
Jadex Ative Components: A Uni�ed ExeutionInfrastruture for Agents and Work�owsLars Braubah, Alexander Pokahr, and Winfried LamersdorfDistributed Systems and Information SystemsComputer Siene Department, University of Hamburg{pokahr | braubah | lamersd}�informatik.uni-hamburg.deSummary. Agent tehnology has proven to ontribute rih abstrations that faili-tate the onstrution of omplex systems. Espeially, in ase of hallenges regardingdistribution and onurreny aspets, agents provide high-level solution oneptsthat are intuitive to understand and diretly transferable from design to implementa-tion. Despite these advantages agent tehnology urrently has not found widespreadappliation in industry settings. One important reason for the slow adoption is thatthe oneptual integration of agents with other prevalent software engineering ap-proahes like software omponents or servie oriented arhiteture is still low anddoes not permit the easy usage of agents in onert with other tehnologies. In thishapter, with the notion of ative omponents, a new oneptual abstration is pre-sented that ombines agent and omponent harateristis in order to foster theintegration of both strands. The ative omponent onept has been implementedwithin the Jadex Ative Components middleware, whih is an infrastruture thatpermits the exeution of di�erent types of ative omponents like agents and work-�ows. The underlying arhiteture of this middleware is presented and illustratedby example senarios.Key words: agents, work�ows, ative omponents1 IntrodutionSine its beginnings in the nineties, agent tehnology has evolved into an a-tive researh and engineering �eld that provides onepts and solutions forbuilding omplex distributed systems [12, 14℄. Software agents - as a designmetaphor for open, distributed and onurrent systems - are ommonly har-aterized as being autonomous (independent of other agents), reative (ad-vertent to hanges in the environment), proative (pursue their own goals),and soial (interat with other agents) and may be realized using mentalistinotions (e.g. beliefs and desires)[27℄. Using this design metaphor, an agent-based software appliation an be realized as a multi-agent system (MAS),

2 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorfwhih is a set of agents that interat using expliit message passing, possiblyfollowing sophistiated negotiation protools.Current tehnology trends, suh as inreasing hardware onurreny anddelegation of tasks to omputer programs [14, 27℄, reinfore the need of on-eptually rih abstrations for building omplex software. While agent teh-nology o�ers this kind of abstrations, the integration with existing softwaretehnology like objet-orientation, servie-oriented omputing, work�ow man-agement systems, appliation servers, et. is essential for being able to quiklybuild industry-quality solutions in adequate ost and time frames.This hapter presents one approah of suh an integration of agent on-epts with existing software tehnology: The Jadex Ative Components (AC)infrastruture. The basi idea of Jadex is providing a uni�ed exeution in-frastruture for di�erent kinds of entities (e.g. agents or work�ows). Besidesa seamless integration of these omponents, the uni�ation further failitatesross-fertilization between the di�erent onepts. Foundation of this approahis the newly oneived notion of ative omponents, whih unify base oneptsof software omponents with that of a minimal agent.The remainder of this hapter is strutured as follows. Setion 2 introduesthe main objetives and the overall approah of the Jadex projet. In Setion3 the onepts and omponents for building appliations with Jadex are pre-sented. The urrent state of the realization is desribed in Setion 4. Setion5 presents sample projets in whih Jadex is used and Setion 6 onludes thehapter with a summary and an outlook.2 Design RationaleThe main goal of the Jadex projet is simplifying the development of om-plex distributed appliations. The approah towards ahieving this aim isproviding a middleware that aids in addressing ommon hallenges of suhdistributed appliations. This middleware on the one hand delivers sound on-eptual metaphors for the design of distributed systems. On the other handthe implementation of these onepts is supported by a software infrastru-ture inluding reusable omponents and frameworks as well as developmentand runtime tools. Among others, the following hallenges are prominentlyaddressed by Jadex:
• Dealing with onurreny and distribution
• Realizing appliations omposed of heterogeneous omponents
• O�ering versatile interation styles
• Being onfronted with a multitude of exeution senarios
• Monitoring and debugging distributed appliationsThe �rst three hallenges are addressed by the abstrat notion of an ativeomponent and its onrete inarnations. The ative omponent onept is in-spired by aspets of the agent metaphor for addressing onurreny and distri-bution on the oneptual level. As eah ative omponent is an autonomous

Jadex Ative Components: An Infrastruture for Agents and Work�ows 3(i.e. independently exeuting) entity, the risk of onurreny-related prob-lems, suh as rae-onditions or deadloks, is redued already during appli-ation design. Di�erent omponent types are suitable for di�erent types ofappliations (e.g. agents vs. work�ows). Jadex addresses this heterogeneity ofomponents by providing a uni�ed exeution infrastruture, whih allows ex-euting di�erent omponents in the same appliation. Also, omponent typesdi�er in their modes of interation (e.g. message-based vs. method-all-based).Jadex allows all omponent types to make use of di�erent interation styles asneeded. Besides synhronous and asynhronous method alls, message-basedasynhronous interation is supported by the infrastruture. Moreover, severalomplex interation senarios, suh as well-known negotiation protools, areprovided in a reusable fashion for di�erent omponent types.The last two hallenges are aptured by the way, ative omponents relateto their exeution platform. Clearly de�ned interfaes between the omponentand the exeution platform allow both being developed independently. Con-sidering the multitude of potential exeution senarios, eah imposes di�erenthallenges, e.g. a bakend server solution requires salability and transationwhile deployment on a mobile devie has to deal with limited resoures. Dueto the independene of omponents and platform, di�erent exeution envi-ronments an be built whih spei�ally takle the respetive hallenges, yetallow exeuting all available omponent types. Besides di�erent exeution en-vironments, also runtime tools an make use of the ommon interfae for allomponent types. This failitates building sophistiated tools, whih not onlyoperate on any omponent type, but also allow observing heterogeneous ap-pliations omposed of di�erent omponent types in a uni�ed way.3 Design ConeptsIn the following setions the entral design onepts of Jadex Ative Com-ponents (AC) are presented. On the infrastruture layer the notions and thedistintive harateristis of platforms and kernels is important and will beintrodued �rst. Thereafter, a de�nition for an ative omponent as base ele-ment of the arhiteture is given followed by an overview of urrently availableative omponent kernels.3.1 Platform, Kernel and Ative Component NotionsThe Jadex infrastruture basially distinguishes between platforms, kernelsand ative omponents that are exeuted on this infrastruture (f. Fig. 1).De�nition 1. A platform is the management infrastruture for omponents,whih is responsible for their exeution as well as for providing administrationapabilities like a messaging system or a omponent servie registry.

4 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf
Fig. 1. Platforms, kernels and omponentsA platform itself provides all its funtionalities in terms of platform servies,i.e. it an be easily ustomized by hanging the o�ered servies in a on�gu-ration �le. This allows inluding exatly those servies that deem appropriatein a given setting. On mobile devies one would e.g. use resoure minimal ver-sions of platform servies and redue the number of available servies whereason a bakend server with high storage and performane apaities e.g. servieswith persisteny and transation support may be a good �t. Publi serviesan be aessed from ative omponents via the platform. Ative omponentsmay use servies by invoking methods on objet oriented servie interfaes.Di�erent platform implementations are already available that allow exeut-ing omponents in a Standalone Java appliation as well as on top of thewell-known JADE agent framework [2℄. A platform for exeuting ative om-ponents in Java EE appliation servers is urrently under development.De�nition 2. A kernel enapsulates the internal behavior de�nition of a spe-i� ative omponent type.Thus a kernel realizes a spei� internal arhiteture determining the om-ponent type. The separation of platforms and kernels allows the independentdevelopment of kernels that an then be used in onjuntion with arbitraryJadex platform implementations. A kernel thereby has omplete ontrol aboutthe way its ative omponents are spei�ed and is thus responsible for loadinga omponent and reating omponent instanes out of this model information.Eah kernel implements a distint behavior model so that the full range frompurely reative to deliberative omponents an be realized. The exeution ofall omponents is kernel independent and performed by the underlying plat-form. It is assumed that eah omponent is exeuted sequentially, i.e. trueonurreny exists only between ative omponents. Within an ative ompo-nent a kernel may o�er quasi-parallel exeution by interleaving the exeutionof ative behaviors. On the one hand this has the advantage of simple ativeomponent programming without the need for onurreny language elementslike loks and on the other hand it is also a ommon requirement of existingmanagement infrastrutures suh as Java EE. The exeution of ative ompo-nents without onsideration of their onrete type is possible due to a ommonbase onept for all variants of ative omponents.

Jadex Ative Components: An Infrastruture for Agents and Work�ows 5Basially, an ative omponent is de�ned as a mixture of minimal agentand software omponent properties. Adapted agent harateristis are au-tonomous entity behavior (i.e. self-ating) as well as message-based ommu-niation means. In addition they share with software omponents that theyare seen as at the same time as servie provider and onsumer and may beomposed to omposite omponents using servie dependenies. Ative om-ponents an be aessed via method-alls using provided servie interfaesand are managed within a ontainer infrastruture. This yields to the follow-ing de�nition of an ative omponent:De�nition 3. An ative omponent is an autonomous and managed softwareentity that may expose publily aessible servie interfaes and is apable ofinterating with other ative omponents in di�erent modes inluding messagepassing and method alls.Further details about the rationale for hoosing these harateristis of ativeomponents and further explanations an be found in [19℄.In Fig. 1 also the ardinalities of Jadex entities are shown. It is highlightedthat on a platform any number of kernels an be exeuted. This allows het-erogeneous appliations being developed, whih are omposed of entities ofdi�erent kernel types, e.g. a work�ow based appliation that also employsagents for spei� tasks. One kernel an also be used with arbitrary plat-forms thanks to the loose oupling between both onepts. It is also shownon the right hand side that an ative omponent instane always belongs toone dediated kernel, whih takes over the aforementioned tasks regarding thisomponent. It has to be noted that no spei� appliation element is shown inthe �gure, as appliations are themselves omponents that may inlude otheromponents. This means that omponents are a hierarhial onept similarto holons [10℄, failitating the reursive onstrution and deomposition ofsystems.3.2 Available Kernel TypesIn Jadex urrently three kinds of kernels exist: agent kernels, work�ow ker-nels and other kernels. Agent kernels are used to realize internal agent arhi-tetures, whereby kernels for belief-desire-intention (BDI) and simple re�exagents, alled miro agents, exist. Work�ow kernels implement proess exe-ution logi and provide a business level perspetive on task exeution. Inthis ategory a BPMN (business proess modeling notation) kernel as well asa goal-oriented (GPMN) proess kernel are available. In the third group ofkernels, espeially the appliation kernel is of relevane beause it failitatesthe de�nition of ative omponent systems.BDI Agent KernelIn former versions of Jadex, BDI was the only omponent arhiteture avail-able. As the way agents are desribed using BDI has not hanged muh with

6 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorfregard to earlier versions, here only a short desription is given (for more de-tails refer to [5, 22℄). BDI agents onsist of beliefs (subjetive knowledge), goals(desired outomes) and plans (proedural ode for ahieving goals). Jadex BDIagents are based on the PRS (proedural reasoning system) arhiteture [23℄,whih has been substantially modi�ed and extended in previous works to sup-port the full pratial reasoning proess [21, 20℄. Pratial reasoning has twomain tasks, namely goal deliberation and means-end reasoning [26℄, wherebyonly the latter is onsidered in original PRS. Goal deliberation is used bythe agent to determine a onsistent, i.e. on�it-free goal set it an pursueat the onsidered moment. In Jadex the Easy Deliberation strategy is used,whih introdues goal ardinalities and inhibition ars between goals [21℄. Foreah seleted goal means-end reasoning is employed to ahieve that goal byexeuting as many plans as neessary. More spei�ally, means-end reasoning�rst ollets appliable plans and then selets a andidate among these thatis subsequently exeuted. Given that this plan is not able to ful�ll the goal,e.g. beause it fails, means-end reasoning tries to ativate other plans.To support a wide spetrum of use ases di�erent goal kinds have beenintrodued, from whih ahieve, maintain, query and perform are the mostimportant ones. Ahieve goals are used to bring about a spei� world state,whih an be desribed as delarative target ondition. The goal is onsideredas ful�lled when this target ondition beomes true. In ontrast, maintaingoals are utilized to preserve a spei� world state and reestablish this statewhenever it gets violated. Query goals an be used to retrieve information.If the requested piee of knowledge is already known to the agent the goalis immediately �nished, whereas otherwise plan exeution is started to feththe needed data. The perform goal kind is a purely proedural goal that isdiretly onneted to ations, i.e. a perform is onsidered as ful�lled when atleast one plan ould be exeuted. A detailed desription of these goal kindsan be found in [6, 3℄.Jadex BDI agents are spei�ed using XML and Java, allowing to separatethe desriptive knowledge of the agent struture from the proedural knowl-edge of plans. An agent type is de�ned in an agent de�nition �le (ADF),whih follows a BDI metamodel desribed as XML shema. The agent plansare normal Java �les that have to extend a given framework lass and overrideat least one method that ontains the plan domain logi. From within Javaplans agent funtionality an be aessed via API (appliation programminginterfae) alls, whih e.g. allow aessing beliefs or dispathing goals.ExampleAs an illustrating example of a BDI agent the leanerworld appliation (�rstdesribed in [6℄) is shortly presented. The basi senario idea is that leaningrobots look for waste in a given terrain and bring it to waste bins nearby. Ad-ditionally, the robots have to monitor and reharge their battery given thatits value is below a spei�ed threshold. At night, the robots do not searhfor waste but patrol in de�ned routes to guard the area. The robot objetives

Jadex Ative Components: An Infrastruture for Agents and Work�ows 71 <agent name="Cleaner" pakage="...">2 <beliefs>3 <beliefset name="wastes" lass="Waste" />4 ...5 </beliefs>67 <goals>8 <ahievegoal name="ahieveleanup" retry="true" exlude="never">9 <parameter name="waste" lass="Waste">10 <value>$waste</value>11 </parameter>12 <reationondition language="jl">13 Waste $waste && $waste.position!=null14 </reationondition>15 </ahievegoal>16 ...17 </goals>1819 <plans>20 <plan name="leanup">21 <parameter name="waste" lass="Waste">22 <goalmapping ref="ahieveleanup.waste"/>23 </parameter>24 <body lass="CleanUpWastePlan"/>25 <trigger>26 <goal ref="ahieveleanup"/>27 </trigger>28 </plan>29 ...30 </plans>31 ...32 </agent> Fig. 2. Cleaner agent ADF utoutan intuitively be modeled using a goal-oriented approah and lead to the fourorresponding top-level goals:maintainbatteryloaded, ahieveleanup, perform-lookforwaste, and performpatrol. The goal names already denote the di�erentgoal kinds (e.g. ahieve and perform) used for goal modeling and implemen-tation. The relationships between these goals have been further onstrainedusing inhibition ars. E.g. the maintainbatteryloaded goal is onsidered asmost important and inhibits goals of the other types in order to guaranteethat the robot does not break down. In Figure 2 a small utout of the leaneragent ADF is shown. It an be seen that the agent mainly has beliefs, goalsand plans setions. As part of its beliefs the agent e.g. remembers alreadyspotted wastes (line 3) in a beliefset alled wastes. The ahieveleanup goalis de�ned as ahievement goal (lines 8-15) with reation ondition (line 14).This ondition is triggered whenever the agent senses a new piee of waste.The goal remembers the triggering piee of waste within a parameter alsoalled waste (lines 9-11). In the plans setion (lines 19-30), the leanup planhas been de�ned to reat on ahieveleanup goals via a orresponding triggerdelaration (lines 25-27). It also de�nes a parameter for the waste that theplan has to ollet (lines 21-23). The value of this parameter is automatiallymapped to the waste parameter of the goal using a goalmapping desription

8 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf(line 22). Finally, the plan head inludes a referene to the plan body thatrealizes the plan logi (line 24). In this ase the Java lass CleanUpWastePlan(not shown) is utilized. For a more omplete desription of leanerworld thereader may onsider reading [6℄, whereby deliberation aspets are takled in[21℄.Miro Agent KernelMiro agents represent a very simple internal agent arhiteture that basiallysupports an objet-oriented behavior spei�ation. A miro agent is very sim-ilar to an objet with lifeyle and message handling methods. Thus, it hasmuh in ommon with the notion of an ative objet [13℄, whih ould beonsidered as a oneptual predeessor of agents. One main di�erene withrespet to ative objets is that a miro agent an be aessed not only in anobjet-oriented way via method invoation, but also by sending agent-orientedmessages to it. Miro agents do not o�er muh funtionality, but they haveadvantages with respet to minimal resoure onsumption and performaneharateristis. Hene, using miro agents an be bene�ial whenever the re-quired agent funtionality is simple and resoure restritions may apply or alarge number of agents is required.Miro agents are spei�ed as an extension of a prede�ned agent frameworklass. It is mandatory that at least one method (exeuteBody()) is overridden,whih will ontain the domain logi of the agent. In addition, further methodsan be supplied with ode that are alled one at startup (agentCreated())and when termination of the agent is triggered (agentKilled()). Whenever anagent reeives a message a spei� agent method is alled (messageArrived())that an also be ustomized in order to reat to inoming requests.ExampleMiro agents play out their strengths in senarios that �t to their harater-istis, i.e. senarios that e.g. only require simple tasks being exeuted and ex-hibit devie or environmental resoure onstraints. Examples inlude wirelesssensor networks (WSNs) and RFID (radio-frequeny identi�ation) systems.As these tehnologies are subjet to frequent tehnologial hanges in [1℄ aommon event-based middleware for WSNs and RFID systems has been pro-posed, whih aims at hiding low level aspets like hardware and basi eventproessing details. The middleware follows a layered arhiteture that o�erson the appliation layer an event based proessing model purely based on ap-pliation level, i.e. domain relevant, events. Lower layers are in harge of pre-proessing basi sensor and RFID data and employ omplex event proessing[15℄ to generate higher level domain events. One element of this middleware isa dupliate �ltering agent shown in Figure 3. It has the purpose to ollet lowlevel events from event soures and forward them to other event proessingagents. As event soures like sensors frequently produe events with the same

Jadex Ative Components: An Infrastruture for Agents and Work�ows 91 pakage ...;2 import ...34 publi lass SensorAgent extends MiroAgent5 {6 proteted long interval ;7 proteted List events;89 publi void messageArrived(Map msg, MessageType mt)10 {11 removeOutdatedEvents();12 if (!(events. ontains (msg)))13 {14 events. add(new Tuple(new Long(getTime()), msg));15 msg.put(SFipa.RECEIVERS, getArgument("reeivers"));16 msg.put(SFipa.SENDER, getComponentIdenti�er());17 sendMessage(msg, mt);18 }19 }2021 publi void removeOutdatedEvents()22 {23 // Iterate over list starting from oldest entries24 // and remove due entries until �rst non−due is found.25 }26 ...27 } Fig. 3. Dupliate �lter agent utoutontent the �lter agent stores events for a spei�ed time interval and onlyforwards those with new information. The agent is derived from the frame-work lass MiroAgent and only overrides the messageArrived() method thatis automatially alled whenever the agent reeives a new message. It has twomember variables storing the time interval and a list for already onsumedevents (lines 6-7). On message arrival the agent �rst removes outdated events(line 11) and then heks if the event is ontained in the events list (line 12). Ifthis is not the ase the agent stores the event in the list (line 14) and modi�esthe reeivers and senders of the event to forward it to its prede�ned reeivers(lines 15-17). Theses reeivers are fethed as value of an agent argument andare thus passed to the agent at startup.BPMN Work�ow KernelThe BPMN work�ow kernel allows the exeution of business proesses de-sribed in BPMN [16℄. A BPMN proess mainly onsists of ativities thatare onneted with di�erent kinds of gateways in order to steer the ontrol�ow. Furthermore, events play an important role, as they signal importantourrenes within a proess, e.g. starting, terminating a proess instane orsignaling message sending and reeival. Elements an be alloated to poolsand lanes, whih allow a proess to be aligned aording to underlying orga-nizational strutures. BPMN was initially oneived as a modeling languagefor business proess that primarily serves doumentation and ommuniations

10 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorfmeans, but an also be made diretly exeutable, if elements are annotatedwith exeution information and are equipped with a strit semantis.The BPMN work�ow kernel supplies its ative omponents with a BPMNinterpreter, whih is able to read BPMN models stored in an XML format. Themodeling of BPMN diagrams is urrently supported by an extended versionof the graphial BPMN editor available in elipse (stp)1. The extended editormainly adds the apability of property views for all kinds of elements. Inthese properties exeution relevant details an be spei�ed so that the diagramremains simple and readable also for non IT experts.Example

Fig. 4. Delivery proess exampleAs an example a small piee of a ommerial appliation senario is pre-sented. It is assumed that a ompany exists that sells items to ustomers. Be-sides the ore proesses that are onerned with selling goods and marketingspeial o�ers also the delivery of goods and aounting has to be onsidered.In Figure 4 the delivery proess is shown modeled in BPMN using the Jadexelipse editor. It an be seen that the proess �rst ships the items and sendsan invoie to the ustomer. Thereafter, a multi event is used to disambiguatebetween di�erent proess ontinuations. In ase the payment arrives, it is en-tered into the books and the proess �nishes. If instead the ustomer returnsthe items e.g. due to quality problems, a spei� omplaint management sub-proess is started to solve the issues. A suessful orretion of defets leads toreshipping the goods, whereas the proess terminates otherwise. It may alsohappen that the ustomer does not reat at all and the payment target is ex-eeded. In this ase, up to three dunnings are sent and the proess then againwaits for a ustomer response. If the ustomer still does not reat, she will beblaklisted and a debt olleting ageny will be instruted. In order to makethe proess exeutable, element spei� Jadex properties are introdued (notshown in Figure 4). Most importantly, ativities are onneted to Java lassesimplementing the orresponding domain logi, e.g. the send invoie ativity
1 http://www.elipse.org/bpmn/

Jadex Ative Components: An Infrastruture for Agents and Work�ows 11prepares an invoie doument from a template and sends it per email to theustomer. In addition, the data�ow, onsisting of loal and global parameters,has to be de�ned. One example is the number of sent dunnings that is savedin a global parameter in order to make it aessible for the heking gatewayas well as the send dunning ativity, whih inrements the ounter.GPMN Work�ow KernelBasis of the GPMN kernel is the goal-oriented proess notation, whih is de-veloped in the ongoing Go4Flex projet [4℄ together with Daimler AG. Theobjetive of GPMN onsists in providing an additional modeling notation forproesses that abstrats away from work�ow details and instead fouses onthe underlying aims a proess shall bring about. For this purpose GPMN in-trodues di�erent goal types as oneptual elements. These goals are arrangedin goal hierarhies for desribing how top-level goals an be deomposed intosubgoals and plans. A goal hierarhy represents the delarative properties ofthe proess (onditions to be ful�lled), while plans apture proedural aspets(sequenes of ations to be exeuted). The representation and exeution se-mantis for GPMN work�ows has been diretly adapted from the notion ofgoals in mentalisti BDI agents as desribed in Setion 3.2. This means thatthe same goal kinds are available for modeling (ahieve, maintain, query, per-form) and also deliberation based inhibition ars an be used. In ontrast toonventional BDI, GPMN introdues di�erent modeling patterns apturingreurrent design hoies. These patterns e.g. inlude sequential and parallelsubgoal deomposition, i.e. in GPMN a goal may have diret subgoals, whihan be delared to be exeuted one by one or in parallel. It has to be notedthat, if the top-level goal has a target ondition, subgoal proessing will be ter-minated as soon as the ondition beomes true, independent of the proessingstate of the subgoals.Goal oriented work�ows are exeuted by a GPMN kernel that onvertsGPMN to BDI agent models. In this way the GPMN kernel does not have toprovide its own exeution logi. GPMN diagrams an be graphially modeledby a newly developed elipse based GPMN editor. The editor allows draw-ing goal hierarhies and onneting them with BPMN diagrams for onretesubproesses. The usage of the GPMN editor is very similar to the BPMNversion so that an integrated usage of both tools is adequately supported.ExampleIn the following, an example GPMN manufaturing proess will be skethed.Assume a ompany has speialized in manufaturing leaner robots. Cus-tomers an ompose their own leaners by seleting from a number of on-�guration options (engine, sensors, garbage laws, et.). Eah leaner has aontrol unit, whih is a generi omponent of a 3rd-party supplier, but requiresustom software to be installed, depending on the leaner on�guration. Fig-ure 5 shows how this proess an be modeled in GPMN. For simpliity, only

12 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorfthe subproess for building a ontrol unit is shown. The root goal of thissubproess is 'Control Unit Built '. It is a sequential ahieve goal as denotedby the '1..n' at the bottom. This means that the two subgoals 'Control UnitReady ' and 'Software Installed ' need to be exeuted in order. The 'ControlUnit Ready' goal has two subgoals but does not impose a sequential ordering.Thus the 'Control Software Available' and 'Control Unit Available' goals anbe exeuted in parallel.

Fig. 5. Cutout of a manufaturing proess in GPMNThe �ve goals desribed above make up the goal hierarhy of the proess.The three leaf goals (i.e. goals whih are not further deomposed into sub-goals) are mapped to onrete plans or subproesses. The 'Control SoftwareAvailable' goal is a query goal, whih means that when an appropriate soft-ware version is readily available, no plan needs to be exeuted at all. If anappropriate software version is not available loally, yet exists in some reposi-tory, the 'Download Software from Repository ' plan is exeuted. Otherwise nospei� software exists for the leaner on�guration seleted by the ustomerand a new software version has to be developed ('Develop New Software' sub-proess).The ontrol units from the 3rd party supplier are kept in a stok. Thus the'Control Unit Available' goal an be ahieved by a simple 'Take Control Unitfrom Stok ' plan. Besides the main goal hierarhy, the separate 'Control Unitsin Stok ' maintain goal has the responsibility to assure that there are alwaysenough ontrol units in stok. Whenever the number of units drops below athreshold, the 'Order Control Units ' plan is exeuted. When there are no unitsin stok, the maintain goal will inhibit the 'Control Unit Available' goal. Thus

Jadex Ative Components: An Infrastruture for Agents and Work�ows 13the onstrution proess will not fail, but wait until there are new ontrolunits in stok.Appliation KernelThe appliation kernel belongs to the �other kernels� ategory. Its main pur-pose is to provide required funtionality for de�ning appliations, e.g. spei-fying the required omponents and their interrelations. An appliation spe-i�ation thus mainly ontains strutural information about the appliationtype. A key onept of an appliation type de�nition is that of neessary om-ponent types. Additionally, so alled spae types are introdued, whih havebeen inspired by the ontext and projetion onepts of the Repast simulationtoolkit [8℄. A spae is a very general onept for the representation of non-ative elements. It is a struture that ontains appliation spei� data andfuntionality independently from a single omponent. Therefore a spae pro-vides a onvenient way of sharing resoures among omponents without usingmessage-based ommuniation. The spae onept an be seen as an addi-tional struturing element. It does not impose onstraints on omponents,i.e. omponents from the same or di�erent appliations an ommuniate viaother means suh as messages. Spaes also an be seen as an extension pointof the omponent platform as spaes o�er appliation funtionality, indepen-dent of omponent behavior. Please note that the onrete funtionalities of aspae depend on its onrete type and are not diretly part of the appliationonepts. In order to de�ne in what way an appliation instane should bereated from an underlying appliation type, the onept of on�gurationsis introdued. A on�guration desribes whih runtime entities omprise aspei� appliation instane, i.e. whih omponents and spaes should be re-ated at startup time. At runtime an appliation represents a omponent inits own right, whih mainly ats as a ontainer for omponents and spaes.Components that are part of an appliation an aess the spaes via theontaining appliation instane. In this way the aess to spaes is restritedto omponents from the same appliation ontext. Representing appliationsas omponents also allows for handling them at the tool level, i.e. insteadof starting or stopping many single omponents, whole appliations an bemanaged.The spae onept is very general and an be interpreted e.g. in struturalor behavioral ways. Several spae types are provided as part of Jadex thatapture di�erent reurring funtional requirements. A simpli�ed version ofFerber's agent-group-role model [9℄ allows de�ning group strutures for om-ponents and assigning roles to omponent instanes. Another spae type isurrently under development for weaving de-entralized oordination meha-nisms in the appliation without hanging the omponent's behavior desrip-tions [25℄. The most elaborated spae type is the so alled EnvSupport [11℄.This spae is a virtual 2d environment for situated agents, in whih they anpereive and at via an avatar objet onneted to them. The spae faili-

14 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorftates the onstrution of simulation examples, as it takes over most parts ofvisualization and environment/omponent interation.In Jadex, appliations and their spaes are desribed using an XML de-sriptor �le following a metamodel de�ned as XML shema. An appliation ismainly omposed of spae and omponent types as well as initial instanes ofboth. Component types represent referenes to other omponent spei�ation�les, whih will be inluded with a logial name in the appliation ontext.At startup of an appliation the kernel will reate the delared omponentinstanes and spaes of the given on�guration.ExampleAn example appliation is shown in Figure 6. It represents a virtual environ-ment for testing leaner robots. The example makes use of the EnvSupportspae as explained in the following. The environment is de�ned as a ontin-uous 2D area (lines 3-27), in whih spae objets suh as leaners, hargingstations and waste items are loated (lines 4-10). The leaner objets, alledavatars, are onneted to the leaner agents and allow them to at and per-eive in the environment via user de�ned ations (lines 11-14) and perepts(omitted for brevity), e.g. for spotting and piking up waste. Furthermore,tasks (lines 15-18) an be diretly attahed to spae objets, suh as movingthe leaner robot or harging its battery. Besides objet behavior, also globalbehavior an be spei�ed in terms of environment proesses (omitted for spaereasons), whih may operate on all objets of the environment. Suh proessesan e.g. be used to model environmental ativities, like random appearaneof waste. Using the aforementioned onepts the appliation domain an bedesribed. In addition, also the visualization an be spei�ed in terms of pos-sibly di�erent perspetives (lines 19-26). A perspetive basially onsists ofdrawables, whih speify a graphial representation of a spae objet type,e.g. of the hargingstation objet (lines 21-23).The appliation further de�nes the omponent types to be used, suh asthe leaner robot and a truk, whih periodially empties waste bins (lines 30-33). Finally, appliation on�gurations are spei�ed (lines 35-51) that denotehow an appliation should be started. Possible settings are initial objets andtheir loations (e.g. plaement of a hargingstation is done in lines 40-42) aswell as the initially started omponents (two leaner agents are reated in line48).4 RealizationIn this setion details of the Jadex ative omponents infrastruture implemen-tation will be given. Conretely, it will be shown how the platform arhite-ture has been oneived and the Standalone Platform has been implemented.Thereafter, the generi kernel arhiteture will be presented and further ex-plained exemplarily by the BPMN kernel.

Jadex Ative Components: An Infrastruture for Agents and Work�ows 151 <appliationtype name="CleanerWorldSpae" pakage="jadex.bdi.examples.leanerworld">2 <spaetypes>3 <env:envspaetype name="2dspae" lass="ContinuousSpae2D"width="1"height="1">4 <env:objettypes>5 <env:objettype name="leaner">6 <env:property name="vision_range">0.1</env:property>7 ...8 </env:objettype>9 ...10 </env:objettypes>11 <env:ationtypes>12 <env:ationtype name="pikup_waste" lass="PikupWasteAtion"/>13 ...14 </env:ationtypes>15 <env:tasktypes>16 <env:tasktype name="move" lass="MoveTask" />17 <env:tasktype name="load" lass="LoadBatteryTask" />18 </env:tasktypes>19 <env:perspetives>20 <env:perspetive name="ions" lass="Perspetive2D" opengl="true">21 <env:drawable objettype="hargingstation" width="0.06" height="0.06">22 <env:texturedretangle imagepath="leanerworld/images/hargingstation.png"/>23 </env:drawable>24 ...25 </env:perspetive>26 </env:perspetives>27 </env:envspaetype>28 </spaetypes>2930 <omponenttypes>31 <omponenttype name="Cleaner" �lename="leanerworld/leaner/Cleaner.agent.xml"/>32 <omponenttype name="Truk" �lename="leanerworld/truk/Truk.agent.xml"/>33 </omponenttypes>3435 <appliations>36 <appliation name="Two leaners">37 <spaes>38 <env:envspae name="my2dspae" type="2dspae" width="1.0" height="1.0">39 <env:objets>40 <env:objet type="hargingstation">41 <env:property name="position">new Vetor2Double(0.8, 0.8)</env:property>42 </env:objet>43 ...44 </env:objets>45 </env:envspae>46 </spaes>47 <omponents>48 <omponent type="Cleaner" number="2"/>49 </omponents>50 </appliation>51 </appliations>52 </appliationtype> Fig. 6. Cutout of an appliation.xml4.1 Platform ArhitetureThe overall Jadex AC platform arhiteture is shown in Figure 7. Its setupdiretly ontributes to two of the initial design hallenges. First, it failitatesthe exeution of appliations omposed of heterogeneous omponents, beausethe kernel is realized as a separate layer on top of the platform layer. Both lay-

16 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf

Fig. 7. Platform arhitetureers form the ore of the Jadex omponent infrastruture but are only looselyoupled. This oupling is based on a set of ommon interfaes de�ned as un-derlying bridge between both layers, i.e. both layers have aess to the bridgeinterfaes. Seond, the usage of servies for providing platform funtionalitiesallows Jadex to be used in a multitude of exeution senarios due to the highadaptability of the platform layer. Espeially, it allows existing middlewareto be reused by wrapping o�ered funtionalities in terms of Jadex platformservies. In order to exeute di�erent omponent arhitetures within a singleplatform it is neessary to speify the responsibilities of the kernel and theplatform. A platform is mainly in harge of exeuting a omponent, deliver-ing messages to the omponent and notifying the omponent at ertain timepoints. From kernel side it is neessary to have aess to the platform servies.4.2 Standalone Platform ImplementationThe Jadex Standalone Platform is a lightweight pure Java SE based exeu-tion environment that is not based on an underlying middleware. It realizes aservie ontainer onept, whih means that it only exposes basi funtional-ities for managing platform servies. The servie ontainer allows for adding,removing servies and fething servies by their type. A servie lient thusonly has to know the interfae of the needed servie in order to retrieve it.Platform servies an be ustomized freely and hene the platform anbe individualized with regard to the onrete appliation senario by simplyhanging its delarative on�guration. On startup the Standalone Platformreads on�guration �les and evaluates them with respet to the initial serviesand omponents to start.The Jadex platform servies inlude internal servies as well as publi ser-vies, whereby internal servies are only used from other platform servies.Publi servies are available to ative omponents as well. Internal serviesinlude a thread pool servie and an exeution servie that are responsiblefor running ative omponents. Publi servies enompass infrastruture fun-

Jadex Ative Components: An Infrastruture for Agents and Work�ows 17tionalities similar to FIPA agent spei�ations2, i.e. a omponent managementservie for omponent reation and termination, a diretory failitator thatrepresents a servie registry as well as a message transport servie. Further-more, a lok and a simulation servie exist to enable appliation exeutionin real-time as well as in event-driven or time-stepped simulation modes.4.3 Kernel Arhiteture

Fig. 8. Kernel arhitetureIn Figure 8 the basi Jadex kernel arhiteture is depited. It mainly om-prises implementations of interfaes for the omponent fatory (IComponent-Fatory), the omponent model (ILoadableModel), the omponent instane(IComponentInstane) as well as the external aess point (IExternalAess).The omponent fatory provides funtionalities for loading omponentmodels as well as reating instanes of those models. In this regard a om-ponent model represents the type information about a spei� user de�neddomain omponent, e.g. whih belief, plan and goal types belong to a ustomBDI agent. The assoiated ILoadableModel interfae allows model onsumerssuh as the Starter tool to handle all models in the same way without knowl-edge about the underlying kernel type used. Eah ative omponent onsistsof two parts that interat losely: the omponent instane and the omponentadapter. The omponent instane ontains the exeution logi of the spei�omponent type and uses its assoiated omponent adapter as platform medi-ator e.g. for loating platform servies. The omponent adapter holds platformrelated information like the omponent identi�er and delegates exeution re-quests from the platform to the omponent instane. A detailed desriptionof the interation relationship between omponent instane and adapter anbe found in [18℄.
2 http://www.fipa.org/

18 Lars Braubah, Alexander Pokahr, and Winfried LamersdorfFor aessing a omponent from external threads, e.g. from a user interfae,a dediated external aess view on the omponent exists. It an be retrievedby the omponent instane and o�ers general as well as kernel spei� methodsfor omponent interation, e.g. in ase of a BDI agent an external proess anaess beliefs or reate and dispath a goal. The integration of a kernel is donevia a platform on�guration �le in whih the omponent fatory is announedas new platform servie, i.e. kernels are pluggable by on�guration.4.4 BPMN Kernel implementation
Fig. 9. Loading a BPMN modelThe BPMN kernel implementation basially provides BPMN spei� im-plementations of the kernel interfaes desribed in the last setion. In Figure9 it an be seen how a BPMN diagram is proessed from the kernel in or-der to exeute a proess instane on basis of this diagram. Starting point isthe elipse BPMN editor, whih saves the diagram in a proprietary XML �leformat, whih onsists of two �les: one representing the model and one de-sribing the layout information.3 The �rst one serves as input for the BPMNomponent fatory, whih reads the �le and generates a BPMN Java model.On basis of this model the omponent fatory an reate BPMN proess in-stanes (interpreter omponents), whih may be exeuted on the Jadex ativeomponents infrastruture.The interpreter follows a lightweight and extensible approah for realizingthe BPMN funtionality. Internally, it uses so alled proess threads for man-aging onurrent �ows within a proess. Suh a proess thread represents avirtual thread in ontrast to a real one managed by the operating system. Avirtual proess thread reords the exeution and memory state of a proess�ow and is used to steer the exeution of proess ativities. Due to their virtualharater, a proess instane is exeuted in a quasi-parallel way like all ativeomponents. The interpreter funtionality is realized using handlers and tasks.Handlers exist for eah prede�ned BPMN element, like gateway types and dif-ferent kinds of events, and implement their internal behavior. A parallel splitgateway e.g. reates virtual proess threads for eah of the outgoing parallelbranhes. The orresponding join gateway then waits for all inoming threads

3 In future versions BPMN 2.0 will allow using a standard XML format.

Jadex Ative Components: An Infrastruture for Agents and Work�ows 19and uni�es them to one that follows the outgoing edge. Changing or addinghandlers allows �exibly ontrolling the exeution behavior of the interpreter.Tasks are used for implementing ativity behavior. Several prede�ned tasksare available for standard ativities like printing on the onsole or requestinguser input. Besides these ready-to-use tasks, user-de�ned tasks an be reatedby extending a spei� framework lass. E.g. a work�ow management sys-tem (WfMS) is urrently being developed based on the BPMN kernel, whihprovides ustom tasks for onneting the modeled proesses to other aspetsof the WfMS infrastruture, suh as a worklist lient (for manual tasks) andexternal appliations (for automated tasks).5 Example ProjetsThe Jadex ative omponent infrastruture has been developed and is on-tinued to be used in various real-world appliation projets. Three of theseprojets will be desribed exemplarily in the following.5.1 MedPAge: Agent-based Hospital ShedulingThe MedPAge (medial path agents) projet was part of the German priorityresearh programme �intelligent agents and realisti ommerial appliationsenarios� (SPP 1083), whih was funded by the Deutshe Forshungsgemein-shaft (DFG) from 1999-2006. The aim of the researh programme was toshow the appliability and advantages of intelligent agent tehnology in realworld appliations from the hospital and manufaturing logistis domains. Asa joint projet between the University of Mannheim and the University ofHamburg, in the MedPAge projet a demonstrator was developed that im-proved treatment sheduling for patients in hospitals. The main approahwas representing patients and hospital resoures as Jadex BDI agents thatnegotiate treatment slots. The approah assures that patient goals (low wait-ing times) and resoure goals (high utilization) are equally respeted. Detailsabout the sheduling algorithm and the appliation an be found e.g. in [17℄.The main fous of the Jadex framework at that time was BDI-based agents.During the ourse of the MedPAge projet, the Jadex framework has beenevaluated in depth (see e.g. [7℄). As a result of this evaluation, two importantfators where identi�ed for further improvement, whih required tedious anderror-prone manual work in MedPAge: 1) the support for non-funtional re-quirements suh as persistene and salability and 2) the integration of agenttehnology with other mainstream tehnology like software omponents andwork�ows. Both fators led to the development of the Jadex ative omponentsinfrastruture, whih broadens the sope of the original Jadex framework andis an essential foundation for our urrent appliation projets desribed next.

20 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf5.2 Go4Flex: Agile Proess ManagementThe DFG tehnology transfer projet Go4Flex (goal-orientation for �exibleand agile proesses) [4℄ is onduted in ooperation between Daimler AGand the University of Hamburg and aims at providing advaned oneptualand software tehnial means for modeling and exeuting omplex businessproesses. In pratie, experiene has shown that modeling means o�ered bytraditional work�ow languages suh as event proess hains (EPCs) or BPMNare insu�ient for many proesses at large ompanies like Daimler AG. Whileproesses an be doumented with EPCs or BPMN, they are not diretlyadopted by the work�ow partiipants. One major issue is the strong fous onativities and their ordering. As proesses are typially prone to frequentlyhange, the abstratness of the proess desriptions is essential for their long-term usefulness.The Go4Flex framework is based on onepts, whih have been developedin the area of agents and multi-agent systems. The main researh questionof the DFG-funded Go4Flex projet is to isolate interesting multi-agent ideasand make them usable also for work�ows. Most importantly, Go4Flex fouseson the behavior and ontext perspetives, whih su�er among other thingsfrom their low oneptual onnetivity. Thus Go4Flex introdues the goalproess modeling notation (f. Setion 3.2) for abstrat modeling of �exiblework�ows. The Jadex ative omponent infrastruture forms the basis of theGo4Flex work�ow management system and allows using seemingly disparateonepts like agents and work�ows seamlessly.5.3 SodekoVS: Systematially Engineering Self�OrganizingSystemsThe DFG-funded researh projet SodekoVS (self-organisation based on de-entralized o-ordination) [24℄ is a ooperation of the University of AppliedSienes Hamburg and the University of Hamburg and aims at takling oordi-nation problems by utilizing nature-inspired design paradigms. These provideoordination strategies to equip software arhitetures with adaptability androbustness, based on deentralized self-organization priniples. Basis of theapproah are a newly oneived generi referene arhiteture as well as anadapted development methodology for the systemati onstrution of suhsystems. Coordination mehanisms are made available as middleware serviesand a minimally intrusive programming model allows developers to on�g-ure and integrate representations of nature-inspired oordination strategies intheir appliations. The systemati utilization of these development tools re-quires support to design, i.e. model, selet, ombine and re�ne self-organizingdynamis, and to simulate the resulting appliation prototypes.The projet heavily relies on many features of the Jadex ative omponentinfrastruture. The oordination algorithms require large numbers of ompo-nents being exeuted in parallel. This kind of salability is provided by the

Jadex Ative Components: An Infrastruture for Agents and Work�ows 21miro agent kernel. The external aess faility (f. Setion 4.3) is used forthe programming model to integrate the oordination layer with the applia-tion funtionality, whih an further be realized using any omponent type.Finally, the support for simulated exeution is used as a basis of a validationtool to automatially hek if the employed oordination strategies onvergeand adapt as desired.6 Summary and OutlookIn this hapter ative omponents have been presented as novel notion forbuilding omplex distributed and onurrent systems. The ative omponentonept has emerged from an integration of agent and software omponentonepts and thus tries to ombine the strength of both. Ative omponentsare the oneptual basis of the Jadex middleware, whih has been oneivedto be able to exeute arbitrary types of ative omponents. The internal arhi-teture of ative omponents is realized in di�erent kernels that an be usedtogether on the same omponent platform allowing heterogeneous appliationsbeing onstruted. Currently, agent, work�ow and appliation kernels exist,whih have been presented in detail aording to their arhiteture as well asusage by drawing on typial example senarios. Furthermore, the underlyingimplementation onepts of a kernel have been disussed, whih mainly relyon a omponent fatory that is able to load ative omponent models and in-stantiate them. The ative omponent onept has been further illustrated byseleted researh projets, whih make use of di�erent platform features. Med-PAge, a deentralized appointment sheduling solution for hospitals, makesheavy use of agent-based negotiation apabilities. In ontrast, in Go4Flex, aprojet aiming at �exible work�ow desription and exeution, the integrationof work�ow and agent onepts helped solving the agility demands. Finally, forthe SodekoVS projet, whih aims at providing self-organization algorithmsas reusable patterns, the salability of the miro agent kernel and the simula-tion features of the platform are essential. Future work will espeially taklethe oneptual integration hallenges of the servie oriented arhiteture andative omponents.Referenes1. Dirk Bade and Winfried Lamersdorf. An agent-based event proessing middle-ware for sensor networks and r�d systems. Computer Journal, Speial Issue on"Agent Tehnologies for Sensor Networks", 2009.2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systemswith JADE. John Wiley & Sons, 2007.3. L. Braubah and A. Pokahr. Representing long-term and interest bdi goals.In Thangarajah Braubah, Briot, editor, Proeedings of International Workshopon Programming Multi-Agent Systems (ProMAS-7), pages 29�43. IFAAMASFoundation, 5 2009.

22 Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf4. L. Braubah, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister. Go4�ex:Goal-oriented proess modelling. In Proeedings of the 4th International Sym-posium on Intelligent Distributed Computing (IDC 2010). Springer, 2010.5. L. Braubah, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent SystemCombining Middleware and Reasoning. In R. Unland, M. Calisti, and M. Klush,editors, Software Agent-Based Appliations, Platforms and Development Kits,pages 143�168. Birkhäuser, 2005.6. L. Braubah, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representationfor BDI Agent Systems. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah-Seghrouhni, editors, Proeedings of the 2nd International Workshop on Pro-gramming Multiagent Systems (ProMAS 2004), pages 44�65. Springer, 2005.7. Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf. A universal rite-ria atalog for evaluation of heterogeneous agent development artifats. Inter-national Journal of Agent-Oriented Software Engineering (IJAOSE), 2009. toappear.8. N. Collier. RePast: An Extensible Framework for Agent Simulation. WorkingPaper, Soial Siene Researh Computing, University of Chiago, 2001.9. J. Ferber, O. Gutkneht, and F. Mihel. From Agents to Organizations: an Orga-nizational View of Multi-Agent Systems. In P. Giorgini, J. Müller, and J. Odell,editors, Proeedings of the 4th International Workshop on Agent-Oriented Soft-ware Engineering IV (AOSE 2003), pages 214�230. Springer, 2003.10. K. Fisher, M. Shillo, and J.H. Siekmann. Holoni multiagent systems: Afoundation for the organisation of multiagent systems. In Vladimír Marík, Dun-an C. MFarlane, and Paul Valkenaers, editors, HoloMAS, volume 2744 ofLeture Notes in Computer Siene, pages 71�80. Springer, 2003.11. K. Jander, L. Braubah, and A. Pokahr. Envsupport: A framework for devel-oping virtual environments. In Seventh International Workshop From AgentTheory to Agent Implementation (AT2AI-7). Austrian Soiety for CybernetiStudies, 2010.12. N. R. Jennings. An agent-based approah for building omplex software systems.Communiations of the ACM, 44(4):35�41, April 2001.13. G. Lavender and D. Shmidt. Ative objet - an objet behavioral pattern foronurrent programming. In J. Vlissides, J. Coplien, and N. Kerth, editors,Pattern Languages of Program Design 2. Addison-Wesley, 1996.14. M. Luk, P. MBurney, O. Shehory, and S. Willmott. Agent Tehnology: Com-puting as Interation (A Roadmap for Agent Based Computing). AgentLink,2005.15. David C. Lukham. The Power of Events: An Introdution to Complex EventProessing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-lishing Co., In., Boston, MA, USA, 2001.16. Objet Management Group (OMG). Business Proess Modeling Notation(BPMN) Spei�ation, version 1.1 edition, February 2008.17. T. Paulussen, A. Zöller, F. Rothlauf, A. Heinzl, L. Braubah, A. Pokahr, andW. Lamersdorf. Agent-based patient sheduling in hospitals. In P. LokemannO. Spaniol S. Kirn, O. Herzog, editor, Multiagent Engineering - Theory andAppliations in Enterprises, pages 255�275. Springer, 6 2006.18. A. Pokahr and L. Braubah. From a researh to an industrial-strength agentplatform: Jadex V2. In Hans-Georg Fill Hans Robert Hansen, Dimitris Kara-giannis, editor, Business Servies: Konzepte, Tehnologien, Anwendungen - 9.

Jadex Ative Components: An Infrastruture for Agents and Work�ows 23Internationale Tagung Wirtshaftsinformatik (WI 2009), pages 769�778. Öster-reihishe Computer Gesellshaft, 2 2009.19. A. Pokahr, L. Braubah, and K. Jander. Unifying agent and omponent onepts- jadex ative omponents. In J. Dix and C. Witteveen, editors, Proeedingsof the 8th German onferene on Multi-Agent System TEhnologieS (MATES-2010). Springer, 2010.20. A. Pokahr, L. Braubah, and W. Lamersdorf. A Flexible BDI ArhitetureSupporting Extensibility. In A. Skowron, J.-P. Barthès, L. Jain, R. Sun,P. Morizet-Mahoudeaux, J. Liu, and N. Zhong, editors, Proeedings of the2005 IEEE/WIC/ACM International Conferene on Intelligent Agent Tehnol-ogy (IAT 2005), pages 379�385. IEEE Computer Soiety, 2005.21. A. Pokahr, L. Braubah, and W. Lamersdorf. A goal deliberation strategy forbdi agent systems. In T. Eymann, F. Klügl, W. Lamersdorf, M. Klush, andM. Huhns, editors, Proeedings of the 3rd German onferene on Multi-AgentSystem TEhnologieS (MATES-2005). Springer, 2005.22. A. Pokahr, L. Braubah, and W. Lamersdorf. Jadex: A BDI Reasoning Engine.In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouhni, editors, Multi-Agent Programming: Languages, Platforms and Appliations, pages 149�174.Springer, 2005.23. A. Rao and M. George�. BDI Agents: from theory to pratie. In V. Lesser,editor, Proeedings of the 1st International Conferene on Multi-Agent Systems(ICMAS 1995), pages 312�319. MIT Press, 1995.24. J. Sudeikat, L. Braubah, A. Pokahr, W. Renz, and W. Lamersdorf. Systemat-ially engineering self�organizing systems: The sodekovs approah. In M. Wag-ner, D. Hogrefe, K. Geihs, and K. David, editors, Proeedings des Workshops überSelbstorganisierende, adaptive, kontextsensitive verteilte Systeme (KIVS 2009),page 12. Eletroni Communiations of the EASST, 3 2009.25. A. Vilenia, A. Pokahr, L. Braubah, W. Lamersdorf, J. Sudeikat, and W. Renz.Coordination in multi-agent systems: A delarative approah using oordinationspaes. In Seventh International Workshop From Agent Theory to Agent Imple-mentation (AT2AI-7). Austrian Soiety for Cyberneti Studies, 2010.26. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.27. M. Wooldridge. An Introdution to MultiAgent Systems. John Wiley & Sons,2001.

