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Abstract. Today, probabilistic databases (PDB) become helpful in sev-
eral application areas. In the context of cleaning a single PDB or integrat-
ing multiple PDBs, duplicate tuples need to be merged. A basic approach
for merging probabilistic tuples is simply to build the union of their sets
of possible instances. In a merging process, however, often additional do-
main knowledge or user expertise is available. For that reason, in this
paper we extend the basic approach with aggregation functions, knowl-
edge rules, and instance weights for incorporating external knowledge in
the merging process.
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1 Introduction

In recent time, the need for probabilistic databases grows in many real-world
applications [17,18,8,15]. In general, for certain databases as well as for proba-
bilistic databases duplicates are pervasive problems of data quality [7]. To solve
this problem duplicates have to be identified and merged. Strategies for resolving
data conflicts in a merge of certain tuples is extensively discussed in the litera-
ture [3,11]. However, there is only a low attention on the merge of probabilistic
tuples, so far. Nevertheless, if probabilistic source data are given, the degree of
uncertainty which has to be resolved during the merging process is higher than
in the merge of certain tuples. On the other hand, probabilistic data models pro-
vide new capabilities for handling conflicts in the merging process. Thus, tuple
merging becomes also more powerful [6,16]. In [12] we introduce a basic approach
for merging the instance data of probabilistic tuples which is conceptually based
on the set union operator. In real duplicate elimination scenarios, however, of-
ten a lot of domain knowledge or user expertise is available. This knowledge
cannot be included in our simple merging approach. For that reason, we extend
this approach by enabling the user to define aggregation functions for single at-
tributes, and instance weights as well as knowledge rules for whole instances.
The incorporation of external knowledge is an important property, because in
several scenarios a simple union of all possible instances does not correspond
with the semantics of some attributes (see motivating example below), or the
set of possible instances can be evidently reduced.
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(i) Source Data: t1 and t2

name producer stock
I1 Twix Maas Inc. 15
I2 Dwix Nestle 20

name producer stock
I3 Twix Mars Inc. 6
I4 Raider Mars Inc. 8

r : (producer=’Mars Inc.’) → (stock < 25)

(ii) Basic Approach: (iii) Extended Approach:

name producer stock

Twix Maas Inc. 15

Dwix Nestle 20

Twix Mars Inc. 6

Raider Mars Inc. 8

name producer stock

Twix Mars Inc. 21

Twix Mars Inc. 23

Raider Mars Inc. 23

Dwix Mars Inc. 26

Twix Mars Inc. 26

Dwix Mars Inc. 28

Raider Mars Inc. 28

Fig. 1. The possible instances of t1 (I1 and I2) and t2 (I3 and I4) (i), the instances
resulting from merging {t1, t2} with the basic approach (ii), and the instances resulting
from merging {t1, t2} whilst taking external knowledge into account (iii)

As a motivating example, we consider a merge of the two base-tuples t1 and
t2 as shown in Figure 1. Both tuples have two possible instances ({I1, I2} for
t1 and {I3, I4} for t2) and are defined on a schema inventory with the three
attributes name, producer and stock. Both tuples represent the same product
(and hence are duplicates), but the stock information of each tuple belongs to
different orders. Therefore, in this scenario neither 15, 20, 6 nor 8 items of this
product, but rather 21, 23, 26 or 28 items are available. As a consequence, the
true stock value of this product results from the sum of the stocks of both base-
tuples instead of being the stock of one of them. Moreover, the responsible user
knows that the producer name of the second tuple (’Mars Inc.’) is the correct
one. Thus, this value is chosen for all possible instances of the merged tuple.
Finally, it is known that the company never bought more than 25 items of an
article produced by ’Mars Inc.’. Hence some of the resultant instances can be
excluded for sure (see knowledge rule r). In conclusion, the result of the extended
approach is much more accurate than the result of the basic approach. Moreover,
by using the extended approach the final values of all attributes are nearly known
for sure (’Mars Inc.’ with certainty 1, ’Twix’ and ’23’ with certainty 2/3).

The main contributions of this paper are:

• a discussion about different kinds of external knowledge and in which way
these can be incorporated into the merging process.

• a detailed description of a merging approach extended by aggregation func-
tions, knowledge rules, and instance weights. Moreover, we show that this
approach is a generalization of existing methods for merging certain tuples
and is a generalization of our basic approach based on the set union operator.

• a discussion about the characteristics of the extended merging approach.

The outline of the paper is as follows: First we present some basics on probabilis-
tic data and duplicate elimination including our basic approach for probabilistic
tuple merging (Section 2). Then we present the types of external knowledge we
handle in this work (Section 3). In Section 4, we discuss aggregation functions,
knowledge rules, and instance weights in more detail, before introducing the ex-
tended version of our probabilistic tuple merging approach in Section 5. Finally,
we present related work in Section 6 and conclude in Section 7.
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2 Basics

In this section, we introduce a definition of probabilistic tuples, before we present
the concept of duplicate elimination including our basic approach for merging
probabilistic tuples [12].

2.1 Probabilistic Tuples

In this paper, we primarily focus on the merge of tuples in relational tuple-
independent probabilistic databases defined on an arbitrary probability measure
P . This class of databases includes BID-tables [4], x-relations [2] without lineage
(e.g. base x-relations without external lineage), and U-relations [9] where tuples
with different TIDs do not share same variables.

Due to duplicates are most often detected in base relations (data cleaning) or
in combining multiple independent source (data integration) duplicate elimina-
tion in tuple-independent PDBs already covers a wide space of real-world sce-
narios. To be independent from the used representation system (BID, MayBMS,
etc.), we consider a probabilistic tuple within the possible world semantics [4].
Thus, similar to the ULDB model [2], we define a probabilistic tuple as a set of
possible mutually exclusive instances, also denoted as tuple alternatives [2] and
define a probabilistic relation (referred to as Rp) as a set of probabilistic tuples.

Definition 1 (Probabilistic Tuple): Let sch(R) be a relation schema with
the domain dom(R). A probabilistic tuple t defined on sch(R) is a set of pos-
sible instances pI(t) = {I1, . . . , Ik} where each instance is an ordinary tuple
Ii ∈ dom(R). Moreover, each instance I ∈ pI(t) is assigned with a probability
P (t[I]) > 0 where t[I] is the event that I is the true instance of t. Trivially, all
possible instances of t are mutually exclusive: (∀I1, I2 ∈ pI(t)) : P (t[I1] | t[I2]) =
0. The probability that t exist is: P (t) =

∑
I∈pI(t) P (t[I]) ≤ 1.

Since all tuples are independent of each other, the true instantiation of one tuple
does not depend on the true instantiation of another tuple:

(∀t1, t2 ∈ Rp, t1 �= t2) : (∀I1 ∈ pI(t1), I2 ∈ pI(t2)) : P (t1[I1] | t2[I2]) = P (t1[I1])

To make some of the considerations of this paper easier, we introduce the
null-instance I⊥ which represents the case a probabilistic tuple does not ex-
ist (P (t[I⊥]) = 1 − P (t)). The null-instance is schemaless, i.e. πA(I⊥) = I⊥
for every valid set of attributes A and I⊥ × S = I⊥ for every relation S. For
simplification, we also define the set pI⊥(t):

pI⊥(t) =

{
pI(t) ∪ {I⊥}, iff P (t) < 1
pI(t), else

(1)

Note that the null instance I⊥ and hence the set pI⊥(t) are only virtual and not
stored in the database.

In the rest of the paper, we represent the set of possible instances of a prob-
abilistic tuple by an own table (one row per instance). Figure 2.1 shows an
example of a tuple modeling the movie ’Crash’ with two possible instances I1

and I2.
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title year studio total P

I1 Crash 2004 WB 12k 0.5
I2 Cash 2005 US 15k 0.2
I⊥ ————————— 0.3

Fig. 2. A probabilistic tuple t with pI⊥(t)={I1, I2, I⊥}, I1 =(”Crash”,2004,”WB”,12k),
I2 = (”Cash”,2005,”US”,15k), P (t[I1]) = 0.5, P (t[I2]) = 0.2, and P (t[I⊥]) = 0.3

2.2 Duplicate Elimination

In the first duplicate elimination step multiple representations of same real-world
entities are detected [7]. The result of this step is a partitioning of the set of input
tuples into duplicate cluster (one cluster for each real-world entity).

In the second step, all tuples of one duplicate cluster are merged to a single
one. This step is usually denoted as tuple merging [19] or data fusion [3]. In
[12] we gave a first discussion on tuple merging in probabilistic data. We split
probabilistic tuple merging into two steps: (a) a merging of instance data and
(b) a merging of tuple membership. In this paper, we consider only merging
of tuples defined in same contexts and hence we simply include membership
merging in instance merging by using the null-instance I⊥. In the following, we
always consider a single cluster and hence denote the merged tuple as tμ.

Basic Merging Approach. The basic approach for probabilistic tuple merging
we present in [12] is based on the set union operator. This means that an instance
is possible for the merged tuple, if it was possible for at least one base-tuple. Since
the merging is not associative, if the resultant probability is simply computed by
the probabilities of the base-tuples, we assign a weight w(t) to each base-tuple
t and define that the weight of a merged tuple tμ = μ({t1, . . . , tk}) results from
the sum of the weights of its base-tuples (w(tμ) = w(t1) + . . . + w(tk)). If tuple
merging is considered within the context of data integration, the reliabilities of
the corresponding sources can be used as tuple weights. Probabilities are com-
puted by a weighted average. Let tμ be the tuple merged from the base-tuples of
cluster C, our basic approach of probabilistic tuple merging can be formalized as:

pI⊥(tμ) =
⋃

t∈C

pI⊥(t) (2) ∀I∈ pI⊥(tμ), P (tμ[I]) =
∑

t∈C

w(t)
w(tμ)

P (t[I]) (3)

3 Domain Knowledge and User Expertise

In this paper, we consider two different kinds of external knowledge: (i) domain
knowledge which is generally applicable for a specific domain, as for example the
information that stock values have to be summed up (see motivating example)
and (ii) user expertise which is only applicable for individual items or groups
of items (sources, tuples, values, etc.), as for example the information that the
studio ’WB’ does not produce movies for adults. Domain knowledge usually
concerns metadata like the correct semantics of relational schemas or the correct
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scope of attribute domains. Therefore, domain knowledge does not change over
time very frequently and hence acquired once, it can be used for multiple merging
processes. In contrast, user expertise often concerns only the given instance data
(see example above). Thus, a user can be very competent for the data of one
merging process and incompetent for the data of another, even if both processes
work on equivalent schemas. For example, a user can be an expert for horror
movies and a non-expert for romantic movies.

With respect to its effects on the merge result, external knowledge can be
furthermore classified into the following four types:

1. Knowledge about specific semantics of individual attributes or sets of at-
tributes. For example, the knowledge that the numbers of sold tickets stored
in duplicate entries in a box office list belong to different points of time and
hence the maximum value has to be chosen. Knowledge of this type is usually
domain knowledge.

2. Knowledge about the true instance of one attribute value or a set of attribute
values. For example, the user knows that one of the given values is the true
one, or the user knows that the true value is missing and introduces it himself.
Knowledge of this type usually results from user expertise.

3. Knowledge required for excluding some combinations of attribute values for
sure. For example, such knowledge can be based on physical rules (e.g. a
studio cannot have produced movies before it was founded), economical rules
(e.g. a salary cap), or private guidelines (e.g. a specific company never buys
more than 100 items from a single article per month). Knowledge of this
type can be domain knowledge, user expertise or a combination of both.

4. Knowledge about new evidence or further evidence, or a user’s own degree
of belief. For example, at merging time a person is known to life rather in
Italy than in France. Knowledge of this type is most often user expertise.

A modeling of knowledge about tuple correlations (e.g. a specific attribute has
to be unique) implies a definition of new tuple dependencies. Since we restrict
to tuple-independent PDBs, this is out of the scope of this paper.

4 Methods for Incorporating External Knowledge

For incorporating domain knowledge and user expertise, we resort to three clas-
sical concepts which have already been partially used in the merge of certain
data: user-defined aggregation functions, user-defined knowledge rules, and user-
defined weights of possible instances.

Aggregation functions can be used to assign specific semantics to concrete
attributes (knowledge of Type 1) or to define the true value for a concrete at-
tribute by hand (knowledge of Type 2). In contrast, knowledge rules are excel-
lently suited for excluding instances which violate a given pattern of regulations
(knowledge of Type 3). Instance weights can be used to accommodate new evi-
dence (knowledge of Type 4).

Aggregation functions are already used for resolving conflicts in the fusion of
certain data by Bleiholder et al. [3]. Note that we use the concept of aggregation
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for another purpose. In the merge of certain data for each attribute only a single
value can be stored. Thus, conflicting values need to be resolved and the usage
of aggregation functions is often mandatory, even if the user does not know how
to aggregate these values at best. In contrast, such a conflict resolution is not
required by using a probabilistic data model as the target model because all
possible values can be stored simultaneously. We use these functions only for
incorporating available context information. Therefore, in our approach these
functions should be only used, if this information is given for sure (or at least
very likely). This in turn implies that a lot of aggregation functions listed in [3]
are not suitable for our purpose (e.g. First, Last, Random, etc.), because they
do not express a certain kind of knowledge.

Knowledge rules are already used by Whang et al. [19] for preventing invalid
merging results and hence for detecting the best merging easier. In general, we
use these rules for same purposes, because we use them to avoid invalid instances.

In the rest of this section, we take a closer look at these three concepts and
how they can be used to express a certain kind of knowledge.

4.1 Aggregation Functions

Aggregation functions are a simple and adequate method for incorporating ex-
ternal knowledge into a tuple merging process. For aggregation we consider func-
tions as defined for conflict resolution in certain data [3]. This set of functions
can be classified into deciding functions which choose one of the given values
and mediating functions which create a new value.

Moreover, aggregation functions can be of a simple or complex nature. A sim-
ple aggregation function only takes the values of the considered attribute into
account or is a constant function which does not need any input at all. In con-
trast, complex aggregation functions also consider the values of other attributes
(from input as well as output) as own input. Thus, they aggregate a set of given
input values depending from the result of aggregating other attributes or from
the initial values of other attributes. As an example, consider a deciding function
with takes the value for attribute ai that occurs as most often with the value
already chosen for attribute aj .

Simple Aggregation Functions. A simple aggregation function aggregates
only the values of the attribute it is defined for or returns a constant. Let fi be a
simple aggregation function which aggregates the input values AI

i = {v1, . . . , vm}
of an attribute ai to the single output value vfi ∈ dom(ai), fi(AI

i ) is defined as:

fi : dom(ai)m → dom(ai) fi : {v1, . . . , vm} �→ vfi

If for aggregating a set of instances M only simple functions are used (each for
another attribute), each function can be applied independently and the output
instance IO results by the cross product of all the functions’ output values. Let
A = {a1, . . . , an} be a set of attributes an aggregation function is defined for (fi

for ai), the result from aggregating the input set πA(M) with f1 − fn is:

IO = f1(πa1 (M)) × f2(πa2 (M)) × . . . × fn(πan(M)) = (vf1 , vf2 , . . . , vfn)
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AI
1 AI

2 AI
3 AI

4 AI
5

f1

f2

f3

f4

f5

vf1 vf2 vf3 vf4 vf5

f1(In = {a1}, Out = ∅)
f2(In = {a2}, Out = {a1, a3})
f3(In = {a3}, Out = ∅)
f4(In = {a4, a5},Out = {a2})
f5(In = {a5}, Out = ∅)

resultant partial order
of the time of execution:

f1

f3

f2 f4

f5

Fig. 3. Set of five sample aggregation functions {f1, . . . , f5} along with the dependen-
cies between their input AI

i = πai(M) and output vfi = fi(In,Out) (left side) and the
resultant partial order of their time of execution (right side, below)

Complex Aggregation Functions. A complex aggregation function also con-
sider the input values and/or output values of other functions for producing its
own output. Thus, we need a more general definition of aggregation functions.
In the following, a function fi aggregating the values of attribute ai is described
by a set of attributes In which values are used from the input data1 and by a
set of attributes Out which values are used from the output data. Note, for each
aj ∈ In a set of input values is used, i.e. AI

j , but for each aj ∈ Out only a single
output value is processed, i.e. vfj . Thus, fi(In, Out) is defined as:

fi : {AI
j | aj ∈ In} × {vfj | aj ∈ Out} �→ vfi

Note, by using this description, a function fi is simple, if the set In contains at
most the attribute ai and the set Out is empty: fi(In = {ai},Out = ∅).

The combined execution of aggregation functions becomes much more com-
plicated, if complex functions are involved. Certainly, an output value of one
function has to be produced before it can be serve as the input for another func-
tion. In general, a given set of complex aggregation functions has to be executed
according to the partial order of the dependencies between their input values
and output values. This fact is illustrated in Figure 3 where the dependencies
between the input values and output values of five aggregation functions (left
side) as well as their resultant partial order (right side) are depict.

The combined execution of a set of complex aggregation functions F for ag-
gregating the set of instances M to the output instance IO using the set of
attributes A as input is in the following denoted as IO = F(F, πA(M)).

4.2 Knowledge Rules

Compared to aggregation functions, knowledge rules enhance the capability
to incorporate knowledge further on in two ways: First, whereas aggregation
1 The input of a function can also contain metadata like the age of a value [3].
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functions only influence the set of attributes {al, . . . , an} for which such a func-
tion is defined, by the usage of knowledge rules conditions for whole instances
can be specified. Second, it is in the nature of aggregation functions that they
choose a single value and exclude all other ones. Nevertheless, such a restrictive
knowledge is often not available (knowledge of Type 3), but instead we can only
exclude a single value (or few values) to be the true one. Such restrictions of the
set of possible instances, however, cannot be realized by aggregation functions.

Knowledge rules are logical rules of inference (premises → conclusions) which
take premises and return conclusions. A rule is violated by an instance, if for
this instance all premises are valid, but the conclusions are not. In this way,
impossible instances can be excluded from the merging result.

As an example we consider a combination of the general domain knowledge
that studios cannot have produced movies before they were founded and the
specific user expertise that the studio ’WB’ (Warner Bros. Entertainment) was
founded in 1923. Thus, we can conclude that each instance having the value
’WB’ as studio name and having a value year lower than 1923 cannot be true:

rule r1 : studio=’WB’ → year ≥ 1923 (4)

A knowledge rule can use values from the output (the instances of the merged
tuple) as well as values from the input (the instances of the base-tuples). One
meaningful example is the condition that a combination of values for an attribute
set A is only valid for the merged tuple, if it was valid for at least one base-tuple:

rule r2 : I ∈ πA(pI(tμ)) → (∃t ∈ C) : I ∈ πA(pI(t)) (5)

Knowledge rules are applied to each possible instance individually. Instances
violating one or more of the defined rules can be excluded to be the true one
and hence are removed from the merging result.

4.3 Instance Weights

In our basic approach (Section 2.2), we use tuple weights for (a) making the
merging process associative and (b) allowing an assignment of different degrees
of trust to individual sources. To make the merging process more adaptable to
further evidence known at merging time, we also allow a definition of weights on
instance level: w(t, I) is the weight of instance I for tuple t. Thus, the user can
prefer a base-instance I1 to another base-instance I2 (w(t, I1) > w(t, I2)) or can
exclude a base-instance I from the merging process for sure (w(t, I) = 0) without
manipulating the original probabilities. Typically, weights are assigned for each
instance individually and hence represent user expertise. Nevertheless, weights
can be also assigned by a given pattern (e.g. a weight w is assigned to instances
satisfying a specific condition derived from the semantics of the considered
universe of discourse) and hence also can be used to express domain knowledge.

We define the weight of a tuple t as the expected weight of its instances:
w(t) =

∑
I∈pI(t) w(t, I)P (t[I]). For ensuring associativity, the weight of a merged

tuple is still the sum of the tuple it is merged from. Moreover, all instances of the
merged tuple are weighted equally, i.e. the new evidence is already incorporated
in the resultant probabilities.
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5 Extended Approach for Probabilistic Tuple Merging

For incorporating external knowledge according to the possible world semantics,
the aggregation functions have to be applied to each possible combination (so
called merging lists) of the base-tuples’ instances (one instance per base-tuple)
individually. Each merging list M = {I1, . . . , Ik} contains as many instances as
base-tuples to be merged (in this case k). We consider the instances in a merging
list to be sorted by their corresponding base-tuples, meaning that Ii originates
from tuple ti. Performing aggregation on a single merging list is denoted as
fusion. Knowledge rules are applied to the merging lists’ fused instances.

Let C = {t1, . . . , tk} be a set of base-tuples to be merged. Let w(t, I) be
the weight defined for instance I ∈ pI(t), t ∈ C and let w(tμ) =

∑
t∈C w(t) be

the total weight of all base-tuples. Moreover, let N = {r1, . . . , rq} be a set of
knowledge rules and let A = {a1, . . . , al−1, al, . . . , an} be the attributes of the
considered schema, where for each of the attributes A2 = {al, . . . , an} an aggre-
gation function is defined for (fi for ai). Our tuple merging approach extended
with aggregation functions, knowledge rules, and instance weights is performed
by the following steps (the first two steps are illustrated in Figure 4):

1. Divide the Input. First, all merging lists are built:

M({t1, t2, . . . , tk}) = {{I1, I2 . . . , Ik} | Ii ∈ pI⊥(ti), ti ∈ C} (6)

2. Apply Aggregation. Then, each merging list M ∈ M(C) is fused by apply-
ing the set of aggregation functions F = {fl, . . . , fn} (defined for attributes
{al, . . . , an}) having the attribute set AI ⊆ A as input. For the attributes
without any aggregation function (attributes A1 = {a1, . . . , al−1}) all possi-
ble values are taken into account (recall I⊥ × S = I⊥ and πA(I⊥) = I⊥):

∀M ∈ M(C), μ(M) = πA1(M) × F(F, πAI (M)) (7)

During this step the probabilities of the resultant instances can be directly
computed. Let P (M) =

∏
I∈M P (I) be the probability2 of the merging list

M . The probability of an instance Iμ dependent on M results in:

P (Iμ | M) =
1

w(tμ)
×

∑

Ii∈M,πA1(Ii)=πA1(Iµ)
w(ti, Ii) (8)

Note, the probabilities of duplicate instances eliminated by the relational
projection operator in Formula 7 are added up. Duplicate instances result-
ing from the fusion of different merging lists are handled in Step 4.

3. Apply Rules. Third, the set of knowledge rules N is checked for each in-
stance resulting from fusing the merging list M . If an instance is invalid for
at least one rule, this instance is removed from the fusion result μ(M).

2 Due to all tuples are independent of each other, the probability of M is equal to the
product of the probabilities of all its instances I ∈ M .
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title year studio total
I1 L.A.Crash 2006 US 150k
I2 Crash 2004 WB 120k

title year studio total
I3 L.A.Crash 1997 WB 115k
I4 Crash 2004 US 120k
I⊥ —————————

title year studio total
I6 Cash 2004 WB 60k

1

2

Merging Lists

M1 = {I1, I3, I6}
M2 = {I1, I4, I6}
M3 = {I1, I⊥, I6}
M4 = {I2, I3, I6}
M5 = {I2, I4, I6}
M6 = {I2, I⊥, I6}

title year studio total

L.A.Crash 2006 US 150k

—————————

Cash 2004 WB 60k

title year
I ′
1 L.A.Crash 2006

I⊥ ———
I ′
6 Cash 2004

×
studio total
WB 210k IA

μ({I1, I⊥, I6}) = {I ′
1 × IA, I⊥, I ′

6 × IA}

take t3 SUM

Fig. 4. Building of all merging lists (Step 1) and fusing the merging list M3 =
{I1, I⊥, I6} (Step 2). The total values are added up (mediating function). For the
studio name the value from the instance of tuple t3 is chosen (deciding function). For
the movie title and the production all values are taken into account.

4. Combine Results. Finally, the fusion results of all merging lists are com-
bined to the final set of possible instances pI⊥(tμ) and all probabilities
P (tμ[I]), ∀I ∈ pI⊥(tμ) are computed. If instances are eliminated by knowl-
edge rules, a final normalization need to be applied.

pI⊥(tμ) =
⋃

M∈M(C)

μ(M) (9) P (tμ[I]) =
∑

M∈M(C)

P (I | M) P (M) (10)

Note, if for all attributes an aggregation function is defined (l = 1), for each
merging list a single possible instance results (we denote this setting a full-
aggregation). Otherwise, for each merging list at most as many instances as
base-tuples can result (one for each of the merged instances).

If the instance data of each base-tuple is certain (each tuple has exact one
possible instance), only one merging list is built. If in addition a full-aggregation
is applied, from tuple merging a single possible instance results. Thus, this ap-
proach is a generalization of conflict resolution used for tuple merging in certain
databases. In contrast, if no aggregation function is defined, the result contains
each instance possible for at least one base-tuple. Therefore, this approach is
also a generalization of our basic approach for probabilistic tuple merging.

In the example of Figure 4, three tuples of a relation box office are merged.
Two aggregation functions are defined. The total amount of sold tickets results in
the sum of all values of attribute total (mediating function). Moreover, the user
knows that the studio name of the third tuple is correct. For that reason, this
value is chosen for all instances (deciding function). For the attributes title and
year no functions are specified. Thus, all possible values are taken into account.

5.1 Scalability

Given a duplicate cluster of size k. Assume that each tuple has averagely l
possible instances (including I⊥). From the basic approach at most k×l instances
result. In contrast, in the extended approach lk merging lists are built. Thus, if
aggregation functions are used, at most k× lk instances can be result. This is an
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increase to the basic approach of lk−1 times. Experience has shown that cluster
rarely have more than 5 tuples and uncertainty often can be adequate modeled
by around 10 possible instances. Certainly, this increase is still tremendous (5·105

instead of 50), but can be flexibly reduced to a desired amount of data by only
taking the most likely (resultant or base) instances into account. An important
reflection of future work is to compute the most probable resultant instances
more efficiently by pruning of irrelevant merging lists first.

5.2 Characteristics of Merging Approaches

In [12], we introduce a set of characteristics of merging approaches which are
useful in many merging scenarios. Some of these characteristics are:

• Independence of the Merging Order: The tuple resulting from merging
multiple base-tuples should be independent from the merging order. This
requirement is important, if tuple merging is considered as a part of a data
integration process and the integration is performed in a pairwise fashion
instead of integrating all sources at one time. This independence is given, if
tuple merging is associative:

μ(T ) = μ({μ(T \ Ti), μ(Ti)}) for all Ti ⊂ T (11)

• Stability: We denote a merging to be stable, if from deduplicating a dupli-
cate free relation the relation itself results. This property is given, if tuple
merging is idempotent (μ({t}) = t).

• SP-Query Consistency: Query consistency means that the result of query-
ing a merged tuple should be equal to merging the tuples resulting from
querying the individual base-tuples. Since we only consider queries on single
tuples, joins and set-based operators are not taken into account. Moreover,
aggregation functions change the tuples’ schema. Thus, a consistency w.r.t.
queries with aggregations is generally not possible and we restrict to the
probabilistic equivalences of the algebraic operations selection and projec-
tion (we use the definition of the world-set algebra [9]). In the following, we
define this class of queries as SP-Queries. Let Rp be a probabilistic relation
and let Q be the set of all possible SP-Queries which can be formulated on
Rp, the requirement of SP-Query consistency is formalized as:

(∀T ⊆ Rp, ∀q ∈ Q) : μ({q(t) | t ∈ T }) = q(μ(T )) (12)

SP-Query consistency is very useful to reduce the dataflow between source
databases and target database, because irrelevant data (tuples in case of se-
lection, attributes in case of projection) can be already excluded at the source
databases’ sides. This is especially important, if data are paid by amount.
However, for doing that there must be a certain attribute serving as real-
world identifier. Otherwise, the duplicate detection result can be influenced
by an early performing of SP-Queries.
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Now, we discuss the influences on these characteristics by using aggregation
functions, knowledge rules, and instance weights:

Basic Approach: The basic approach is independent of the merging order, SP-
Query consistent and stable.

Ext. Approach + Instance Weights: Instance weights only affect stability,
but non-stability is even the goal of taking further evidence into account.

Ext. Approach + Aggregation Functions: The approach extended with ag-
gregation functions (simple or complex) is associative, if all these functions
are associative and stable, if all these functions are idempotent. Both proper-
ties are satisfied by aggregation functions usually used for modeling attribute
semantics (e.g. sum, max). The extended approach is not consistent with se-
lections, because a removing of tuples and instances definitely influences the
set of values to be aggregated. This approach, however, is consistent with
projections, if either only simple aggregation functions are used or none of
the excluded attributes is required as input for one of the aggregation func-
tions defined for the remaining attributes.

Ext. Approach + Knowledge Rules: The approach extended with knowl-
edge rules is stable, if none of the base-instances violates a rule, i.e. the
source data is consistent with the set of given rules. Independence of merg-
ing order is not satisfied, if an intermediate result violates a rule which would
not be violated by the final result. This can only happen, if new values arise
and hence only, if knowledge rules are used in combination with aggregation
functions. Nevertheless, the most useful aggregation functions are monoton-
ically increasing (sum, max) or monotonically decreasing (min). Thus, rules
restricting an attribute domain to a range with an lower and an upper bound
(e.g. the stock value is between 10 and 100) do not pose a problem. Finally,
this approach is consistent with selection, but not consistent with projection,
in cases one of the excluded attributes is used in a rule.

In summary, the merging approach extended with aggregation functions, knowl-
edge rules, and instance weights guarantees independence of the merging order
in the most useful scenarios (associative aggregation functions and meaningful
rules). Stability can be ensured, if wanted by using only tuple-uniformly weighted
instances and cleaning data first. Consistency with selection cannot be ensured in
general, if aggregation functions are used. In contrast, if attributes are projected
carefully, consistency with projection can be achieved easily.

6 Related Work

Tuple merging in certain data is considered in different works [5,3,11,19]. Since in
certain data only single values can be stored, conflicts always have to be resolved
by applying aggregation functions. In contrast, because we process probabilistic
data, in our approach such functions are not mandatory, but a helpful capability
to incorporate external knowledge into the merging process.
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Robertson et al. [14] consider tuple merging within a transposition of certain
data. Merging of two tuples with contrary instance data is not provided (in such
cases both tuple are denoted to be non mergeable).

DeMichiel [6] and Tseng et al. [16] use partial values (resp. probabilistic values)
to resolve conflicts between certain values by taking multiple possible instances
into account. Consequently, these approaches already produce uncertain data as
result data. This is similar to our basic approach for instance merging if each
base-tuple is considered to be certain. Nevertheless, both approaches consider
conflict resolution on an attribute by attribute basis. Dependencies between
possible attribute values are not considered.

Andritsos et al. [1] define queries on multiple conflicting duplicates. Thus
instead of merging the tuples of each cluster into a single one, query results are
derived from sets of mutual exclusive base-tuples. Since to each cluster’s tuple
a probability can be assigned, this approach is mostly identical to our basic
approach applied to certain base-tuples. However, concepts for incorporating
external knowledge are not provided.

Van Keulen et al. [17] store conflicting duplicates in a probabilistic database
and use user feedback to resolve these conflicts at query time. Thus, they do not
directly incorporate the user expertise into the merging process.

A merging of tuples representing uncertain information is proposed by Lim et
al. [10], but instead of probability theory this approach is based on the Dempster-
Shafer theory of evidence and hence is not applicable for probabilistic data.

None of these studies, however, allows probabilistic data as source data.

7 Conclusion

Many applications naturally produce probabilistic data. For integrating prob-
abilistic data from multiple sources in a consistent way or to clean a single
database duplicate tuples need to be identified and merged. We consider dupli-
cate detection in probabilistic data in [13] and introduce a basic approach for
merging the instance data of probabilistic tuples in [12]. In this paper, we focus
on the incorporation of external knowledge (domain knowledge or user expertise)
in the merging process making the merging result more accurate. For that pur-
pose, we generalize our basic approach by incorporating aggregation functions,
knowledge rules, and instance weights. Finally, we analyze in which way these
extensions influence several important characteristics of merging processes.

In future research we aim to make the merging process more adaptable for in-
dividual needs. The merging approach based on the set union operator produces
data correct as possible. Moreover, this approach is associative and SP-Query
consistent. Nevertheless, the more base-tuples are merged, the more possible in-
stances result. Thus, the merged tuple becomes more and more uncertain. For
that reason, we need new methods enabling the user to make a trade-off be-
tween correctness and certainty being best for him. Finally, we are working on
techniques making the extended merging approach more efficient.
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