex are pre-
sented. The current state of the realization is described in Section 4. Section
5 presents sample projects in which Jadex is used and Section 6 concludes the
chapter with a summary and an outlook.

2 Design Rationale

The main goal of the Jadex project is simplifying the development of com-
plex distributed applications. The approach towards achieving this aim is
providing a middleware that aids in addressing common challenges of such
distributed applications. This middleware on the one hand delivers sound con-
ceptual metaphors for the design of distributed systems. On the other hand
the implementation of these concepts is supported by a software infrastruc-
ture including reusable components and frameworks as well as development
and runtime tools. Among others, the following challenges are prominently
addressed by Jadex:

Dealing with concurrency and distribution

Realizing applications composed of heterogeneous components
Offering versatile interaction styles

Being confronted with a multitude of execution scenarios
Monitoring and debugging distributed applications

The first three challenges are addressed by the abstract notion of an active
component and its concrete incarnations. The active component concept, is in-
spired by aspects of the agent metaphor for addressing concurrency and distri-
bution on the conceptual level. As each active component is an autonomous

Jadex Active Components: An Infrastructure for Agents and Workflows 3

(i.e. independently executing) entity, the risk of concurrency-related prob-
lems, such as race-conditions or deadlocks, is reduced already during appli-
cation design. Different component types are suitable for different types of
applications (e.g. agents vs. workflows). Jadex addresses this heterogeneity of
components by providing a unified execution infrastructure, which allows ex-
ecuting different components in the same application. Also, component types
differ in their modes of interaction (e.g. message-based vs. method-call-based).
Jadex allows all component types to make use of different interaction styles as
needed. Besides synchronous and asynchronous method calls, message-based
asynchronous interaction is supported by the infrastructure. Moreover, several
complex interaction scenarios, such as well-known negotiation protocols, are
provided in a reusable fashion for different component types.

The last two challenges are captured by the way, active components relate
to their execution platform. Clearly defined interfaces between the component
and the execution platform allow both being developed independently. Con-
sidering the multitude of potential execution scenarios, each imposes different
challenges, e.g. a backend server solution requires scalability and transaction
while deployment on a mobile device has to deal with limited resources. Due
to the independence of components and platform, different execution envi-
ronments can be built which specifically tackle the respective challenges, yet
allow executing all available component types. Besides different execution en-
vironments, also runtime tools can make use of the common interface for all
component types. This facilitates building sophisticated tools, which not only
operate on any component type, but also allow observing heterogeneous ap-
plications composed of different component types in a unified way.

3 Design Concepts

In the following sections the central design concepts of Jadex Active Com-
ponents (AC) are presented. On the infrastructure layer the notions and the
distinctive characteristics of platforms and kernels is important and will be
introduced first. Thereafter, a definition for an active component as base ele-
ment of the architecture is given followed by an overview of currently available
active component kernels.

3.1 Platform, Kernel and Active Component Notions

The Jadex infrastructure basically distinguishes between platforms, kernels
and active components that are executed on this infrastructure (cf. Fig. 1).

Definition 1. A platform is the management infrastructure for components,
which is responsible for their execution as well as for providing administration
capabilities like a messaging system or a component service reqistry.

4 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Jadex AC Concrete Applicatio!
m /D>
n m 1 n i
Platform Kernel Aclig

Component | n

Standalone Sales Assistant]

Fig. 1. Platforms, kernels and components

A platform itself provides all its functionalities in terms of platform services,
i.e. it can be easily customized by changing the offered services in a configu-
ration file. This allows including exactly those services that deem appropriate
in a given setting. On mobile devices one would e.g. use resource minimal ver-
sions of platform services and reduce the number of available services whereas
on a backend server with high storage and performance capacities e.g. services
with persistency and transaction support may be a good fit. Public services
can be accessed from active components via the platform. Active components
may use services by invoking methods on object oriented service interfaces.
Different platform implementations are already available that allow execut-
ing components in a Standalone Java application as well as on top of the
well-known JADE agent framework [2]. A platform for executing active com-
ponents in Java EE application servers is currently under development.

Definition 2. A kernel encapsulates the internal behavior definition of a spe-
cific active component type.

Thus a kernel realizes a specific internal architecture determining the com-
ponent type. The separation of platforms and kernels allows the independent
development of kernels that can then be used in conjunction with arbitrary
Jadex platform implementations. A kernel thereby has complete control about
the way its active components are specified and is thus responsible for loading
a component and creating component instances out of this model information.
Each kernel implements a distinct behavior model so that the full range from
purely reactive to deliberative components can be realized. The execution of
all components is kernel independent and performed by the underlying plat-
form. It is assumed that each component is executed sequentially, i.e. true
concurrency exists only between active components. Within an active compo-
nent a kernel may offer quasi-parallel execution by interleaving the execution
of active behaviors. On the one hand this has the advantage of simple active
component programming without the need for concurrency language elements
like locks and on the other hand it is also a common requirement of existing
management infrastructures such as Java EE. The execution of active compo-
nents without consideration of their concrete type is possible due to a common
base concept for all variants of active components.

Jadex Active Components: An Infrastructure for Agents and Workflows 5

Basically, an active component is defined as a mixture of minimal agent
and software component properties. Adapted agent characteristics are au-
tonomous entity behavior (i.e. self-acting) as well as message-based commu-
nication means. In addition they share with software components that they
are seen as at the same time as service provider and consumer and may be
composed to composite components using service dependencies. Active com-
ponents can be accessed via method-calls using provided service interfaces
and are managed within a container infrastructure. This yields to the follow-
ing definition of an active component:

Definition 3. An active component is an autonomous and managed software
entity that may expose publicly accessible service interfaces and is capable of
interacting with other active components in different modes including message
passing and method calls.

Further details about the rationale for choosing these characteristics of active
components and further explanations can be found in [19].

In Fig. 1 also the cardinalities of Jadex entities are shown. It is highlighted
that on a platform any number of kernels can be executed. This allows het-
erogeneous applications being developed, which are composed of entities of
different kernel types, e.g. a workflow based application that also employs
agents for specific tasks. One kernel can also be used with arbitrary plat-
forms thanks to the loose coupling between both concepts. It is also shown
on the right hand side that an active component instance always belongs to
one dedicated kernel, which takes over the aforementioned tasks regarding this
component. It has to be noted that no specific application element is shown in
the figure, as applications are themselves components that may include other
components. This means that components are a hierarchical concept similar
to holons [10], facilitating the recursive construction and decomposition of
systems.

3.2 Available Kernel Types

In Jadex currently three kinds of kernels exist: agent kernels, workflow ker-
nels and other kernels. Agent kernels are used to realize internal agent archi-
tectures, whereby kernels for belief-desire-intention (BDI) and simple reflex
agents, called micro agents, exist. Workflow kernels implement process exe-
cution logic and provide a business level perspective on task execution. In
this category a BPMN (business process modeling notation) kernel as well as
a goal-oriented (GPMN) process kernel are available. In the third group of
kernels, especially the application kernel is of relevance because it facilitates
the definition of active component systems.

BDI Agent Kernel

In former versions of Jadex, BDI was the only component architecture avail-
able. As the way agents are described using BDI has not changed much with

6 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

regard to earlier versions, here only a short description is given (for more de-
tails refer to [5, 22]). BDI agents consist of beliefs (subjective knowledge), goals
(desired outcomes) and plans (procedural code for achieving goals). Jadex BDI
agents are based on the PRS (procedural reasoning system) architecture [23],
which has been substantially modified and extended in previous works to sup-
port the full practical reasoning process [21, 20]. Practical reasoning has two
main tasks, namely goal deliberation and means-end reasoning [26], whereby
only the latter is considered in original PRS. Goal deliberation is used by
the agent to determine a consistent, i.e. conflict-free goal set it can pursue
at the considered moment. In Jadex the Easy Deliberation strategy is used,
which introduces goal cardinalities and inhibition arcs between goals [21]. For
each selected goal means-end reasoning is employed to achieve that goal by
executing as many plans as necessary. More specifically, means-end reasoning
first collects applicable plans and then selects a candidate among these that
is subsequently executed. Given that this plan is not able to fulfill the goal,
e.g. because it fails, means-end reasoning tries to activate other plans.

To support a wide spectrum of use cases different goal kinds have been
introduced, from which achieve, maintain, query and perform are the most
important ones. Achieve goals are used to bring about a specific world state,
which can be described as declarative target condition. The goal is considered
as fulfilled when this target condition becomes true. In contrast, maintain
goals are utilized to preserve a specific world state and reestablish this state
whenever it gets violated. Query goals can be used to retrieve information.
If the requested piece of knowledge is already known to the agent the goal
is immediately finished, whereas otherwise plan execution is started to fetch
the needed data. The perform goal kind is a purely procedural goal that is
directly connected to actions, i.e. a perform is considered as fulfilled when at
least one plan could be executed. A detailed description of these goal kinds
can be found in [6, 3].

Jadex BDI agents are specified using XML and Java, allowing to separate
the descriptive knowledge of the agent structure from the procedural knowl-
edge of plans. An agent type is defined in an agent definition file (ADF),
which follows a BDI metamodel described as XML schema. The agent plans
are normal Java files that have to extend a given framework class and override
at least one method that contains the plan domain logic. From within Java
plans agent functionality can be accessed via API (application programming
interface) calls, which e.g. allow accessing beliefs or dispatching goals.

Ezxample

As an illustrating example of a BDI agent the cleanerworld application (first
described in [6]) is shortly presented. The basic scenario idea is that cleaning
robots look for waste in a given terrain and bring it to waste bins nearby. Ad-
ditionally, the robots have to monitor and recharge their battery given that
its value is below a specified threshold. At night, the robots do not search
for waste but patrol in defined routes to guard the area. The robot objectives

Jadex Active Components: An Infrastructure for Agents and Workflows 7

1| <agent name="Cleaner" package="...">
2 <beliefs >
3 <beliefset name="wastes" class="Waste" />
4
5 < /beliefs >
6
7 <goals>
8 <achievegoal name="achievecleanup" retry="true" exclude="never">
9 <parameter name="waste" class="Waste" >
10 <value>$waste< /value>
11 < /parameter>
12 <creationcondition language="jcI">
13 Waste $waste && $waste.position!=null
14 < /creationcondition >
15 < /achievegoal >
16
17 </goals>
18
19 <plans>
20 <plan name="cleanup">
21 <parameter name="waste" class="Waste" >
22 <goalmapping ref="achievecleanup.waste" />
23 < /parameter>
24 <body class="CleanUpWastePlan" />
25 <trigger>
26 <goal ref="achievecleanup"/>
27 < /trigger>
28 </plan>
29
30 </plans>
31
32| </agent>

Fig. 2. Cleaner agent ADF cutout

can intuitively be modeled using a goal-oriented approach and lead to the four
corresponding top-level goals: maintainbatteryloaded, achievecleanup, perform-
lookforwaste, and performpatrol. The goal names already denote the different
goal kinds (e.g. achieve and perform) used for goal modeling and implemen-
tation. The relationships between these goals have been further constrained
using inhibition arcs. E.g. the maintainbatteryloaded goal is considered as
most important and inhibits goals of the other types in order to guarantee
that the robot does not break down. In Figure 2 a small cutout of the cleaner
agent, ADF is shown. It can be seen that the agent mainly has beliefs, goals
and plans sections. As part of its beliefs the agent e.g. remembers already
spotted wastes (line 3) in a beliefset called wastes. The achievecleanup goal
is defined as achievement goal (lines 8-15) with creation condition (line 14).
This condition is triggered whenever the agent senses a new piece of waste.
The goal remembers the triggering piece of waste within a parameter also
called waste (lines 9-11). In the plans section (lines 19-30), the cleanup plan
has been defined to react on achievecleanup goals via a corresponding trigger
declaration (lines 25-27). It also defines a parameter for the waste that the
plan has to collect (lines 21-23). The value of this parameter is automatically
mapped to the waste parameter of the goal using a goalmapping description

8 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

(line 22). Finally, the plan head includes a reference to the plan body that
realizes the plan logic (line 24). In this case the Java class CleanUp WastePlan
(not shown) is utilized. For a more complete description of cleanerworld the
reader may consider reading [6], whereby deliberation aspects are tackled in
[21].

Micro Agent Kernel

Micro agents represent, a very simple internal agent architecture that basically
supports an object-oriented behavior specification. A micro agent is very sim-
ilar to an object with lifecycle and message handling methods. Thus, it has
much in common with the notion of an active object [13]|, which could be
considered as a conceptual predecessor of agents. One main difference with
respect to active objects is that a micro agent can be accessed not only in an
object-oriented way via method invocation, but also by sending agent-oriented
messages to it. Micro agents do not offer much functionality, but they have
advantages with respect to minimal resource consumption and performance
characteristics. Hence, using micro agents can be beneficial whenever the re-
quired agent functionality is simple and resource restrictions may apply or a
large number of agents is required.

Micro agents are specified as an extension of a predefined agent framework
class. It is mandatory that at least one method (exzecuteBody()) is overridden,
which will contain the domain logic of the agent. In addition, further methods
can be supplied with code that are called once at startup (agentCreated())
and when termination of the agent is triggered (agentKilled()). Whenever an
agent receives a message a specific agent method is called (messageArrived())
that can also be customized in order to react to incoming requests.

Ezxample

Micro agents play out their strengths in scenarios that fit to their character-
istics, i.e. scenarios that e.g. only require simple tasks being executed and ex-
hibit device or environmental resource constraints. Examples include wireless
sensor networks (WSNs) and RFID (radio-frequency identification) systems.
As these technologies are subject to frequent technological changes in [1] a
common event-based middleware for WSNs and RFID systems has been pro-
posed, which aims at hiding low level aspects like hardware and basic event
processing details. The middleware follows a layered architecture that offers
on the application layer an event based processing model purely based on ap-
plication level, i.e. domain relevant, events. Lower layers are in charge of pre-
processing basic sensor and RFID data and employ complex event processing
[15] to generate higher level domain events. One element of this middleware is
a duplicate filtering agent shown in Figure 3. It has the purpose to collect low
level events from event sources and forward them to other event processing
agents. As event sources like sensors frequently produce events with the same

Jadex Active Components: An Infrastructure for Agents and Workflows 9

1| package ...;

2| import ...

3

4| public class SensorAgent extends MicroAgent

5

6 protected long interval ;

7 protected List events;

8

9 public void messageArrived(Map msg, MessageType mt)
10 {

11 removeOutdatedEvents();

12 if (!(events. contains (msg)))

13

14 events. add(new Tuple(new Long(getTime()), msg));
15 msg.put(SFipa.RECEIVERS, getArgument("receivers"));
16 msg.put(SFipa.SENDER, getComponentldentifier());
17 sendMessage(msg, mt);

18 }

19 }
20
21 public void removeOutdatedEvents()
22
23 // Iterate over list starting from oldest entries
24 // and remove due entries until first non—due is found.
25 }
26
27| }

Fig. 3. Duplicate filter agent cutout

content the filter agent stores events for a specified time interval and only
forwards those with new information. The agent is derived from the frame-
work class MicroAgent and only overrides the messageArrived() method that
is automatically called whenever the agent receives a new message. It has two
member variables storing the time interval and a list for already consumed
events (lines 6-7). On message arrival the agent first removes outdated events
(line 11) and then checks if the event is contained in the events list (line 12). If
this is not the case the agent stores the event in the list (line 14) and modifies
the receivers and senders of the event to forward it to its predefined receivers
(lines 15-17). Theses receivers are fetched as value of an agent argument and
are thus passed to the agent at startup.

BPMN Workflow Kernel

The BPMN workflow kernel allows the execution of business processes de-
scribed in BPMN [16]. A BPMN process mainly consists of activities that
are connected with different kinds of gateways in order to steer the control
flow. Furthermore, events play an important role, as they signal important
occurrences within a process, e.g. starting, terminating a process instance or
signaling message sending and receival. Elements can be allocated to pools
and lanes, which allow a process to be aligned according to underlying orga-
nizational structures. BPMN was initially conceived as a modeling language
for business process that primarily serves documentation and communications

10 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

means, but can also be made directly executable, if elements are annotated
with execution information and are equipped with a strict semantics.

The BPMN workflow kernel supplies its active components with a BPMN
interpreter, which is able to read BPMN models stored in an XML format. The
modeling of BPMN diagrams is currently supported by an extended version
of the graphical BPMN editor available in eclipse (stp)!. The extended editor
mainly adds the capability of property views for all kinds of elements. In
these properties execution relevant details can be specified so that the diagram
remains simple and readable also for non IT experts.

Ezxample

4’@

Payment arrived

yes

. Complaint o
Ship Items Send Invaice @ x
()ﬂ H }‘f.ﬁﬂ

Item returned
Complaint

solved?

Blacklist Instruct Debt
Customer Collecting

Pool

Payment target

exceeded Number
dunnings sent <3

Fig. 4. Delivery process example

As an example a small piece of a commercial application scenario is pre-
sented. It is assumed that a company exists that sells items to customers. Be-
sides the core processes that are concerned with selling goods and marketing
special offers also the delivery of goods and accounting has to be considered.
In Figure 4 the delivery process is shown modeled in BPMN using the Jadex
eclipse editor. It can be seen that the process first ships the items and sends
an invoice to the customer. Thereafter, a multi event is used to disambiguate
between different process continuations. In case the payment arrives, it is en-
tered into the books and the process finishes. If instead the customer returns
the items e.g. due to quality problems, a specific complaint management sub-
process is started to solve the issues. A successful correction of defects leads to
reshipping the goods, whereas the process terminates otherwise. It may also
happen that the customer does not react at all and the payment target is ex-
ceeded. In this case, up to three dunnings are sent and the process then again
waits for a customer response. If the customer still does not react, she will be
blacklisted and a debt collecting agency will be instructed. In order to make
the process executable, element specific Jadex properties are introduced (not
shown in Figure 4). Most importantly, activities are connected to Java classes
implementing the corresponding domain logic, e.g. the send invoice activity

! http://www.eclipse.org/bpmn/

Jadex Active Components: An Infrastructure for Agents and Workflows 11

prepares an invoice document from a template and sends it per email to the
customer. In addition, the dataflow, consisting of local and global parameters,
has to be defined. One example is the number of sent dunnings that is saved
in a global parameter in order to make it accessible for the checking gateway
as well as the send dunning activity, which increments the counter.

GPMN Workflow Kernel

Basis of the GPMN kernel is the goal-oriented process notation, which is de-
veloped in the ongoing Go4Flex project [4] together with Daimler AG. The
objective of GPMN consists in providing an additional modeling notation for
processes that abstracts away from workflow details and instead focuses on
the underlying aims a process shall bring about. For this purpose GPMN in-
troduces different goal types as conceptual elements. These goals are arranged
in goal hierarchies for describing how top-level goals can be decomposed into
subgoals and plans. A goal hierarchy represents the declarative properties of
the process (conditions to be fulfilled), while plans capture procedural aspects
(sequences of actions to be executed). The representation and execution se-
mantics for GPMN workflows has been directly adapted from the notion of
goals in mentalistic BDI agents as described in Section 3.2. This means that
the same goal kinds are available for modeling (achieve, maintain, query, per-
form) and also deliberation based inhibition arcs can be used. In contrast to
conventional BDI, GPMN introduces different modeling patterns capturing
recurrent design choices. These patterns e.g. include sequential and parallel
subgoal decomposition, i.e. in GPMN a goal may have direct subgoals, which
can be declared to be executed one by one or in parallel. It has to be noted
that, if the top-level goal has a target condition, subgoal processing will be ter-
minated as soon as the condition becomes true, independent of the processing
state of the subgoals.

Goal oriented workflows are executed by a GPMN kernel that converts
GPMN to BDI agent models. In this way the GPMN kernel does not have to
provide its own execution logic. GPMN diagrams can be graphically modeled
by a newly developed eclipse based GPMN editor. The editor allows draw-
ing goal hierarchies and connecting them with BPMN diagrams for concrete
subprocesses. The usage of the GPMN editor is very similar to the BPMN
version so that an integrated usage of both tools is adequately supported.

Ezxample

In the following, an example GPMN manufacturing process will be sketched.
Assume a company has specialized in manufacturing cleaner robots. Cus-
tomers can compose their own cleaners by selecting from a number of con-
figuration options (engine, sensors, garbage claws, etc.). Each cleaner has a
control unit, which is a generic component of a 3rd-party supplier, but requires
custom software to be installed, depending on the cleaner configuration. Fig-
ure 5 shows how this process can be modeled in GPMN. For simplicity, only

12 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

the subprocess for building a control unit is shown. The root goal of this
subprocess is 'Control Unit Built’. Tt is a sequential achieve goal as denoted
by the ’1..n” at the bottom. This means that the two subgoals ’Control Unit
Ready’ and ’Software Installed’ need to be executed in order. The ’Control
Unit Ready’ goal has two subgoals but does not impose a sequential ordering.
Thus the ’Control Software Available’ and ’Control Unit Available’ goals can
be executed in parallel.

Control Unit Built
1 2
@ &
Control Unit Ready Software
Installed
@ &
[Q]
Control Software Control Unit » Control Units in
Available Available M Stock
SubProcess BPMN BPMN EPMMN
Download Software Develop New Take Control Unit Install Software Order Control
from Repository Software from Stock Units

Fig. 5. Cutout of a manufacturing process in GPMN

The five goals described above make up the goal hierarchy of the process.
The three leaf goals (i.e. goals which are not further decomposed into sub-
goals) are mapped to concrete plans or subprocesses. The ’Control Software
Available’ goal is a query goal, which means that when an appropriate soft-
ware version is readily available, no plan needs to be executed at all. If an
appropriate software version is not available locally, yet exists in some reposi-
tory, the "Download Software from Repository’ plan is executed. Otherwise no
specific software exists for the cleaner configuration selected by the customer
and a new software version has to be developed ("Develop New Software’ sub-
process).

The control units from the 3rd party supplier are kept in a stock. Thus the
"Control Unit Available’ goal can be achieved by a simple 'Take Control Unit
from Stock’ plan. Besides the main goal hierarchy, the separate ’Control Units
in Stock’ maintain goal has the responsibility to assure that there are always
enough control units in stock. Whenever the number of units drops below a
threshold, the ’Order Control Units’ plan is executed. When there are no units
in stock, the maintain goal will inhibit the ’Control Unit Available’ goal. Thus

Jadex Active Components: An Infrastructure for Agents and Workflows 13

the construction process will not fail, but wait until there are new control
units in stock.

Application Kernel

The application kernel belongs to the “other kernels” category. Its main pur-
pose is to provide required functionality for defining applications, e.g. speci-
fying the required components and their interrelations. An application spec-
ification thus mainly contains structural information about the application
type. A key concept of an application type definition is that of necessary com-
ponent types. Additionally, so called space types are introduced, which have
been inspired by the context and projection concepts of the Repast simulation
toolkit [8]. A space is a very general concept for the representation of non-
active elements. It is a structure that contains application specific data and
functionality independently from a single component. Therefore a space pro-
vides a convenient way of sharing resources among components without using
message-based communication. The space concept can be seen as an addi-
tional structuring element. It does not impose constraints on components,
i.e. components from the same or different applications can communicate via
other means such as messages. Spaces also can be seen as an extension point
of the component platform as spaces offer application functionality, indepen-
dent of component behavior. Please note that the concrete functionalities of a
space depend on its concrete type and are not directly part of the application
concepts. In order to define in what way an application instance should be
created from an underlying application type, the concept of configurations
is introduced. A configuration describes which runtime entities comprise a
specific application instance, i.e. which components and spaces should be cre-
ated at startup time. At runtime an application represents a component in
its own right, which mainly acts as a container for components and spaces.
Components that are part of an application can access the spaces via the
containing application instance. In this way the access to spaces is restricted
to components from the same application context. Representing applications
as components also allows for handling them at the tool level, i.e. instead
of starting or stopping many single components, whole applications can be
managed.

The space concept is very general and can be interpreted e.g. in structural
or behavioral ways. Several space types are provided as part of Jadex that
capture different recurring functional requirements. A simplified version of
Ferber’s agent-group-role model [9] allows defining group structures for com-
ponents and assigning roles to component instances. Another space type is
currently under development for weaving de-centralized coordination mecha-
nisms in the application without changing the component’s behavior descrip-
tions [25]. The most elaborated space type is the so called EnvSupport [11].
This space is a virtual 2d environment for situated agents, in which they can
perceive and act via an avatar object connected to them. The space facili-

14 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

tates the construction of simulation examples, as it takes over most parts of
visualization and environment/component interaction.

In Jadex, applications and their spaces are described using an XML de-
scriptor file following a metamodel defined as XML schema. An application is
mainly composed of space and component types as well as initial instances of
both. Component types represent references to other component specification
files, which will be included with a logical name in the application context.
At startup of an application the kernel will create the declared component
instances and spaces of the given configuration.

Ezxample

An example application is shown in Figure 6. It represents a virtual environ-
ment for testing cleaner robots. The example makes use of the EnvSupport
space as explained in the following. The environment is defined as a contin-
uous 2D area (lines 3-27), in which space objects such as cleaners, charging
stations and waste items are located (lines 4-10). The cleaner objects, called
avatars, are connected to the cleaner agents and allow them to act and per-
ceive in the environment via user defined actions (lines 11-14) and percepts
(omitted for brevity), e.g. for spotting and picking up waste. Furthermore,
tasks (lines 15-18) can be directly attached to space objects, such as moving
the cleaner robot or charging its battery. Besides object behavior, also global
behavior can be specified in terms of environment processes (omitted for space
reasons), which may operate on all objects of the environment. Such processes
can e.g. be used to model environmental activities, like random appearance
of waste. Using the aforementioned concepts the application domain can be
described. In addition, also the visualization can be specified in terms of pos-
sibly different perspectives (lines 19-26). A perspective basically consists of
drawables, which specify a graphical representation of a space object type,
e.g. of the chargingstation object (lines 21-23).

The application further defines the component types to be used, such as
the cleaner robot and a truck, which periodically empties waste bins (lines 30-
33). Finally, application configurations are specified (lines 35-51) that denote
how an application should be started. Possible settings are initial objects and
their locations (e.g. placement of a chargingstation is done in lines 40-42) as
well as the initially started components (two cleaner agents are created in line
48).

4 Realization

In this section details of the Jadex active components infrastructure implemen-
tation will be given. Concretely, it will be shown how the platform architec-
ture has been conceived and the Standalone Platform has been implemented.
Thereafter, the generic kernel architecture will be presented and further ex-
plained exemplarily by the BPMN kernel.

© 00U W~

Jadex Active Components: An Infrastructure for Agents and Workflows 15

<applicationtype name="CleanerWorldSpace" package="jadex.bdi.examples.cleanerworld" >
<spacetypes>
<env:envspacetype name="2dspace" class="ContinuousSpace2D"width="1"height="1">
<env:objecttypes>
<env:objecttype name="cleaner">
<env:property name="vision_range'">0.1</env:property>

< /env:objecttype>

< /env:objecttypes>
<env:actiontypes>
<env:actiontype name="pickup_waste" class="Pickup\WasteAction" />

< /env:actiontypes>
<env:tasktypes>
<env:tasktype name="move" class="MoveTask" />
<env:tasktype name="load" class="LoadBatteryTask" />
< /env:tasktypes>
<env:perspectives>
<env:perspective name="icons" class="Perspective2D" opengl="true">
<env:drawable objecttype="chargingstation" width="0.06" height="0.06">
<env:texturedrectangle imagepath="cleanerworld/images/chargingstation.png"/>
< /env:drawable>

< /env:perspective>
< /env:perspectives>
< /env:envspacetype>
< /spacetypes>

<componenttypes>
<componenttype name="Cleaner" filename="cleanerworld/cleaner/Cleaner.agent.xml"/>
<componenttype name="Truck" filename="cleanerworld /truck/Truck.agent.xml" />

< /componenttypes>

<applications >
<application name="Two cleaners">
<spaces>
<env:envspace name="my2dspace" type="2dspace" width="1.0" height="1.0">
<env:objects>
<env:object type="chargingstation">
<env:property name="position" >new Vector2Double(0.8, 0.8)</env:property>
< /env:object>

</env:objects>
< /env:envspace>
< /spaces>
<components>
<component type="Cleaner" number="2"/>
< /components>
< /application>
< /applications >
< /applicationtype >

Fig. 6. Cutout of an application.xml

4.1 Platform Architecture

The overall Jadex AC platform architecture is shown in Figure 7. Its setup
directly contributes to two of the initial design challenges. First, it facilitates
the execution of applications composed of heterogeneous components, because
the kernel is realized as a separate layer on top of the platform layer. Both lay-

16 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

>

°

-]

Custom Code A.ppllcatlon FIPA Protocols g

Library 2

o

=}
Y
Kernel BDI Micro BPMN GPMN Application 33
() S x
o)) o 0
R e e e 30
@ 53
Platform FIPA Clock Platform Standalone 1 1 Middleware 53
Service AMS, DF,... Platform Adapter g
z=
J2EE Agent &3
Execution Middleware Platform Platform g %
5

Fig. 7. Platform architecture

ers form the core of the Jadex component infrastructure but are only loosely
coupled. This coupling is based on a set of common interfaces defined as un-
derlying bridge between both layers, i.e. both layers have access to the bridge
interfaces. Second, the usage of services for providing platform functionalities
allows Jadex to be used in a multitude of execution scenarios due to the high
adaptability of the platform layer. Especially, it allows existing middleware
to be reused by wrapping offered functionalities in terms of Jadex platform
services. In order to execute different component architectures within a single
platform it is necessary to specify the responsibilities of the kernel and the
platform. A platform is mainly in charge of executing a component, deliver-
ing messages to the component and notifying the component at certain time
points. From kernel side it is necessary to have access to the platform services.

4.2 Standalone Platform Implementation

The Jadex Standalone Platform is a lightweight pure Java SE based execu-
tion environment that is not based on an underlying middleware. It realizes a
service container concept, which means that it only exposes basic functional-
ities for managing platform services. The service container allows for adding,
removing services and fetching services by their type. A service client thus
only has to know the interface of the needed service in order to retrieve it.

Platform services can be customized freely and hence the platform can
be individualized with regard to the concrete application scenario by simply
changing its declarative configuration. On startup the Standalone Platform
reads configuration files and evaluates them with respect to the initial services
and components to start.

The Jadex platform services include internal services as well as public ser-
vices, whereby internal services are only used from other platform services.
Public services are available to active components as well. Internal services
include a thread pool service and an execution service that are responsible
for running active components. Public services encompass infrastructure func-

Jadex Active Components: An Infrastructure for Agents and Workflows 17

tionalities similar to FIPA agent specifications?, i.e. a component management
service for component creation and termination, a directory facilitator that
represents a service registry as well as a message transport service. Further-
more, a clock and a simulation service exist to enable application execution
in real-time as well as in event-driven or time-stepped simulation modes.

4.3 Kernel Architecture

IComponent

Adapter
Platform

wakeup / get service container

Kernel y-==-=-==--- 4]
1Configuration
teweoop----i create | |Component .| |External | invoke External

desohes Instance Access Processes

execute / message arrived

provides|
lbased on

ILoadable
Model

IComponent
Factory

create

model info

Tools
(e.g. Starter)

Fig. 8. Kernel architecture

In Figure 8 the basic Jadex kernel architecture is depicted. It mainly com-
prises implementations of interfaces for the component factory (IComponent-
Factory), the component model (ILoadableModel), the component instance
(IComponentInstance) as well as the external access point (IEzternalAccess).

The component, factory provides functionalities for loading component
models as well as creating instances of those models. In this regard a com-
ponent model represents the type information about a specific user defined
domain component, e.g. which belief, plan and goal types belong to a custom
BDI agent. The associated ILoadableModel interface allows model consumers
such as the Starter tool to handle all models in the same way without knowl-
edge about the underlying kernel type used. Each active component consists
of two parts that interact closely: the component instance and the component
adapter. The component instance contains the execution logic of the specific
component type and uses its associated component adapter as platform medi-
ator e.g. for locating platform services. The component adapter holds platform
related information like the component identifier and delegates execution re-
quests from the platform to the component instance. A detailed description
of the interaction relationship between component instance and adapter can
be found in [18].

2 http://www.fipa.org/

18 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

For accessing a component from external threads, e.g. from a user interface,
a dedicated external access view on the component exists. It can be retrieved
by the component instance and offers general as well as kernel specific methods
for component interaction, e.g. in case of a BDI agent an external process can
access beliefs or create and dispatch a goal. The integration of a kernel is done
via a platform configuration file in which the component factory is announced
as new platform service, i.e. kernels are pluggable by configuration.

4.4 BPMN Kernel implementation

BPMN
BPMN Factory
Editor (IComponent-
Factory) ﬁf}
8 i
8 g 5
>
3 € BPMN Handler
DB'PMN » BPMN XML > thﬂ'\imogil Interpreter
lagram oadableMode IC: t-
9 icomromt "N Taske

Fig. 9. Loading a BPMN model

The BPMN kernel implementation basically provides BPMN specific im-
plementations of the kernel interfaces described in the last section. In Figure
9 it can be seen how a BPMN diagram is processed from the kernel in or-
der to execute a process instance on basis of this diagram. Starting point is
the eclipse BPMN editor, which saves the diagram in a proprietary XML file
format, which consists of two files: one representing the model and one de-
scribing the layout information.® The first one serves as input for the BPMN
component factory, which reads the file and generates a BPMN Java model.
On basis of this model the component factory can create BPMN process in-
stances (interpreter components), which may be executed on the Jadex active
components infrastructure.

The interpreter follows a lightweight and extensible approach for realizing
the BPMN functionality. Internally, it uses so called process threads for man-
aging concurrent flows within a process. Such a process thread represents a
virtual thread in contrast to a real one managed by the operating system. A
virtual process thread records the execution and memory state of a process
flow and is used to steer the execution of process activities. Due to their virtual
character, a process instance is executed in a quasi-parallel way like all active
components. The interpreter functionality is realized using handlers and tasks.
Handlers exist for each predefined BPMN element, like gateway types and dif-
ferent kinds of events, and implement their internal behavior. A parallel split
gateway e.g. creates virtual process threads for each of the outgoing parallel
branches. The corresponding join gateway then waits for all incoming threads

3 In future versions BPMN 2.0 will allow using a standard XML format.

Jadex Active Components: An Infrastructure for Agents and Workflows 19

and unifies them to one that follows the outgoing edge. Changing or adding
handlers allows flexibly controlling the execution behavior of the interpreter.
Tasks are used for implementing activity behavior. Several predefined tasks
are available for standard activities like printing on the console or requesting
user input. Besides these ready-to-use tasks, user-defined tasks can be created
by extending a specific framework class. E.g. a workflow management sys-
tem (WfMS) is currently being developed based on the BPMN kernel, which
provides custom tasks for connecting the modeled processes to other aspects
of the WIMS infrastructure, such as a worklist client (for manual tasks) and
external applications (for automated tasks).

5 Example Projects

The Jadex active component infrastructure has been developed and is con-
tinued to be used in various real-world application projects. Three of these
projects will be described exemplarily in the following.

5.1 MedPAge: Agent-based Hospital Scheduling

The MedPAge (medical path agents) project was part of the German priority
research programme “intelligent agents and realistic commercial application
scenarios” (SPP 1083), which was funded by the Deutsche Forschungsgemein-
schaft (DFG) from 1999-2006. The aim of the research programme was to
show the applicability and advantages of intelligent agent technology in real
world applications from the hospital and manufacturing logistics domains. As
a joint project between the University of Mannheim and the University of
Hamburg, in the MedPAge project a demonstrator was developed that im-
proved treatment scheduling for patients in hospitals. The main approach
was representing patients and hospital resources as Jadex BDI agents that
negotiate treatment slots. The approach assures that patient goals (low wait-
ing times) and resource goals (high utilization) are equally respected. Details
about the scheduling algorithm and the application can be found e.g. in [17].

The main focus of the Jadex framework at that time was BDI-based agents.
During the course of the MedPAge project, the Jadex framework has been
evaluated in depth (see e.g. [7]). As a result of this evaluation, two important
factors where identified for further improvement, which required tedious and
error-prone manual work in MedPAge: 1) the support for non-functional re-
quirements such as persistence and scalability and 2) the integration of agent
technology with other mainstream technology like software components and
workflows. Both factors led to the development of the Jadex active components
infrastructure, which broadens the scope of the original Jadex framework and
is an essential foundation for our current application projects described next.

20 Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

5.2 Go4Flex: Agile Process Management

The DFG technology transfer project Go4Flex (goal-orientation for flexible
and agile processes) [4] is conducted in cooperation between Daimler AG
and the University of Hamburg and aims at providing advanced conceptual
and software technical means for modeling and executing complex business
processes. In practice, experience has shown that modeling means offered by
traditional workflow languages such as event process chains (EPCs) or BPMN
are insufficient for many processes at large companies like Daimler AG. While
processes can be documented with EPCs or BPMN, they are not directly
adopted by the workflow participants. One major issue is the strong focus on
activities and their ordering. As processes are typically prone to frequently
change, the abstractness of the process descriptions is essential for their long-
term usefulness.

The Go4Flex framework is based on concepts, which have been developed
in the area of agents and multi-agent systems. The main research question
of the DFG-funded Go4Flex project is to isolate interesting multi-agent ideas
and make them usable also for workflows. Most importantly, GodFlex focuses
on the behavior and context perspectives, which suffer among other things
from their low conceptual connectivity. Thus Go4Flex introduces the goal
process modeling notation (cf. Section 3.2) for abstract modeling of flexible
workflows. The Jadex active component, infrastructure forms the basis of the
Go4Flex workflow management system and allows using seemingly disparate
concepts like agents and workflows seamlessly.

5.3 SodekoVS: Systematically Engineering Self-Organizing
Systems

The DFG-funded research project SodekoVS (self-organisation based on de-
centralized co-ordination) [24] is a cooperation of the University of Applied
Sciences Hamburg and the University of Hamburg and aims at tackling coordi-
nation problems by utilizing nature-inspired design paradigms. These provide
coordination strategies to equip software architectures with adaptability and
robustness, based on decentralized self-organization principles. Basis of the
approach are a newly conceived generic reference architecture as well as an
adapted development methodology for the systematic construction of such
systems. Coordination mechanisms are made available as middleware services
and a minimally intrusive programming model allows developers to config-
ure and integrate representations of nature-inspired coordination strategies in
their applications. The systematic utilization of these development tools re-
quires support to design, i.e. model, select, combine and refine self-organizing
dynamics, and to simulate the resulting application prototypes.

The project heavily relies on many features of the Jadex active component
infrastructure. The coordination algorithms require large numbers of compo-
nents being executed in parallel. This kind of scalability is provided by the

Jadex Active Components: An Infrastructure for Agents and Workflows 21

micro agent kernel. The external access facility (cf. Section 4.3) is used for
the programming model to integrate the coordination layer with the applica-
tion functionality, which can further be realized using any component type.
Finally, the support for simulated execution is used as a basis of a validation
tool to automatically check if the employed coordination strategies converge
and adapt as desired.

6 Summary and Outlook

In this chapter active components have been presented as novel notion for
building complex distributed and concurrent systems. The active component
concept has emerged from an integration of agent and software component
concepts and thus tries to combine the strength of both. Active components
are the conceptual basis of the Jadex middleware, which has been conceived
to be able to execute arbitrary types of active components. The internal archi-
tecture of active components is realized in different kernels that can be used
together on the same component platform allowing heterogeneous applications
being constructed. Currently, agent, workflow and application kernels exist,
which have been presented in detail according to their architecture as well as
usage by drawing on typical example scenarios. Furthermore, the underlying
implementation concepts of a kernel have been discussed, which mainly rely
on a component factory that is able to load active component models and in-
stantiate them. The active component concept has been further illustrated by
selected research projects, which make use of different platform features. Med-
PAge, a decentralized appointment scheduling solution for hospitals, makes
heavy use of agent-based negotiation capabilities. In contrast, in Go4Flex, a
project aiming at flexible workflow description and execution, the integration
of workflow and agent concepts helped solving the agility demands. Finally, for
the SodekoVS project, which aims at providing self-organization algorithms
as reusable patterns, the scalability of the micro agent kernel and the simula-
tion features of the platform are essential. Future work will especially tackle
the conceptual integration challenges of the service oriented architecture and
active components.

References

1. Dirk Bade and Winfried Lamersdorf. An agent-based event processing middle-
ware for sensor networks and rfid systems. Computer Journal, Special Issue on
"Agent Technologies for Sensor Networks", 2009.

2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems
with JADE. John Wiley & Sons, 2007.

3. L. Braubach and A. Pokahr. Representing long-term and interest bdi goals.
In Thangarajah Braubach, Briot, editor, Proceedings of International Workshop
on Programming Multi-Agent Systems (ProMAS-7), pages 29-43. IFAAMAS
Foundation, 5 2009.

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

. L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister. Go4flex:

Goal-oriented process modelling. In Proceedings of the 4th International Sym-
posium on Intelligent Distributed Computing (IDC 2010). Springer, 2010.

L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent System
Combining Middleware and Reasoning. In R. Unland, M. Calisti, and M. Klusch,
editors, Software Agent-Based Applications, Platforms and Development Kits,
pages 143-168. Birkhduser, 2005.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation
for BDI Agent Systems. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah-
Seghrouchni, editors, Proceedings of the 2nd International Workshop on Pro-
gramming Multiagent Systems (ProMAS 2004), pages 44-65. Springer, 2005.
Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. A universal crite-
ria catalog for evaluation of heterogeneous agent development artifacts. Inter-
national Journal of Agent-Oriented Software Engineering (IJAOSE), 2009. to
appear.

N. Collier. RePast: An Extensible Framework for Agent Simulation. Working
Paper, Social Science Research Computing, University of Chicago, 2001.

J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: an Orga-
nizational View of Multi-Agent Systems. In P. Giorgini, J. Miiller, and J. Odell,
editors, Proceedings of the 4th International Workshop on Agent-Oriented Soft-
ware Engineering IV (AOSE 2003), pages 214-230. Springer, 2003.

K. Fischer, M. Schillo, and J.H. Siekmann. Holonic multiagent systems: A
foundation for the organisation of multiagent systems. In Vladimir Marik, Dun-
can C. McFarlane, and Paul Valckenaers, editors, HoloMAS, volume 2744 of
Lecture Notes in Computer Science, pages 71-80. Springer, 2003.

K. Jander, L. Braubach, and A. Pokahr. Envsupport: A framework for devel-
oping virtual environments. In Seventh International Workshop From Agent
Theory to Agent Implementation (AT2AI-7). Austrian Society for Cybernetic
Studies, 2010.

N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35-41, April 2001.

G. Lavender and D. Schmidt. Active object - an object behavioral pattern for
concurrent programming. In J. Vlissides, J. Coplien, and N. Kerth, editors,
Pattern Languages of Program Design 2. Addison-Wesley, 1996.

M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Com-
puting as Interaction (A Roadmap for Agent Based Computing). AgentLink,
2005.

David C. Luckham. The Power of Events: An Introduction to Compler Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

Object Management Group (OMG). Business Process Modeling Notation
(BPMN) Specification, version 1.1 edition, February 2008.

T. Paulussen, A. Zoller, F. Rothlauf, A. Heinzl, L. Braubach, A. Pokahr, and
W. Lamersdorf. Agent-based patient scheduling in hospitals. In P. Lockemann
O. Spaniol S. Kirn, O. Herzog, editor, Multiagent Engineering - Theory and
Applications in Enterprises, pages 255—275. Springer, 6 2006.

A. Pokahr and L. Braubach. From a research to an industrial-strength agent
platform: Jadex V2. In Hans-Georg Fill Hans Robert Hansen, Dimitris Kara-
giannis, editor, Business Services: Konzepte, Technologien, Anwendungen - 9.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Jadex Active Components: An Infrastructure for Agents and Workflows 23

Internationale Tagung Wirtschaftsinformatik (WI 2009), pages 769-778. Oster-
reichische Computer Gesellschaft, 2 2009.

A. Pokahr, L. Braubach, and K. Jander. Unifying agent and component concepts
- jadex active components. In J. Dix and C. Witteveen, editors, Proceedings
of the 8th German conference on Multi-Agent System TFEchnologieS (MATES-
2010). Springer, 2010.

A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDI Architecture
Supporting Extensibility. In A. Skowron, J.-P. Barthés, L. Jain, R. Sun,
P. Morizet-Mahoudeaux, J. Liu, and N. Zhong, editors, Proceedings of the
2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy (IAT 2005), pages 379-385. IEEE Computer Society, 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for
bdi agent systems. In T. Eymann, F. Kliigl, W. Lamersdorf, M. Klusch, and
M. Huhns, editors, Proceedings of the 8rd German conference on Multi-Agent
System TEchnologieS (MATES-2005). Springer, 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine.
In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications, pages 149-174.
Springer, 2005.

A. Rao and M. Georgeff. BDI Agents: from theory to practice. In V. Lesser,
editor, Proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS 1995), pages 312-319. MIT Press, 1995.

J. Sudeikat, L. Braubach, A. Pokahr, W. Renz, and W. Lamersdorf. Systemat-
ically engineering self-organizing systems: The sodekovs approach. In M. Wag-
ner, D. Hogrefe, K. Geihs, and K. David, editors, Proceedings des Workshops tiber
Selbstorganisierende, adaptive, konteztsensitive verteilte Systeme (KIVS 2009),
page 12. Electronic Communications of the EASST, 3 2009.

A. Vilenica, A. Pokahr, L. Braubach, W. Lamersdorf, J. Sudeikat, and W. Renz.
Coordination in multi-agent systems: A declarative approach using coordination
spaces. In Seventh International Workshop From Agent Theory to Agent Imple-
mentation (AT2AI-7). Austrian Society for Cybernetic Studies, 2010.

M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
2001.

