
Method Calls Not Considered Harmful for
Agent Interactions

Lars BRAUBACH a and Alexander POKAHR a

a Distributed Systems Group, University of Hamburg, Germany
Email: {braubach, pokahr}@informatik.uni-hamburg.de

AbstractSince the very beginnings of agent technology it is considered a funda-
mental property that communication between agents is done using asynchronous
message passing. One important reason for this assumption is that a method call
on an agent would break its autonomy. Conceptually, it would allow an agent to
exert control over the behavior of another agent by directly telling it to execute
a specific method. Furthermore, more than one agent could call methods on the
same agent concurrently possibly leading to state consistency problems. In contrast
to agents, in mainstream programming paradigms like object, component or ser-
vice orientation method calls are the dominant communication means. Being able
to define interfaces from method signatures represents an important advantage of
those approaches currently not available for agents. In this paper we will argue how
it is possible to introduce service interfaces and method calls for agents without
breaking their autonomy and endangering their state consistency. To achieve this,
concepts from active objects, services and components are brought together. The
usefulness of the approach is underlined with an example application from the area
of distributed image rendering.

1. Introduction

Many definitions of the agent concept have been proposed and it can be observed that these definitions
typically consider an agent under a specific perspective, e.g. as personal assistant, as design metaphor
or as extended object, and highlight corresponding properties [1]. In order to unify these different
points of views Wooldridge and Jennings proposed the weak and strong notions of agency [2], which
represent agent definitions based on important agent characteristics. The weak notion emphasizes
that agents are autonomous with respect to their behavior decisions, capable of reactive and proactive
actions and social by being able to communicate with each other. The strong notion adds mentalistic
notions as description means for agents, i.e. an agent is programmed using e.g. beliefs, desires and
intentions.

In this paper a software centric perspective is emphasized and the social dimension of agents is
analyzed with respect to the question whether and how method calls fit in agent programming. It is
a fundamental assumption that agent interactions are based on asynchronous message passing, e.g.
pushed forward by introductory literature [3, p. 132 ff.], existing standards like FIPA [4] and KQML
[5] that focus on message level communication and finally also by well-known agent platforms like
JADE [6] or LS/TS [7]. In contrast, method invocations are object-level interactions that violate the
autonomy of an agent by interfering with its behavior control from the side of the method invoker.
Despite this obvious danger method calls are the dominant interaction scheme in most successful
software paradigms used in practice such as objects, components and services. They are a fundamen-
tal ingredient for describing functionalities of entities in a precise manner using interfaces composed
of publicly available method signatures. Their importance for building distributed systems is espe-
cially highlighted by Web Services and corresponding standards like WSDL [8], which in core deal



with how invocations can be described in a machine independent way. In this paper we will argue
how agents can be conceptually designed and extended to also allow method invocations without
losing their autonomy.

For this purpose, first in Section 2 a running example will be introduced. In Section 3 the prob-
lem is concretized and further explained using the example application. Thereafter, in Section 4 the
conceptual solution is presented and its implementation is shortly sketched in Section 6. In Section
6 related work is discussed. A discussion is given in Section 7 and in Section 8 some concluding
remarks and ideas for future work are presented.

2. Running Example

In order to illustrate the existing problems and motivate our solutions a running example called Man-
delbrot is introduced. It allows users to render fractal images based on well-known fractal algorithms
(e.g. Mandelbrot, Lyapunov, etc.). To speed up the rendering process, the system should be able to
distribute the computation across different hosts in a network. The application can be coarsely di-
vided into three different units of functionality. The display provides interaction capabilities for a
user of the system. It is responsible for presenting rendered images to the user and allowing the user
to issue new rendering requests (e.g. by zooming into the picture or by manually entering values). A
generator handles user requests and decomposes them into smaller rendering tasks. It acts as a co-
ordinator responsible for task distribution and result collection. A calculator accepts rendering tasks
and returns results of completed tasks to the generator. It has access to different fractal algorithms
and is thus able to provide the color values for pixels of the image to be rendered.

3. Problem Statement

In order to understand better the status quo of communication in agent systems first several problems
of message-based interactions will be discussed:

• Messages are low-level building blocks which decompose even simple request reply schemes
to sending, waiting for response and reacting on response activities that explicitly have to
be considered and arranged by an agent programmer. As for example waiting for a response
is part of the application code errors may be introduced by e.g. using a wrong conversation
identifier etc. Thus, messages do not allow constructing flexible and robust interaction in an
easy way [9].

• Messages are a concept that is often considered as being orthogonal to internal agent archi-
tectures. This forces developers to think in additional concepts when it comes to multi-agent
programming tasks. As an example consider intentional BDI agents which allow thinking in
terms of goals and plans for achieving goals. If such a goal cannot be fulfilled by an agent
itself a developer would like to think in terms of goal delegation to another agent and not
in terms of low-level messages. This is one of the reasons why alternatives like goal-based
interactions have been developed to hide message passing [10].

• Agent message structures are complicated as FIPA language specifications introduce a lot
of different parameters besides sender, receiver and content, e.g. for content encoding used
ontology and interaction flow control. Additionally, FIPA messages are ontology-based so
that it is not trivially possible to pass complex data structures. These have to be encoded
as part of an ontology and often special tools like code generators have to be used to make
them transferrable. For a developer, even simple tasks like requesting an action from another
agent leads to a lot of preparatory efforts to be taken. As a result, the code to be written
for assembling the messages is often considerably complex and typically requires dealing
with communication issues (e.g. data representation formats such as FIPA-SL) as part of the



functional code. Taken together, preparatory actions and cumbersome assembly slows down
agent development considerably.

• Messages do not contribute to distribution transparency. They require specifying receivers
explicitly so that an application developer cannot easily abstract from the targets identity
although this identity might be dispensable to know for the sender. In order to alleviate the
tight coupling of senders and receivers e.g. topic-based message communication has been
introduced, e.g. as part of service busses and also in some agent platforms like e.g. Cybele1.

One often quoted advantage of agent messages is the semantic layer on which they operate. We will
deal with this issue in depth later in Section 7. To complement the problems of messages in the
following several advantages of the method-based invocation scheme are highlighted:

• Methods are important for software engineering characteristics: Method signatures are nec-
essary for interface specifications which are the conceptual means for separating functionality
specification and implementation. In turn, without interfaces desirable software engineering
properties like modularity and extensibility are difficult to achieve.

• Methods are part of most practice-oriented software engineering paradigms except agents:
Looking at the historical evolution of programming paradigms one can see that the transition
from hardware near approaches to procedural programming was an important step forward
that introduced the notion of a procedure for encapsulating functionality and making it subject
to further reuse. The method concept has been adopted in the context of object orientation,
which brings together local state and behavior specification using classes. Object-oriented
systems are typically composed of object hierarchies, in which communication between ob-
jects is performed primarily by method calls. Other contemporary programming paradigms
such as component and service orientation also embrace this basic communication scheme
and support interaction based on method call semantics.

• Methods are natural and sufficient for many real world application scenarios: Due to the suc-
cess of object, component and service-oriented approaches in diverse projects it is apparent
that these paradigms offer suitable abstractions for building complex applications, i.e. they are
sufficient for many real world application scenarios. Such scenarios can often naturally be de-
scribed with providers and consumers of functionality interacting in a simple request/response
scheme in the sense of service-oriented architectures. Such an interaction style can directly be
mapped to method calls and does not call for elaborated coordination strategies. In this sense
method calls simplify the development of many applications as other communication schemes
like message passing often add complexity without providing additional value.

• Methods are well-known with easy to understand semantics: Nowadays, object orientation is
the dominant programming paradigm that is part of many University software engineering
curricula and other education programs. Therefore object-oriented concepts are well known
and understood by most developers and thus the thinking of developers is often grounded in
object concepts.

For the above mentioned reasons it can be concluded that object orientation in general and method-
oriented communication in particular are important criteria for the wide acceptance of any new pro-
gramming approach. In an earlier paper we claimed that agent technology is only to succeed if it
clearly convinces people that it a) has something new and important to add that is currently miss-
ing and b) does not remove anything essential from existing approaches [11]. In our view, removing
methods from the spectrum of available communication means represents a serious software techni-
cal limitation that hinders the wide adoption of agents.



Figure 1. Problems of method calls

3.1. Fundamental Problems with Methods and Agents

The main problems regarding agents that communicate with method calls are depicted in Fig. 1. It is
assumed that an agent, regardless of its concrete internal architecture, always consists of an interpreter
that executes domain specific behavior. This behavior may access the agent’s state at any time for
read and write operations. In this simple setting an agent may directly expose parts of its behavior via
an interface composed of method signatures. In the following the implications are discussed when an
agent B invokes a method on another agent A from its publicly available interface.

• Autonomy is endangered: In the scenario agent B directly accesses behavior of agent A by
calling its method. With the call it forces agent A to execute an action it may not want to
perform at all. Additionally, the question arises how the behavior from the invoked method
fits to the internal behavior agent A is currently executing. If these behaviors are semantically
contradicting this may lead to irrational behavior of agent A.

• Consistency is endangered: Both agents are autonomous entities so that they can behave inde-
pendently of each other, i.e. conceptually they represent separate processes. Given that agent
B directly executes behavior of agent A using a method call, this behavior may read and write
data from/to its state. As both agents possibly act concurrently, typical data consistency prob-
lems like data corruption and lost updates can occur. State consistency is also endangered by
transferring object references between agents, which may occur when an agent calls a method
with parameters having call-by-reference semantics. Here concurrent access to objects may
occur as more than one agent can work with the same object from its state.

3.2. Problem Analysis

This section discusses requirements that should be met when considering method calls as an interac-
tion mechanism for agents. The requirements are based on the assumption that the interaction should
exhibit the above mentioned advantages of method calls, but should also be in line with the agent
metaphor by not violating the fundamental properties of autonomy and state consistency. First, the

1http://www.i-a-i.com/default.asp

http://www.i-a-i.com/default.asp


main consequences of autonomy and state consistency are identified and afterwards it is analyzed
with the help of the running example, how they can be reflected in method-call-based programming
styles.

Autonomy is defined as “independence or freedom, as of the will or one’s actions”2. With respect
to method calls on an entity this can be interpreted as the ability of the entity to decide for itself, if
and when a requested action will be performed. More specifically, an entity should not be forced to
directly execute method calls as they happen, but it should be able to reorder (e.g. prioritize) calls,
delay calls for other reasons (e.g. collect requests before starting to work on them) or also completely
reject incoming calls. Moreover, the entity may perform additional side-effects as a result of the call
(e.g. logging), of which the caller might not be aware of. Considering agents, this interpretation of
method call autonomy can be further extended towards how the agent comes to a decision on how
to react to a call. Depending on the type of agent as being a goal-oriented, situated, and/or social
entity, different approaches should be supported to fully reflect the bandwidth of the agent paradigm.
E.g. as a result of receiving a method call, a goal-oriented agent might perform complex reasoning
processes based on its current beliefs before deciding to execute the requested action, while a social
agent acting in a group might coordinate its behavior with other agents using sophisticated interaction
protocols.

With regard to consistency, it is well known in object-oriented programming that writing correct
concurrent code is nearly impossible in practice using low level concepts like threads and locks [12].
The reason for this is the exponential growth of possible interleavings with regard to the number of
algorithm steps even when considering only two threads. Due to race-conditions, concurrency sit-
uations are difficult to reproduce, making testing and debugging of concurrent code very hard and
error prone. On the other hand, concurrency is a desired and also required property of distributed
systems, because it is needed for utilizing the available computational resources (e.g. multi-core pro-
cessors) and is also an inherent property of all distributed systems that are composed of independent
(and thus concurrently executing) nodes. Unlike other paradigms such as object orientation, the agent
paradigm offers a conceptual abstraction for concurrency [13]: an agent is an independently acting
entity that encapsulates its own (logical) thread of control. As interaction between agents is based on
asynchronous message passing, no locks are required and thus many of the problems of concurrent
programming are alleviated. This conceptual advantage of the agent paradigm needs to be preserved
when introducing method calls as a new interaction scheme.

To illustrate possible solutions to the above problems, we consider implementations of the calcu-
lator entity from the Mandelbrot example application (see Fig. 2). As we want to support method-call
style interaction, we define an object-oriented interface of the calculator entity called ICalculateSer-
vice (lines 1-3), which offers to calculate an area of a fractal image as specified in the AreaData pa-
rameter. At first, we consider the first option with a direct return value (line 2a). A naive implementa-
tion of the method (lines 8-12) represents the typical way of object-oriented programming, but offers
no autonomy or consistency at all, because the code of the method is executed directly and uncondi-
tionally on the caller’s thread. While this implementation therefore does not provide a solution to the
autonomy and consistency problem, it represents an ideal that we would like to come close to in the
sense of keeping the programming as simple as possible. In the follwing, three independent improve-
ments of the naive implementation are explained, each of which addresses different requirements. To
isolate the state of caller and callee, supplied parameters and the return value need to be cloned, such
that caller and calle always operate on local copies of these values. This can be achieved by providing
a clone() operation and applying the operation to the corresponding values (lines 15-20). The next
implementation (lines 23-31) incorporates a decision, if a call should be accepted. The decision itself
is moved to a new internal method acceptCall() (line 16), such that it can be implemented indepen-
dently of the business logic in the calculateArea() method. This solution allows rejecting calls in

2Dictionary.com: Autonomy of the individual (http://dictionary.reference.com/browse/autonomy)

http://dictionary.reference.com/browse/autonomy


01: public interface ICalculateService {
02a: public AreaResult calculateArea(AreaData area); // Option a: direct return value
02b: public IFuture<AreaResult> calculateArea(AreaData area); // Option b: Future return value
03: }
04:
05: public class CalculatorAgent implements ICalculateService {
06:
07: // No autonomy or consistency
08: public AreaResult calculateArea(AreaData area) {
09: AreaResult result;
10: // Perform calculation...
11: return result;
12: }
13:
14: // Isolated state
15: public AreaResult calculateArea(AreaData area) {
16: area = clone(area);
17: AreaResult result;
18: // Perform calculation...
19: return clone(result);
20: }
21:
22: // Decided execution
23: public AreaResult calculateArea(AreaData area) {
24: if(acceptCall()) {
25: AreaResult result;
26: // Perform calculation...
27: return result;
28: } else {
29: throw new RuntimeException(...);
30: }
31: }
32:
33: // Decoupled execution
34: public IFuture<AreaResult> calculateArea(AreaData area) {
35: Future<AreaResult> result = new Future<AreaResult>();
36: scheduleTask(new CalculateAreaTask(area, result));
37: return result;
38: }
39:
40: // Combined solution
41: public IFuture<AreaResult> calculateArea(AreaData area) {
42: area = clone(area);
43: Future<AreaResult> result = new Future<AreaResult>();
44: scheduleTask(new DecideCallAcceptance(result,

new CalculateAreaTask(area, result)));
45: return new CloneFuture(result);
46: }
47: }

Figure 2. Autonomy and consistency in OO method calls

which case the caller will be informed about the call rejection in terms of an exception. To achieve
state consistency and also allow delaying or reordering of calls, decoupling needs to be introduced
(lines 34-38). Here, the calculation is moved to a separate class called CalculateAreaTask. This task
is scheduled to be executed on the thread of the agent using a scheduleTask() method (line 36), which
might be provided by the underlying agent platform or framework. Now the execution is performed
asynchronously, i.e. independent of the caller thread, which means that the method call returns after
the task is scheduled, but maybe before it has been executed. Therefore the result of the calculation
cannot be directly provided, but needs to be wrapped in a Future3 object [14] using option b of the
interface (c.f. line 2b). The future is passed to the calculation task as well as to the caller. After the
calculation is finished, the result will be stored in the future, where the caller can retrieve it. When
the future supports the observer pattern, the caller can be notified when the result is available, such
that it does not have to periodically poll the future for the result. The last implementation (lines 41-
46) combines the previous three solutions. The decision has been implemented as a separate Decide-

3A future represents a placeholder object for the result of an asynchronous call. It helps decoupling the caller from the
callee by freeing the latter from immediately processing the request. Instead the callee returns the future and processes the call
when it deems it appropriate. A future typically offers a notification scheme for the caller to become aware of the result, which
is stored in the future. On the one hand the future can be probed in order to test if the result has been delivered and on the other
hand a blocking call on the future can be used to let the caller explicitly wait until the result is available (wait-by-necessity).
To avoid such blocking waits a future can also offer a listener interface. In case the callee has produced the result and saved
it in the future, it will automatically notify all installed listeners and in this way continue processing in the caller.



CallAcceptance task, which is scheduled on the agent. When the call is accepted, the actual Calcu-
lateAreaTask will be scheduled by the DecideCallAcceptance task. Otherwise an exception will be
set as the result of the future, such that the caller will know, that the call has been rejected. Instead
of the original result future, a CloneFuture is returned, which takes care of cloning the result value
before making it available to the caller.

The nesting of asynchronous tasks as shown in the last implementation is a powerful pattern,
that meets the requirements for autonomy and consistency with respect to agent method calls. Calls
can be rejected, reordered and delayed. The actual business logic code is always executed on the
agent thread and thus does not cause consistency issues. Moreover, side-effects of calls can easily be
introduced as an additional task. The developer may choose to add the side-effect before or after the
DecideCallAcceptance task, if she wants the side-effect to happen for all or only for accepted calls.

Although autonomy and consistency are preserved by the introduced pattern, some drawbacks
can be noted. The solution imposes a considerable code overhead (e.g. compared to the naive imple-
mentation several additional classes are necessary for describing the tasks) and thus the initial goal
of capturing the simplicity of method calls is not achieved. The additional code also introduces new
error sources, e.g. a developer may accidentally call methods, which are not considered to be called
from other agents and are thus not decoupled. Moreover, in all methods which apply the decoupling
pattern, the reasoning logic (call acceptance, side-effects) has to be hard coded. When an agent wants
to expose many methods, all corresponding method implementations need to be changed when the
developer chooses to alter the reasoning performed by the agent.

3.3. Summary

The above discussion has shown that autonomy and consistency are important properties that need
to be taken into account, when thinking about method call style agent interactions. Technically, ex-
isting object-oriented programming techniques can be used to meet the identified requirements. Yet,
the considered programming patterns introduce a considerable overhead and have limited flexibility.
Therefore, in the next section a generic solution is presented, which provides integrated support for
method call style agent interactions as part of an agent programming framework and thus relieves the
developer from the burden of implementing these details by hand.

4. Approach

Method calls can be integrated into the agent concept by following the active object design pattern
[15] and enriching it with agent reasoning capabilities. The changed method invocation scheme for
agents is shown in Figure 3. It can be seen that method calls are routed into an interceptor chain
for the purpose of transparently (for the caller and partially also for the agent programmer) pre- and
postprocessing a call. The interceptor chain has the purpose to induce actions before and after a call
in order to ensure the agent’s autonomy and its state consistency. In order to achieve both specific
decoupling and reasoning interceptors are needed, which are explained in the following.

• Autonomy is safeguarded: The reasoning interceptor has the purpose of initiating agent be-
havior specifically designed for reasoning about method calls. This reasoning behavior is in
charge of deciding about all important aspects how the call should be handled, e.g. if the call
should be rejected or delayed. Depending on the type of the agent other forms of reasoning
interceptors can be used, e.g. in case of a BDI (belief desire intention) [16] agent a specific
service goal can be created. The call semantics for agents is defined as follows. From a pro-
grammer’s point of view a method invocation should always lead to method body execution,
because it is a fundamental principle of the object-oriented programming model. In case of
action requests for agents this is not the case due to their increased behavior autonomy. The
semantics for service invocations lies in between the object-oriented call and the message-



Figure 3. Solution for method calls

based action request semantics. On the one hand, it makes sense to assume a reasonable and
simple default behavior for service invocations that is near to the object and service-oriented
world and on the other hand services should not be understood as a means for reducing the
possible autonomy of the entity. Thus, we define that the invocation of a method m of service
s on agent c1 from agent c2 with the intention of getting an action a executed must not lead to
action execution (1). Instead, it must only lead to a result or failure response r (within some
timeout) to let the caller know about the method call consequences (2).

¬�(invoked(c1,m, s, c2) ∧ request(m, a) → ♦done(c1, a)) (1)

�(invoked(c1,m, s, c2) → ♦result(c2,m, r)) (2)

• Consistency is safeguarded: To ensure consistency it is a mandatory prerequisite to protect the
agent state from concurrent access. Thus, the decoupling interceptor has the task of routing a
call from the callers execution thread to the execution thread of the callee, i.e. from agent B
to agent A in the scenario. This is achieved in the same way as in active objects. Instead of
directly executing the call, a call request is appended to an action queue of the called agent.
The interpreter monitors the queue and fetches entries for processing whenever available. In
this way the call is made part of the agent behavior and the state is not accessed from outside
but only from the agent itself. The decoupling interceptor also assures that method parameters
and results are passed using a call-by-copy semantics.

Compared to the preliminary solution pattern of Section 3.2, the integrated approach presented above
offers several important advantages. Firstly, the agent platform manages the method call interaction
by routing all calls through the interceptor chain. Therefore, the caller does not have access to the
agent object directly, but only to a proxy of the agent, which is automatically generated by the plat-
form. This proxy object exposes only the methods of those interfaces that the agent programmer has
explicitly chosen to be visible to the outside. Therefore no accidental calls of unprotected methods
can occur. Secondly, as a default the interceptor chain includes a decoupling interceptor that sched-
ules calls on the agent thread. Therefore consistency is automatically assured and as a result method
implementations inside the agent can follow the naive scheme without any code overhead. Thirdly,



Figure 4. BDI interceptor call visualization

reasoning concerning the autonomy of the agent is separated from the business logic. The agent de-
veloper can implement various types of interceptors with different approaches for reasoning, e.g.,
about call acceptance, and add these interceptors to the interceptor chain where needed. Finally, this
separation of concerns further facilitates runtime flexibility, because the interceptor chain can be eas-
ily changed during the lifetime of an agent. E.g. an agent might decide temporally enabling logging
or access control by adding/removing an appropriate interceptor.

4.1. BDI Reasoning Interceptor

The interceptor concept will be further illustrated using the mandelbrot example. In order for the
generator agent to be able to distribute the work pieces efficiently to available calculator agents it
is assumed that the calculator agents can refuse service calls if they are already working on another
task. Such a refusal will immediately be propagated back to the generator agent using a service
invocation exception. The intended call processing is also shown in 4. An arriving service call arrives
at the service proxy and passes the interceptor chain. After decoupling and state isolation has been
performed a user defined BDI reasoning interceptor is called. This interceptor will asynchronously
create a goal in the agent for deciding about call acceptance. After some plan has been performed
reasoning logic the control flow branches according to the result (either + for acceptance or - for
rejectance). In case of acceptance the service implementation is invoked and otherwise the interceptor
directly returns an exception to the calling agent. The BDI calculator agent implementation with a
reasoning interceptor is depicted in Figure 5).

The BDI calculator agent (lines 1-24) consists of the provided calculate service, a goal for rea-
soning about the call acceptance and a plan for handling this goal. It can be seen in Figure 5 that
the calculate service (lines 18-23) is defined using its service interface ICalculateService (line 19),
its implementation class CalculateService (line 20) containing only functional code for rendering the
area and the additional BDI reasoning interceptor class BDIReasoningInterceptor (line 21). The pro-
cessing logic of the agent is as follows. Whenever a method call on the provided service arrives,
it will go through the interceptor chain eventually arriving at the BDIReasoningInterceptor. The inter-
ceptor (lines 31-50) only delegates the acceptance call reasoning to the agent via dispatching a de-
cide_call_acceptance query goal.4

The reasoner consists of two methods. The first method isApplicable() is called to determine if the
interceptor is allowed to handle the call at all. If not, processing continues with the next interceptor

4A query goal is a goal type that aims at retrieving information. In the example it is considered as succeeded when the
parameter ’execute’ is supplied with a value. More details about goal types can be found in [17].



from the chain. If it is applicable, the execute method of the interceptor will be invoked. The BDI-
ReasoningInterceptor intercepts only calls to the calculateArea() method (line 33) and handles calls by
creating and dispatching a decide_call_acceptance goal (lines 37, 47). As result a future is returned,
which will store the result of the reasoning. For retrieving the result a goal listener is added on the
goal (line 38), which subsequentially uses the parameter of the goal to decide if the method will be
called (lines 40-45). Otherwise a service exception is generated and set as result of the future (line
44).

The goal (lines 3-5) possesses one out parameter called execute, which denotes the execution
decision. In order to determine if the call should be accepted a plan will be executed for the query
goal. The plan definition (lines 8-16) consists of a parameter mapping (lines 9-11), a plan body
declaration (line 12) and a trigger definition (line 13-15). The body is meant to define the Java class
(here DecideCallAcceptancePlan), which is instantiated and executed whenever the trigger is activated.
The trigger states that it reacts to decide_call_acceptance goals. Finally, the parameter mapping is used
to connect goal and plan parameters. Here, it means that the goal execute parameter can be accessed
under the same name also in the plan. The implementation of the plan is kept very simple in this
example (lines 26-29). It just sets the boolean execute parameter to true whenever it is idle, and to
false otherwise (using the isBusy() function).

01: <agent ... name="Calculator" package="...">
02: <goals>
03: <querygoal name="decide_call_acceptance">
04: <parametername="execute" class="Boolean" direction="out"/>
05: </querygoal>
06: </goals>
07: <plans>
08: <plan name="decide_call_acceptance_plan">
09: <parameter name="execute" class="Boolean" direction="out">
10: <goalmapping ref="reasoncall.execute"/>
11: </parameter>
12: <body class="DecideCallAcceptancePlan"/>
13: <trigger>
14: <goal ref="decide_call_acceptance"/>
15: </trigger>
16: </plan>
17: </plans>
18: <services>
19: <providedservice class="ICalculateService">
20: <implementation class="CalculateService"/>
21: <interceptor class="BDIReasoningInterceptor"/>
22: </providedservice>
23: </services>
24: </agent>
25:
26: public class DecideCallAcceptancePlan extends Plan {
27: public void body() {
28: getParameter("execute").setValue(isBusy());
29: }
30:
31: public class BDIReasoningInterceptor implements IInterceptor {
32: public boolean isApplicable(ServiceInvocationContext sic) {
33: return sic.getMethod().getName().equals("calculateArea");
34: }
35: public IFuture<Void> execute(ServiceInvocationContext sic) {
36: Future<Void> ret = new Future<Void>();
37: final IGoal g = createGoal("decide_call_acceptance");
38: g.addGoalListener(new IGoalListener() {
39: public void goalFinished(AgentEvent ae) {
40: if((Boolean)g.getParameter("execute").getValue())
41: sic.invoke().addResultListener(
42: new DelegationResultListener<Void>(ret));
43: else
44: ret.setException(new ServiceException(sic.getMethod()));
45: }
46: }
47: dispatchTopLevelGoal(g);
48: return ret;
49: }
50: }

Figure 5. BDI calculator agent with reasoning interceptor



01: public interface ICalculateService {
02: public IFuture<AreaResult> calculateArea(AreaData area)
03: }
04:
05: // Part of agent
06: public class CalculatorAgent extends MicroAgent

implements ICalculateService {
07: public IFuture<AreaResult> calculateArea(AreaData area) {
08: AreaResult result;
09: // Perform calculation...
10: return new Future<AreaResult>(result);
11: }
12: }
13:
14: // Separate class
15: public class CalculateService implements ICalculateService {
16: @ServiceComponent
17: private IBDIInternalAccess agent;
18:
19: public IFuture<AreaResult> calculateArea(AreaData area) {
20: AreaResult result;
21: // Perform calculation...
22: return new Future<AreaResult>(result);
23: }
24: }

Figure 6. Implementation choices for the calculator service

5. Implementation

The interceptor chain approach for method call interactions has been implemented in the open source
Jadex agent framework.5 In Jadex, agents are realized as so called active components [18,13], that
may expose services defined as Java interfaces to other agents. The internal behavior of an agent can
be specified according to one of several available internal architectures. E.g. so called Micro agents
allow to easily realize simple (e.g. ant like) agent behavior in pure Java classes while BDI agents
allow describing complex reasoning behavior based of the belief-desire-intention model [16].

5.1. Services and Service Proxies

The connection between a service interface and the corresponding agent behavior is realized in a
class, that implements the corresponding service interfaces (see Figure 6). For Java-based (e.g. Micro)
agents the developer can choose to implement services directly as part of the agent class (lines 6-
12) or in a separate Java class. Other agent types such as the XML-based BDI agents always have
to provide separate classes for service implementations (lines 15-24). It can be seen that the only
difference between the naive implementation of Section 3.2 and the implementation as a Jadex agent
is the introduction of a future as result (line 10 and line 22). This is required for the method signature
being conform to the interface, which provides the calculateArea() operation in an asynchronous way
(line 2).

The Jadex platform automatically creates proxies for the service implementations, which include
a corresponding interceptor chain. Per default, this interceptor chain includes interceptors for auto-
matic service validation, execution decoupling and state isolation. In this context, service validation
ensures a weak form of call acceptance by rejecting all invocations to services that are not in running
state, i.e. have not been initialized or already been terminated.

The proxy approach allows implementing services as pure Java objects, e.g. neither the ICalcu-
lateService interface nor the CalculateService implementation need to extend or implement any ex-

5http://jadex.sourceforge.net/

http://jadex.sourceforge.net/


+ <methodname>(<param>[0..*]): void
+ <methodname>(<param>[0..*]): IFuture<type>
+ <methodname>(): <type>

Figure 7. Allowed service method signature types

isting API of the Jadex platform. For such plain Java services, the Jadex platform offers annotations
for dependency injection [19], e.g. of the agent that owns the service (lines 16, 17), such that the
service can access its agent (@ServiceComponent), or to define specific startup or shutdown methods
of the service (@ServiceStart, @ServiceShutdown).

Finally, proxies allow relaxing the restriction that service methods must always return future
objects. As a common case, besides methods that represent executable service operations, services
often have informational methods that allow accessing fixed properties of a service (e.g. name or
some quality attributes). When these properties do not change during the lifetime of a service, they
can be precached, i.e. when a proxy for a service is created, all properties are retrieved and stored
in the proxy. When later another agent wants to access a property of this service through the proxy,
the value can be synchronously returned, because it is contained in the proxy and no access to the
agent which contains the service is required. As a result, service methods can follow one of the three
signature types shown in Fig. 7, the first case being a one shot call (no result or error is available), the
second case being the normal future-based asynchronous call and the third case being the described
synchronous property access.

5.2. Programming Model

Figure 8 illustrates the resulting asynchronous object oriented programming model for agent interac-
tions. The general invocation scheme is shown in the upper half of the figure using UML sequence
diagram notation. In the lower half, the code of the caller (left) and the receiver (right) are given.
First, on the caller side, the calculateArea() method of the calculate service is invoked (1). This call is
handled by the service proxy, which applies the interceptor chain to the call and afterwards returns a
future to the caller (2). As part of the interceptor chain, the decoupling interceptor has scheduled the
call on the receiving component (agent). When the call is accepted, i.e. not rejected by a reasoning
interceptor, the agent interpreter will invoke the calculateArea() method on the service implementa-
tion (3). For illustration purposes, we assume that the calculator agent needs to lookup the algorithm
in a database, which is again realized using an asynchronous call with a future result. The agent
adds a result listener to the future (4), thus letting the agent interpreter know that the implementation
should be called again, when the algorithm is available. The result listener extends a framework base
class ExceptionDelegationResultListener, which assures that any exception during algorithm lookup
automatically gets propagated to the result future ret of the calculateArea method implementation.
When the database lookup succeeds, the interpreter calls the customResultAvailable method (5) and
the service implementation continues by calculating the pixels for the requested area. Finally, the
result future ret is provided with the area result object (6). The service proxy is informed about the
result availability and again applies corresponding interceptors, e.g. for cloning the result value. Af-
terwards, the result of the call is made available to the caller (7) by invoking the resultAvailable
method of the declared result listener. If any problems occur during the processing of the call, e.g.
the call gets rejected by the reasoning interceptor, the algorithm lookup fails, or a network timeout
occurs during the transfer of the result, the proxy instead calls the exceptionOccured method (7), thus
informing the caller that the calculateArea call has failed.

5.3. Remote Communication

Agent applications are typically realized as distributed systems, such that the question arises how
method call interaction fits to distributed computing. The asynchronous, proxy-based interaction



Figure 8. Invocation scheme (top) with example caller code (left) and service implementation (right)

scheme proposed in this paper already addresses many of the issues of distributed communication as
it allows incorporating, e.g. failure-handling and timeout mechanisms. In the Jadex platform this is
realized by a so called remote management service (RMS), which handles all service calls to agents
on another platform.

The communication scheme is essentially the same as in remote method invocation (RMI) sys-
tems. First the data is marshaled. In Jadex, the codec for marshaling the data can be freely configured.
As a default, an XML codec is provided, which is able to serialize arbitrary Java objects that follow
the Java Beans specification [20]. After marshaling, the data and method call information is sent as
a message (e.g. using the TCP-based message transport) to the RMS agent of the remote platform.
The remote RMS unmarshals the data, retrieves the proxy for the service to be called and calls the
appropriate method, which leads to the interceptor chain being executed. The result of the call is
transferred back to the caller using the same (un)marshaling procedures.

In addition to dealing with the communication issues, the RMS also implements a configurable
timeout mechanism. Besides a global timeout that as a default applies to all remote service calls, the
developer can also define custom timeouts for a specific service or some of its methods by using the
@Timeout annotation in the service interface. This allows realizing robust distributed applications
that can recover from network failures or broken nodes.

For discovery of the available agents and their services, the Jadex platform includes a peer-to-
peer awareness mechanism. When awareness is enabled, a Jadex platform will signal its existence
to the environment and will detect other awareness-enabled Jadex platforms automatically. An agent
that wishes to use a service can issue a search based on the required service interface. The distributed
Jadex infrastructure will then query the available agents for their services. The found service proxies
are then returned to the searching agent, such that it can select and invoke an appropriate service. In
this scheme it does not matter, if the service providing agent is a local agent or resides in a remote
platform, because the required communication is automatically and transparently handled by the
RMS.



5.4. State Encapsulation

Figure 9. State object semantics

As already mentioned, method calls on agents involve two logically separated entities, the caller
and the callee. To ensure that no state inconsistencies occur the states of both entities have to be
protected. Besides avoiding concurrent access to the state of agent, it also has to be guaranteed that the
states do not contain references to the same object. The general principle follows the actor idea [21]
by separating completely the address spaces of different entities. This means that method calls have
to apply call-by-value semantics for parameters and return value as default. In contrast to the general
principle there are several cases in practice, in which copying values is unwanted. Examples are
immutable objects which need not to be copied per definition and listener objects, which always have
reference semantics. Moreover, copying parameters has a significant performance penality which
should be avoidable in certain cases. Therefore, in Jadex programmers can control parameter passing
semantics explicitly and in a fine granular way.

In Fig. 9 the different available parameter types are shown. To facilitate a fine-grained specifica-
tion, local and remote reference semantics can be defined separately per data type (class) using the
@Reference(local, remote) annotation. Furthermore, the data type specific properties can be overrid-
den for parameters of specific methods by using the same annotation as part of the method signature.
In the figure the different combinations of reference settings for local and remote cases and their
meanings are depicted in detail. The first case shows the default, i.e. local and remote calls are treated
with call-by-copy semantics. The object O in the middle belongs to process A2. A call on a method
of process A1 in the same physical address space A leads to creating a copy of O. The same is true
for a remote call to Process B1 in another address space B1. This default semantics is useful for all
kinds of data objects that can be modified independently by the different processes (e.g. arrays, lists
or maps). The copy semantics assures that e.g. changes to a list object in process A1 do not affect
process A2, because each process owns a local copy of the list. The second case shows an object with
local reference and remote copy semantics. In this case processes A1 and A2 share the object O, but
a copy is created for a remote call from process B1. This semantics fits for immutable objects (e.g.
Java basic types such as numbers and strings as well as custom data objects that do not provide any
operations for modifying the objects state). Using local reference semantics for immutable objects
does not affect the functionality of an application, but improves perfomance and reduces memory
consumption, because the system does not need to manage multiple instances of identical objects.



Figure 10. Agent services and methods in the Jadex Control Center

The last two cases have remote refences semantics, which means that a proxy of the parameter object
is created on the remote site, so that method calls to the proxy can automatically be routed to the
original object in another address space. The proxy realizes the concept of a virtually shared object,
because it provides the impression that process A2 and process B can operate on a shared object,
although these processes are in different address spaces. The third case with local copy semantics and
remote reference semantics is included for completeness in the figure, but seems to have no obvious
use in practice. The fourth case is local and remote reference semantics and fits to listeners that are
applicable for local as well remote calls.

5.5. Tool Support

To support the developer in building service and method-based agent interactions, the administrative
tools of the Jadex platform have been extended to incorporate this view. Figure 10 shows the Jadex
Control Center (JCC) displaying the currently running agents (left). The agents are organized in
a hierarchy starting from the platform (Alex-PC_32f ) to the Mandelbrot application including the
Generate, Display and Calculate agents. Besides these application agents, also system agents, e.g.
rms and awa (for awareness) can be seen. The display and generate agents have been expanded in
the tree to further inspect their services. Jadex distinguishes between provided services and required
services. Provided services are those services, which are implemented in the agent as described in
this paper. Required services allow specifying, which services of other agents an agent may want to
access during runtime and thus enable some form of static checking, but agents are free to search and
use additional services not specified as required. The ICalculateService of the calculate agent has
been selected and the corresponding details are shown on the right. The name, type (Java interface),
and provider (owning agent) are given as well as the method signatures, which are included in the
service interface.



6. Related Work

In the multi-agent research community several extensions have been developed in order to cope with
problems caused by message passing. One approach is the agents and artifacts (A&A) paradigm [22],
which adds artifacts as new first-level concept to the conceptual toolset of an agent developer. The
underlying idea is that artifacts can be used to represent tools and items agents work with. Agents can
use artifacts in an object-oriented way by exploiting their usage interface, i.e. the paradigm faciliates
constructing systems by separating message-based inter agent and method-based artifact communi-
cation.

Another way of managing complexities consists in abstracting from low level message passing
by introducing new or using alternative programming concepts. In [10] goal-oriented interaction pro-
tocols have been used to shield a developer from communication details. For this purpose at the appli-
cation level (protocol) goals are used for specifying the domain objective that should be achieved, e.g.
the lowest acceptable price for a good and deadline. The goal also returns only domain relevant infor-
mation, although a message-based communication between agents is carried out behind the scenes.
Similarily, the idea of commitment-based interactions [23] also tries to abolish message details in
favor of commitments of the interaction partners. These commitments can be used to dynamically
and flexible send messages according to the mental states of the participating agents. Finally, the
service and agent integration has been proposed in order to facilitate interaction between both kinds
of entities [24]. For example, in the agent framework JIAC [25], agents communicate using services
but under the hood a message-based metaprotocol is used for service negotiations between service
provider and consumer.

Closely related to our approach is the active object concept [15]. Despite this similarity, active
objects are not agents as they are completely controlled by externally requested tasks and thus do not
exhibit flexible proactive behavior [3]. Active objects cleanly solve the problem of how to decouple
service requester and provider using sound object-oriented techniques like futures and task sched-
ulers. They do not consider how behavior interference can be resolved. One typical framework based
on active objects combined with component ideas is Proactive [26].

Many actor approaches also claim being conceptually near to active objects as the share the foun-
dations of independently executing entities. In spite of this similarity, the actor model is also based on
message passing as communication scheme so that these approaches do not put foward new solutions
how interaction can be simplified. One exception is AmbientTalk [27], which is a framework and pro-
gramming language for ambient intelligence based on actors. AmbientTalk introduces the concept of
far references for method calls on other actors. For these method calls similar consistency assurances
concerning state and parameter passing are guaranteed as in our model. AmbientTalk does not tackle
the issue of behavior interference.

Summarizing, the problems of solely message-passing-based communication are well known in
the agent research community and different approaches have been developed to remedy the com-
plexities by hiding them from the agent programmer. In addition, active object and actor framework
have partially addressed method-based communication without tackling the problems stemming from
internal and external behavior interferences.

7. Discussion

The goal of the work presented in this paper is to simplify the development of multi-agent systems
by incorporating method calls as a well understood interaction mechnism that is easy to use for
unexperienced as well as advanced programmers. It could be argued that using method calls instead
of message passing is a step backwards, because the agent paradigm is considered a successor of
the object-oriented paradigm. It is often claimed that agents communicate on a semantic level with
messages that represent intentional speech acts [4] and message contents following an ontology that



formalizes the agent’s world knowledge. On the other hand, method invocations are considered a
tight, low-level coupling, not suitable for adaptive and autonomous agents.

On a closer look, these differences are not as fundamental as it may seem. In a clean object or
service-oriented design, the interfaces between callers are defined in a way to support loose coupling
and reusability. The operations (methods) of a service definition represent the intentions understood
by the service provider and the data types used in the method parameters correspond to the ontol-
ogy. Therefore, a method-call-based interaction may as well achieve the same level of semantic ab-
straction typically found in message-based agent systems. This only requires the interfaces to be de-
signed accordingly for abstracting away from irrelevant implementation details and focusing on the
intentions behind the interaction. It should be noted that this aim towards open and standards-based
interfaces is a general scheme in distributed systems not unique to agents.

This does not mean that every complex kind of semantic agent interaction can be realized as
well using method calls. It rather shows an alternative that is easier to use, yet sufficient for many
kinds of agent interactions. Therefore method calls should not be seen as a replacement, but as a
supplement to messages. Instead of starting each interaction design by thinking in terms of messages,
the developer should focus on the intended purpose of the interaction and choose between methods
or more complex message-based protocols consciously.

8. Conclusions

This paper has argued that method call semantics is an important concept for the design and im-
plementation of modular systems. Method call interaction is supported by many contemporary pro-
gramming paradigms such as components and services. In the agent area, method calls are usually
prohibited as they are considered to violate the autonomy of agents.

The implications of method call interactions for agents have been analyzed and it has been iden-
tified that besides autonomy, also state consistency has to be taken into account. It has been shown
that careful implementation based on existing object-oriented programming techniques such as fu-
tures allows method call interactions between agents without violating state consistency and auton-
omy, yet that the resulting solutions induce considerable overhead and new sources for errors. There-
fore an integrated approach has been conceived that incorporates method call interactions into an
agent programming framework. The approach is based on the active object concept and allows agents
to expose services defined as object-oriented interfaces that include method signatures. Autonomy
and state consistency is automatically preserved by so called interceptors that enable call decoupling
for state consistency and reasoning about, e.g., call acceptance for autonomy. The interceptor chain
approach is very flexible, as it allows separating reasoning for autonomy from the concrete busi-
ness logic and also allows adding and removing interceptors at runtime and therefore dynamically
changing the behavior how an agent reacts to service method calls.

The usefulness of the approach has been illustrated by the running example of calculating Man-
delbrot images. Other applications that have been realized with the approach e.g. include an agent-
based coordination system for disaster management, where ambulances and fire brigades are repre-
sented as agents that coordinate with each other using method calls. Future work will be targeted
in two directions. On the one hand, the software engineering aspect of the approach will be further
strengthened by developing methodical processes for designing method-call-based agent applications
and realizing additional tools for e.g. monitoring and visualizing the method calls that happen be-
tween running agents. On the other hand, the technical implementation will be extended towards
existing standards, e.g. from the web services area. Therefore, the RMS will be extended to sup-
port existing protocols such as SOAP for achieving interoperability with other web service enabled
systems.



References

[1] S. Franklin and A. C. Graesser, “Is it an agent, or just a program?: A taxonomy for autonomous agents,” in Proceedings
of the 3rd Workshop on Intelligent Agents III, Agent Theories, Architectures, and Languages (ATAL 1996), J. Müller,
M. Wooldridge, and N. Jennings, Eds. Springer, 1997, pp. 21–35.

[2] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and Practice,” The Knowledge Engineering Review,
vol. 10, no. 2, pp. 115–152, 1995.

[3] M. Wooldridge, An Introduction to Multiagent Systems, 2nd ed. Chichester, UK: Wiley, 2009.
[4] FIPA ACL Message Structure Specification, Foundation for Intelligent Physical Agents (FIPA), Dec. 2002, document

no. FIPA00061. [Online]. Available: http://www.fipa.org
[5] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, D. McKay, R. Fritzson, S. Shapiro, R. Pelavin, and J. McGuire,

“Specification of the KQML agent-communication language – plus example agent policies and architectures,” Tech.
Rep. EIT TR 92-04, 1993.

[6] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE - A Java Agent Development Framework,” in Multi-Agent
Programming: Languages, Platforms and Applications, R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
Eds. Springer, 2005, pp. 125–147.

[7] G. Rimassa, D. Greenwood, and M. E. Kernland, “The Living Systems Technology Suite: An Autonomous Middleware
for Autonomic Computing,” in In Proceedings of the International Conference on Autonomic and Autonomous Systems
(ICAS 2006), 2006.

[8] Web Services Description Language (WSDL), World Wide Web Consortium (W3C), 2007. [Online]. Available:
http://www.w3.org/TR/wsdl20/

[9] M. Winikoff, “Implementing commitment-based interaction,” in In Proceedings of the Sixth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, 2007, pp. 868–875.

[10] L. Braubach and A. Pokahr, “Goal-oriented interaction protocols,” in 5th German conference on Multi-Agent System
Technologies (MATES 2007). Springer, 2007.

[11] A. Pokahr and L. Braubach, “From a research to an industrial-strength agent platform: Jadex V2,” in Business Services:
Konzepte, Technologien, Anwendungen - 9. Internationale Tagung Wirtschaftsinformatik (WI 2009), H.-G. F. Hans
Robert Hansen, Dimitris Karagiannis, Ed. ÃŰsterreichische Computer Gesellschaft, 2 2009, pp. 769–778.

[12] H. Sutter and J. Larus, “Software and the concurrency revolution,” ACM Queue, vol. 3, no. 7, pp. 54–62, 2005.
[13] L. Braubach and A. Pokahr, “Addressing challenges of distributed systems using active components,” in Intelligent

Distributed Computing V - Proceedings of the 5th International Symposium on Intelligent Distributed Computing (IDC
2011), F. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica, Eds. Springer, 2011, pp. 141–151.

[14] H. Baker and C. Hewitt, “The incremental garbage collection of processes,” in Proceedings of the 1977 symposium on
Artificial intelligence and programming languages. New York, NY, USA: ACM, 1977, pp. 55–59.

[15] G. Lavender and D. Schmidt, “Active object - an object behavioral pattern for concurrent programming,” in Pattern
Languages of Program Design 2, J. Vlissides, J. Coplien, and N. Kerth, Eds. Addison-Wesley, 1996.

[16] A. Rao and M. Georgeff, “BDI Agents: from theory to practice,” in Proceedings of the 1st International Conference on
Multi-Agent Systems (ICMAS 1995), V. Lesser, Ed. MIT Press, 1995, pp. 312–319.

[17] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal Representation for BDI Agent Systems,” in Proc. of
(ProMAS 2004). Springer, 2005, pp. 44–65.

[18] A. Pokahr and L. Braubach, “Active Components: A Software Paradigm for Distributed Systems,” in Proceedings of the
2011 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2011). IEEE Computer Society,
2011.

[19] M. Fowler, “Inversion of control containers and the dependency injection pattern,” 2004,
http://martinfowler.com/articles/injection.html.

[20] G. Hamilton, JavaBeans, Specification Version 1.01, Sun Mircosystems, 1997.
[21] R. Karmani, A. Shali, and G. Agha, “Actor frameworks for the jvm platform: a comparative analysis,” in Proceedings

of the 7th International Conference on Principles and Practice of Programming in Java, ser. PPPJ ’09. New York,
NY, USA: ACM, 2009, pp. 11–20. [Online]. Available: http://doi.acm.org/10.1145/1596655.1596658

[22] A. Ricci, M. Viroli, and A. Omicini, “The A&A programming model and technology for developing agent environments
in MAS,” in Programming Multi-Agent Systems, 5th International Workshop (ProMAS 2007), M. Dastani, A. E. F.
Seghrouchni, A. Ricci, and M. Winikoff, Eds. Springer Berlin / Heidelberg, 2007, pp. 89–106.

[23] J. Xing and M. Singh, “Formalization of commitment-based agent interaction,” in Proceedings of the 2001 ACM sym-
posium on Applied computing. New York, NY, USA: ACM, 2001, pp. 115–120.

[24] M. Singh and M. Huhns, Service-Oriented Computing. Semantics, Processes, Agents. John Wiley & Sons, 2005.
[25] S. Albayrak and D. Wieczorek, “Jiac - a toolkit for telecommunication applications.” in Proceedings of the 3rd Interna-

tional Workshop on Intelligent Agents for Telecommunication Applications (IATA 1999), S. Albayrak, Ed. Springer,
1999, pp. 1–18.

[26] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. PÃl’rez, “Gcm: a grid extension to
fractal for autonomous distributed components,” Annals of Telecommunications, vol. 64, no. (1-2), pp. 5–24, 2009.

[27] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. De Meuter, “Ambienttalk: Object-oriented event-driven

http://www.fipa.org
http://www.w3.org/TR/wsdl20/
http://doi.acm.org/10.1145/1596655.1596658


programming in mobile ad hoc networks,” Chilean Computer Science Society, International Conference of the, vol. 0,
pp. 3–12, 2007.


