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AbstractIn this chapter the Jadex framework is presented that aims atsupporting
the construction of distributed and concurrent applications. Main conceptual entity
in Jadex is an active component that combines properties of agents with software
components in order to strengthen the software technical means for developing ap-
plications. The conceptual foundations of Jadex as well theadvantages of active
components will be described in a practical way by using a disaster management
scenario as a running example. Concretely, the notions of virtual environment, ac-
tive components as well as BDI agents are introduced to show how a simulation
scenario can be built, in which different kinds of rescue forces are coordinated to
handle disasters in a cooperative way.
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1. Motivation

The development of distributed applications is intricate due to a number of inherent char-
acteristics of those systems. One fundamental reason for the increased complexity is that
separated network nodes lead to implicit concurrency and additionally require message
based communication mechanisms. Implications of concurrency and inter-address space
communcation are many new error sources, some of which are extremely difficult to
handle and also cannot completely be masked by distributiontransparency.

In order to simplify the construction of distributed systems the Jadex framework
proposes conceptual abstractions for dealing with distribution and concurrency by com-
bining ideas from agent and software component orientation. Core concept is a so called
active component, which is similar to an agent as it represents an autonomous entity that
has control about its state and execution. Similar to a component it is seen as aservice
providerandconsumer, which may interact with other components by using their public
services. Thus, on the one hand active components are a first-class and natural abstrac-
tion for concurrency because they are executed independently of each other. On the other
hand the notion of provided and required services for activecomponents establishes a
foundation for systematic software architectures with clear inter-component dependen-
cies. Additionally, the service based interrelationshipsbetween components facilitate the



composition of basic components to composite components and foster modularity and
reusability of system parts.

On basis of these foundations Jadex offers an open source middleware software
solution, which consists of a runtime infrastructure as well as an extensive tool suite.
The runtime infrastructure is a platform that allows applications to be simulated as well
as executed without requiring code changes in components when switching execution
modes [10]. The platform is capable of running different component types, e.g. complex
BDI (belief-desire-intention) reasoning agents or BPMN (business process modeling no-
tation) workflows. Each component type is characterized by its internal architecture,
which determines the programming abstractions for the component, e.g. beliefs, plans
and goals in case of a BDI agent. The execution logic of such aninternal architecture is
realized in akernel, so that new component types can easily be added by just providing
a new kernel for the new type. The tool suite consists of development and runtime tools,
whereby development tools are kernel specific so that e.g. BDI agents can be built rely-
ing on a standard integrated development environment (IDE)but for BPMN workflows
a new graphical modeling tool is provided. Runtime tools mainly serve management and
debugging purposes including e.g. a starter tool for starting and stopping applications
and a debugger tool that can be used for executing componentsin a stepwise manner and
introspect their state.

This chapter will introduce the conceptual foundations of Jadex and explain these
concepts relying on a consistent example scenario. Therefore, in the following Section 2
a specific disaster management scenario is introduced. The system design then first tack-
les the environment modeling aspects in Section 3 and highlights how the virtual exam-
ple environment can be described. Thereafter, in Section 4 active components and com-
ponent services are introduced and will be used to model the main scenario component
types as well as their service interrelationships. In Section 5 details about the Jadex BDI
agent architecture are explained and it is shown how complexrescue force coordination
can be managed using a BDI coordinator agent. Finally, a conclusion and an outlook is
given in Section 6.

2. Disaster Management Scenario

Figure 1 shows the AML agent diagram of the disaster scenario. The presented disaster
scenario targets the coordination between disasterRescue Forcessuch asFire Brigades
and Ambulances. DistributedStationsexist for hospitals as well as fire departments,
where each of them has its own fleet of vehicles (Rescue Forces). Different types of ve-
hicles are needed at differentDisastersites that may unexpectedly occur in the envi-
ronment. Main task of the planned disaster management system consists in coordinat-
ing the rescue forces for handling disasters in an effectiveand efficient manner. Hence
a Commander Agentis responsible for handling disasters by assembling and controlling
a Rescue Team. Such a rescue team may consist of an arbitrary number ofRescuers, i.e.
ambulances and fire brigades.

2.1. Scenario Details

For simulation purposes several simplifications of the scenario sketched above have
been introduced. It is assumed that only the following kindsof disasters can occur:



Figure 1. AML agent diagram for disaster management components

Car Crashes, Earthquakes, Chemical LeakagesandExplosions. Each disaster instance
is characterized by a set of common properties, namely the number of victims, fires and
chemicals. Additionally, it has a specific size and is classified as normal disaster or se-
vere disaster, whereby severe disasters have priority overnormal disasters with respect
to their resolution, i.e. if a severe disaster occurs and notenough rescue forces are avail-
able, they may be discharged from the current task and assigned a new one related to
the severe disaster. In order to handle a disaster, fire brigades and ambulances are used.
A fire brigade can clear chemicals as well as extinguish fires and ambulances have the
capability to transport victims one by one to a nearby hospital. Handling disasters is a
complex coordination problem as it has to be determined which forces should be sent to
which disasters at what time, possibly needing to disrupt ongoing tasks in case of new
severe problems. In the simplified scenario used here it is assumed that the number of
victims, fires and chemicals is an important factor for disaster resolution. Even if one
force of each kind can in principle handle a disaster this would be far from optimal with
respect to the amount of time that is needed. The resolution of a disaster is done much
faster, when more than one rescue force is used but with the limitation that no speedup
is gained in case the number of forces for a given task exceedsits current number of
victims, fires or chemicals (e.g. if three fires exist, three fire bridges will extinguish them
three times faster than one fire brigade but four brigades will be as fast as three). A fur-
ther constraint of disaster resolution is that for safety reasons all chemicals have to be
cleared before ambulances can start treating victims at thedisaster site.



3. Environment Support

Jadex applications are often placed in complex and highly dynamic distributed envi-
ronments like the disaster management scenario described above. Such applications are
composed of independently executing active components that interact with each other
and with the surrounding environment. As a result, the behavior of these applications
becomes hard to design and predict using traditional software engineering approaches.
Instead, simulation approaches can be used for analyzing system behavior under specific
conditions and also for benchmarking different behavioralstrategies against each other.
Thus, for testing purposes, applications need to be executed in specifically designed vir-
tual environments. Once, an implementation has been thoroughly tested using simula-
tions, it can be deployed in the real environment.

To support this common use case of developing both a simulation and a deploy-
ment version of an application, the Jadex framework features an environment support
(“EnvSupport” for short). EnvSupport is a set of APIs, framework classes and tools to
facilitate the development of simulation applications andachieves the following design
objectives:

• Clean separation of environment and active component implementations
• Easy building and configuration of virtual environments fortesting
• Provision of tools, e.g. for observing running simulationsor collecting and ana-

lyzing data

The clean separation of the environment from other application components fosters an
easy transition to a deployed system, because the componentimplementations do not
need to be changed in the process. The EnvSupport framework further provides many
ready to use classes for typical environments like continuous or grid-based 2D virtual
worlds. Thus test environments for applications can quickly be constructed from existing
framework classes. Environments are described in declarative XML files that simplify
configuration and thus allow quickly changing environment parameters for testing ap-
plications in different scenarios. Moreover, tools are provided that allow observing the
current state of 2D environments in graphical views. To thisend, environment configura-
tions may include hints for graphical representation of environment elements (e.g. geo-
metric shapes and textures), which allows fine-tuning the graphical representation of the
environment. Also, the data produced during simulation runs can be collected, saved to
files and/or rendered in charts for analysis. In the following, the features of EnvSupport
are shortly introduced. A more detailed introduction can befound in [5].

3.1. EnvSupport Realization and Usage

The basic building blocks of the EnvSupport framework are depicted in Figure 2. The
environment itself is modeled as a so calledSpace(Figure 2 left). Jadex applications
may contain an arbitrary number of spaces, which can represent besides virtual envi-
ronments also other applications structures like organizational models for e.g. assigning
roles to application components (cf. [8] for more details onspaces). The environment
space containsDomainconstructs (left upper area) as well asInteractionconstructs (left
lower area). The domain constructs allow defining environment objects (Space Objects),
e.g. ambulances, victims, disasters etc., which together represent the current state of the



Figure 2. Building blocks of the EnvSupport framework

environment. An object may have one or more associatedTasksfor defining some cur-
rently ongoing behavior of the object (e.g. movement of an ambulance). In addition to
tasks,Processesallow representing global behavior of the environment (e.g. random oc-
currence of new disasters). TheSpace Executorof the environment is responsible for
executing the tasks and processes based on a specific execution model (e.g. round-based
or continuous). For evaluation and visualization purposesit is often helpful to restrict
the set of considered environment objects (e.g. focusing onambulances and ignoring
fire brigades). For this purposeData Viewscan be defined to select a specific subset of
environment objects based on declarative queries.

Interactionconstructs (left lower area of Figure 2) establish the relation between
environment objects and application components. TheAvatar Mappingdefines a one-to-
one relation between active components and space objects, i.e. allowing a component to
be represented in the environment as a space object. The avatar mapping serves two pur-
poses. First, the existence of components and space objectscan be linked to each other.
In this respect, the developer can specify if correspondingspace objects should be auto-
matically created and destroyed for each created or destroyed component and vice versa.
Secondly, the avatar mapping influences the percepts and actions that are available to a
component as explained in the following.Perceptsrepresent information about changes
in the environment that are passed to interested components. Each percept type declares
the type(s) of space objects that can cause the percept and the type(s) of components that
can observe the percept.Percept Generatorsare responsible for creating percepts based
on the declared percept types. Custom percept generators can be implemented to serve
specific application requirements, but common use cases arealso provided in predefined
framework classes, such as a default percept generator thatautomatically creates per-
cepts for all environment changes inside a definable visual field of an avatar. As compo-
nents might be implemented using one of the different kernels provided by Jadex (e.g.
BDI reasoning agents vs. simple micro agents),Percept Processorsare used to feed the
generated percepts flexibly into the application logic of the components. Again, custom
implementations can be provided as needed, yet common use cases are readily available,



like automatically updating definable beliefs of BDI agentsaccording to specific per-
cepts. Finally, components may scheduleActionsin the environment. Actions are imple-
mented as Java classes that may apply arbitrary changes to the environment state (e.g.
changing properties of space objects, creating/destroying objects, etc.). TheSpace Ex-
ecutorexecutes the scheduled actions along with the tasks and processes of space objects
as described above. Moreover, the executor invokes the percept generators and percept
processors for propagating environment changes to application components.

A developer can choose to collect data during simulation runs using theEvaluation
facilities of EnvSupport (upper right of Figure 2).Data Providersallow defining the con-
crete data items to be collected as well as specifying collection intervals and aggrega-
tion functions.Data Consumersuse the collected data for e.g. rendering charts while the
simulation is running and/or writing collected data to diskfor later analysis. To get a
visual feedback of a running simulation, theObserver(Figure 2, right) produces a con-
tinuously updated 2D view of the current environment state.The developer can define
so calledPerspectivesthat are visual representations of the environment. A perspective
mainly consists ofDrawables,which assign visualizations to space objects. The draw-
able for a space object can be composed from arbitrary many drawing primitives (e.g.
geometric shapes and external images). Drawing primitivescan be further parametrized
using properties of the underlying space object, such that the state of a space object can
be used to influence its visual appearance. A perspective canfurther includePre- and
Post-Layersto add further visual elements (e.g. a map or a grid) that do not correspond
to specific space objects.

3.2. Scenario Environment

For the disaster management application the Jadex EnvSupport was used to build an
environment for testing the behavior of the commander agents. This environment can
be configured in various aspects, e.g. regarding the number and location of rescue force
stations as well as the numbers of available vehicles, frequency and size of disasters, etc.
The environment further allows visually following the operations of the rescue forces
on a map and inspecting statistical data about the efficiencyof the system in graphical
charts.

3.2.1. Scenario Domain

Figure 3 shows the XML-based definition of the domain elements of the disaster man-
agement scenario. The environment is situated in a continuous 2D area of size 1x1 for
simplicity (line 1). If the application should be tested fora concrete city map, the scale
can be adapted to better match the real dimensions. The available types of space objects
are defined in theobjecttypessection (lines 2-17). Each type definition contains the sup-
ported properties of the object as well as optionally the default value for each property.
E.g. thedisastertype is defined in lines (3-10) and has properties as modeled in Figure
1 (severe, sizeetc.). The specific disaster subtypes (’Car Crash’, . . . ) arecaptured in the
typeproperty (line 4) to avoid having to define identical space object types for each disas-
ter subtype. All space objects automatically have a property for their location, and often
space objects do not need any further properties, like thefirestationtype (line 11). The
firebrigadedefinition (lines 12-15) shows the use of a default value. Each fire brigade
has a speed property, which defaults to 0.05 (line 13). Thus all fire brigade instances in



1 <e:envspacetype name="2dspace" class="ContinuousSpace2D" width="1"height="1">
2 <e:objecttypes>
3 <e:objecttype name="disaster">
4 <e:property name="type" class="String"/>
5 <e:property name="severe" class="boolean"/>
6 <e:property name="size" class="int"/>
7 <e:property name="victims" class="int"/>
8 <e:property name="fire" class="int"/>
9 <e:property name="chemicals" class="int"/>

10 </e:objecttype>
11 <e:objecttype name="firestation"/>
12 <e:objecttype name="firebrigade">
13 <e:property name="speed" class="double">0.05</e:property>
14 <e:property name="state" class="String"/>
15 </e:objecttype>
16 ...
17 </e:objecttypes>
18 <e:tasktypes>
19 <e:tasktype name="move" class="MoveTask" />
20 <e:tasktype name="extinguish_fire" class="ExtinguishFireTask" />
21 ...
22 </e:tasktypes>
23 <e:processtypes>
24 <e:processtype name="create" class="DefaultObjectCreationProcess">
25 <e:property name="type">"disaster"</e:property>
26 <e:property name="timerate" dynamic="true">
27 DisasterType.getExponentialSample(30000)
28 </e:property>
29 <e:property name="properties" dynamic="true">
30 DisasterType.generateDisaster()
31 </e:property>
32 </e:processtype>
33 </e:processtypes>
34 <e:avatarmappings>
35 <e:avatarmapping objecttype="firebrigade" componenttype="FireBrigade"
36 createavatar="false" createcomponent="true"/>
37 ...
38 </e:avatarmappings>
39 </e:envspacetype>

Figure 3. Domain elements of disaster management environment

the simulation will move with this default speed, unless thespeed property is specifically
set to a different value for some instance.

The behavior of the space objects is captured in tasks. In thedisaster management
scenario only the vehicles (ambulances and fire brigades) exhibit individual behavior.
The tasks are defined in thetasktypessection (lines 18-22). Themovetask (line 19) han-
dles movement of a vehicle according to its speed and a chosendestination. The task is
implemented in a Java class as explained later. Fire brigadeobjects can further perform
the extinguish_firetask (line 20), which continuously reduces the amount of fireof a
nearby disaster object. In case all fires have been extinguished and also no chemicals and
victims are present the task removes the resolved disaster object from the space. Further
similar tasks (e.g. clear chemicals and treat victims) are omitted for brevity. The global
behavior of the disaster management environment is described using processes (lines
23-33). Here, a single process is defined that randomly creates new disaster objects in
the environment. The process implementation is the genericframework classDefaultO-
bjectCreationProcess(line 24), that can be used to create arbitrary kinds of objects using
a configurable objecttype (line 25), timerate(line 26-28), and objectproperties(lines
29-31). In the scenario, the time between two disasters and the disaster properties are



1 public class MoveTask extends AbstractTask
2 {
3 public void execute(IEnvironmentSpace space, ISpaceObject obj,
4 long progress, IClockService clock)
5 {
6 IVector2 destination = (IVector2)getProperty("destination");
7 IVector2 loc = (IVector2)obj.getProperty(Space2D.PROPERTY_POSITION);
8 double speed = ((Number)obj.getProperty("speed")).doubleValue();
9 IVector2 direction = destination.copy().subtract(loc).normalize();

10 double dist = ((Space2D)space).getDistance(loc,destination).getAsDouble();
11 double maxdist = progress*speed*0.001;
12 IVector2 newloc = dist<=maxdist ? destination
13 : direction.multiply(maxdist).add(loc);
14 ((Space2D)space).setPosition(obj.getId(), newloc);
15 if(newloc==destination)
16 setFinished(space, obj, true);
17 }
18 }

Figure 4. Implementation of the move task

randomly generated using static methods of the helper classDisasterType(lines 27 and
30). The timerate is drawn from an exponential distributionwith an average of 30000
milliseconds, while the disaster properties are based on specific probabilities, e.g. for
disaster type and corresponding numbers of victims, etc.

Finally, in theavatarmappingssection (lines 34-38), the space objects of the vehi-
cles (fire brigade and ambulance) are mapped to concrete component types. The map-
ping definition for the fire brigade (lines 35-36) shows that an application component of
typeFireBrigadeshould be created for eachfirebrigadespace object as specified by the
createcomponentattribute. Therefore, in the scenario configuration as explained later,
one can simply add or remove fire brigade objects that subsequentially lead to automatic
creation of corresponding application components.

Figure 4 shows the Java class implementing the move task. Theclass extends the
framework classAbstractTask(line 1) and overrides theexecute()method (lines 3-17),
which is repeatedly called by the space executor until the task is marked as finished.
First, the targetdestinationvalue of the task instance as well as theloc(ation) andspeed
of the space object are retrieved (lines 6-8). Based on thesevalues, thedirection from
the current location to the destination is calculated (line9) as well as thedist(ance) to
the destination (line 10). Themaxdistvalue (line 11) represents the maximal distance the
vehicle could have moved in the available time, incorporating theprogressof time since
the move task was last executed. The new locationnewlocis calculated by multiplying
the direction vector with the maximal movement distance, unless the vehicle already
reaches the destination with less movement (lines 12-13). Finally, the new location is set
as a property of the vehicle (line 14) and if the destination is reached, the task is marked
as finished (lines 15-16).

3.2.2. Scenario Visualization

The last section has shown how to define the data and behavior of the disaster manage-
ment environment. If only statistical data of simulation runs is required for analyzing
the application performance, there is no need for a visualization at all. Yet, immediate
visual feedback of running simulations is usually an indispensable help during building



1 <e:perspective name="icons" class="Perspective2D" opengl="true">
2 <e:drawable objecttype="disaster" width="0.08" height="0.08">
3 <e:property name="drawsize" dynamic="true">
4 new Vector2Double($object.getProperty("size").intValue()*0.005)
5 </e:property>
6 <e:ellipse layer="1" size="drawsize" abssize="true" color="#FAFA1E99">
7 <e:drawcondition>!$object.getProperty("severe")</e:drawcondition>
8 </e:ellipse>
9 <e:ellipse layer="1" size="drawsize" abssize="true" color="#FA1E1E99">

10 <e:drawcondition>$object.getProperty("severe")</e:drawcondition>
11 </e:ellipse>
12 <e:texturedrectangle layer="2" height="1" width="1"
13 imagepath="images/carcrash.png">
14 <e:drawcondition>
15 $object.getProperty("type").equals("Car Crash")
16 </e:drawcondition>
17 </e:texturedrectangle>
18 ...
19 <e:text layer="3" x="0.04" y="-0.02" size="6" font="Arial"
20 text="victims: $victims$\nfire: $fire$\nchemicals: $chemicals$"
21 abssize="true" align="left" color="black"/>
22 </e:drawable>
23 <e:drawable objecttype="firestation" width="0.1" height="0.1">
24 <e:texturedrectangle layer="4" height="1" width="1"
25 imagepath="images/firestation.png"/>
26 </e:drawable>
27 <e:drawable objecttype="firebrigade" width="0.05" height="0.05">
28 <e:texturedrectangle layer="3" height="1" width="1"
29 imagepath="images/firebrigade.png"/>
30 <e:texturedrectangle layer="3" height="0.4" width="0.4"
31 imagepath="images/beacon.png" x="-0.2" y="-0.35">
32 <e:drawcondition>
33 "moving_to_disaster".equals($object.getProperty("state"))
34 </e:drawcondition>
35 </e:texturedrectangle>
36 ...
37 </e:drawable>
38 ...
39 <e:prelayers>
40 <e:tiledlayer width="1" height="1" imagepath="images/map.png" />
41 </e:prelayers>
42 </e:perspective>

Figure 5. A perspective for the disaster management environment

and debugging of the application, as well as for appropriately configuring the simulation
to resemble realistic behavior.

As shown in Figure 5, a visual perspective for the disaster management scenario can
be quickly defined. One only has to define a drawable for each space object that should
be visible in the perspective. Here, drawables are defined for disasters (lines 2-22), fire
stations (lines 23-26) and fire brigades (lines 27-37). Similar drawables are defined for
ambulances and hospitals (omitted for brevity). If the appearance of a space object is
static (i.e. does not depend on the properties of the object), the drawable definition is usu-
ally quite simple. E.g. the fire station is represented by an icon (texturedrectangle) loaded
from the external imagefirestation.png(lines 24-25). The drawable for the disaster is
more complex, as it calculates a drawing size based on the size property of the disaster
object (lines 3-5) and uses this size to draw a circle (ellipse) representing the disaster
area (lines 6-11). Further, the disaster drawable chooses from a set of different icons,
based on the disaster type. E.g. the icon for a car crash is defined with a corresponding
drawconditionto match the type property (lines 12-17). Finally, the visual disaster rep-



1 <e:dataproviders>
2 <e:dataprovider name="statistics">
3 <e:source name="$fire" objecttype="disaster" aggregate="true">
4 $object.fire
5 </e:source>
6 ...
7 <e:data name="time">$time</e:data>
8 <e:data name="fire">SFunction.sum($fire)</e:data>
9 ...

10 </e:dataprovider>
11 </e:dataproviders>
12 <e:dataconsumers>
13 <e:dataconsumer name="statistics_chart" class="XYChartDataConsumer">
14 <e:property name="dataprovider">"statistics"</e:property>
15 <e:property name="title">"Disaster Statistics"</e:property>
16 <e:property name="maxitemcount">500</e:property>
17 <e:property name="legend">true</e:property>
18 <e:property name="seriesname_0">"Fire"</e:property>
19 <e:property name="valuex_0">"time"</e:property>
20 <e:property name="valuey_0">"fire"</e:property>
21 ...
22 </e:dataconsumer>
23 </e:dataconsumers>

Figure 6. Evaluation settings for the disaster management environment

resentation includes text fragments denoting the current numbers of fires, chemicals and
victims (lines 19-21). Similarly to the disaster drawable,the visual representation of the
fire brigade adapts itself to the properties of the fire brigade object, e.g. by displaying
a beacon, when the fire brigade moves towards a disaster (lines 30-35). Besides the in-
dividual space objects, the environment itself is also visually represented by using a so
calledprelayer(lines 39-41), which in this case displays a map of an area. A screenshot
how the perspective looks like during a simulation run is shown in Section 5.2.3 in Figure
20 (right).

3.2.3. Scenario Evaluation

As described in Section 3.1, an application description mayinclude an evaluation section
to specify, which data should be collected during simulation and how this data should be
presented. Figure 6 shows the evaluation settings for the disaster management applica-
tion. The collection of data is specified usingdataproviders(lines 1-11) while the pre-
sentation of data is defined asdataconsumers(lines 12-23). The output of a data provider
is similar to a relational database table, i.e. thedataentries (lines 7 and 8) represent the
columns of the produced table, and for each simulation time point a row is added to
this table. The input of the data entries is based onsourcesfor fire (lines 3-5), victims
and chemicals (not shown), as well as predefined values like the current simulation time.
Thus the data provider has one column for the current simulation time (line 7) for the
current number of fires as a sum over the fires of all current disasters (line 8) and for the
sums of victims as well as chemicals (not shown).

The application uses a chart data consumer (line 13) to present the collected data.
The chart is based on data from the previously defined data provider (line 14) and has
some properties to influence the visual appearance (lines 15-17), i.e. displaying a title
and a legend and restricting the amount of plotted information to the last 500 data rows.
A chart data consumer can plot multiple data series at once, each of which requires a



Figure 7. Active component conceptual view

name, as well as inputs for a X and Y values. E.g. a series is specified for displaying
information about fires (line 18) having the current time as Xvalue (line 19) and the
current number of fires as Y value (line 19). The resulting chart is shown in Section 5.2.3
in Figure 20 (middle).

4. Active Components and Services

In Figure 7 the concepts of an active component are shown. This view is similar to the
definition of a component in the service component architecture (SCA) [6] with some
substantial differences. One main aspect of an active component that is shared with
nearly all existing component models is the explicit definition of provided and required
services.On the one hand this makes the functional component dependencies explicit
(required services) and on the other hand it also clearly states what can be functionally
expected from the component (provided services). Describing components with required
and provided service is a necessary precondition for building modular and reusable soft-
ware applications as component dependencies become visible and therefore manageable
on an architectural level. Hence, adding the notion of services to agents facilitates the
construction of complex applications in a sound software technical way.

The active component model is also hierarchical meaning that composite compo-
nents can be constructed from basic components by wiring required and provided ser-
vices. A composite component may thus be a parent of an arbitrary number ofsubcom-
ponents. A component can be configured from the outside usingpropertiesand con-
figurations.Properties are a way to set specific argument values individually and con-
figurations represent a set of predefined argument values that can be referred to via a
user given name. The most obvious difference of an active component with regard to
other component definitions is that it is an autonomously executing entity similar to an
agent. Its behavior control is determined by aninternal architecture,which constitutes
the available conceptual abstractions for programming theautonomous behavior of an
active component.



a) + <methodname>(<param>[0..*]): void
b) + <methodname>(): <type>
c) + <methodname>(<param>[0..*]): <futuretype>

Figure 8. Allowed service method signature types

4.1. Services

The publicly available functionality of an active component is defined by an arbitrary
number of provided services. A service is defined via an interface specification, which
allows object oriented access to the service functionalityand further allows locating ser-
vices of a given type. In addition to the interfaces active components also contain the
concrete service implementations that realize the underlying domain logic. Typically,
service implementations belong to the component and are executed decoupled from the
caller on the component thread, but services can also process requests directly so that the
enclosing active component is not involved at all.

The active components paradigm imposes an important constraint on service inter-
face specifications as it is mandatory that no interaction between active components ever
blocks in order to already conceptually avoid deadlocks. Asdirect consequence it is re-
quired that all method signatures are asynchronous, i.e. the service caller should never
be blocked when invoking a service. To meet this objective method signatures can be
defined in three different ways: a) with no return value, i.e.void, b) as special case also
with a constant return value or c) with a future return value.These different kinds of
method signatures are schematically shown in Fig. 8. The first case allows asynchronous
invocation as the caller does not need to wait for a result. The second case only applies
to methods, which always return the same value (typically only methods without argu-
ments). Here, the constant return value can be cached in advance and immediately re-
turned on invocation without blocking the caller. In the general case a method provides
a return value that cannot be known in advance. In order to achieve asynchronous calls
with non void return values, the third variant with a future return value can be used.

A future represents the result of an asynchronous computation in the sense that a
method call immediately returns the future to the caller, but the computation result may
be provided later. Normally, futures realize await-by-necessityscheme what means that
a future blocks the caller in the moment when it needs to access the result of the call and
it has not yet been provided. This deferred waiting does not prevent deadlocks so that the
future concept has been extended using a callback mechanism. Instead of directly fetch-
ing the return value the caller can add a result listener thatis notified as soon as the value
is set by the callee. This allows avoiding blocking calls completely and conceptually
prevents technical deadlocks.1

1This does not mean that components cannot ’deadlock’ on the application layer by endlessly waiting on each
other, but the technical deadlock avoidance also in this case guarantees that such a ’deadlocked’ component
remains responsive and can handle further service or message requests by executing corresponding domain
logic.



Figure 9. Search scopes

4.2. Composition

Active components make use of primitive and composite components. A composite com-
ponent can be composed of arbitrary many subcomponents thatare either primitive or
composite components again. The composition of componentsis done using required
and provided services, which can be interconnected. Depending on this specification a re-
quired service can be bound to a service instance of a directly known component but also
to a service instance that will be searched at runtime and selected according to specified
service requirements. It is also possible to include subcomponents without service rela-
tionships in the composite component. The reason is that components are active and may
perform autonomous computations without being controlledby the composite element.
Thus, in certain cases it makes sense having subcomponents that cannot be accessed via
services from the outside as part of a composite component.

As active components are meant to support the construction of complex distributed
systems service bindings can typically not assumed to be static so that especially dynamic
composition aspects gain importance. Dynamic compositionrelies on service search,
which is commonly supported by centralized registries thatcan be used to store and
search service entries, e.g. in case of web services UDDI registries can be used. Although
such an approach can be used for active components as well, wepropose a decentralized
mechanism without central service repository. The mechanism is based on the observa-
tion that all active components are possible service providers and their hierarchical com-
position structure can be exploited for searching. The rationale behind this assumption is
that proximity is often an important factor for estimating the service usefulness, i.e. the
nearer a service is the more relevant it probably is.

Figure 9 shows five different scopes, which can be used to control the search. If
local scopeis used only declared services of the component itself will be considered.
In contrast, usingcomponent scopeincludes also subcomponents andapplication scope
further extends the search to all components of the same application. In some cases this
is not sufficient so that the search scope can be further expanded to include all services
of the platform (platform scope) or even all connected remote platforms (global scope).



provided service =
interface:Interface implementation:BasicService [direct:boolean]

required service =
interface:Interface name:String [multiple:boolean] [dynamic:boolean] [scope:String]

Figure 10. Provided and required service definitions

Having described how services can be located dynamically now the composition
approach can be explained in more detail. The specification properties for provided and
required services are listed in Figure 10. It can be seen thata provided service consists
of an interfaceas well as a serviceimplementationof type BasicService, which is a
predefined framework class that has to be extended. Additionally, the booleandirect flag
can be used to state that service calls should not be executedon the enclosing active
component thread but directly on the caller thread. Per default all calls are automatically
executed as part of the enclosing active component so that service implementations can
safely access component internals without consistency risks caused by concurrent thread
accesses.

A required service is also characterized by its interface. Furthermore, it has a com-
ponent widely visiblename, which can be used to fetch a service implementation using
thegetRequiredService(name)framework method. As it is a common use case that sev-
eral service instances of the same type are needed themultipledeclaration can be used.
In this case it is obligatory to fetch the services viagetRequiredServices(name).Service
binding is performed according to thedynamicandscopeproperties. Is a required ser-
vice declared to be dynamic it will not be bound at all but a fresh search is performed on
each access. The scope properties allow to constrain the search to several different areas
as introduced above, i.e. when scope is set to application the search will not exceed the
bounds of the application components.

4.3. Application Description

Jadex applications are described using an XML descriptor file. Basically, this file allows
declaring component types, environment spaces as well as application instances. Defini-
tions of component types include a logical component type name as well as the file name
of the component implementation. In this way application descriptions are independent
of the concrete component types and it becomes possible to set up heterogeneous appli-
cations consisting of different kinds of components, e.g. BDI agents and BPMN work-
flows. As introduced in Section 3, Jadex also allows different environment types being
used in concert with components. A space type is also defined by a logical name and an
implementation class but typically allows further space elements being declared. These
elements are defined relying on a space type dependent XML schema that is included
as separate namespace in the application descriptor (e.g. ’e:’ is used in the example as
identifier for the EnvSupport namespace).

In addition to type related information also concrete application instances can be
defined. In general, an application instance may consist of an arbitrary number of space
and component instances. Both are defined by referring to therespective logical type
name from the application model and may declare an instance name. Space instance def-



1 public interface ITreatVictimsService extends IService
2 {
3 public IFuture treatVictims(ISpaceObject disaster);
4 public IFuture abort();
5 }
6
7 public interface IExtinguishFireService extends IService
8 {
9 public IFuture extinguishFire(ISpaceObject disaster);

10 public IFuture abort();
11 }
12
13 public interface IClearChemicalsService extends IService
14 {
15 public IFuture clearChemicals(ISpaceObject disaster);
16 public IFuture abort();
17 }

Figure 11. Disaster management service definitions

initions are space type dependent. In case of the EnvSupportspace it is possible to create
instances of element types of the model, e.g. space objects,processes as well as data
providers and consumers. For a component instance, arguments, a start configuration,
and a number can be specified. Arguments can be employed to pass values to component
instances, whereby the instance name is just the name for thecomponent created. The
start configuration allows creating a component with a predefined setting and the number
states how many components of the same type will be initialized.

4.4. Scenario Architecture

The basic scenario design consists of agent types for the different rescue forces as well
as for the commander, which has the task of resolving disasters by coordinating res-
cue forces. This coordination is based on the component services of the rescue forces,
which reflect their respective capabilities (cf. Figure 11). An ambulance offers an in-
terfaceITreatVictimsService(lines 1-5) that can be used to instruct the rescue force to
start treating injured people at a specific disaster site. For this purpose the interface of-
fers thetreatVictims()method, which takes the disaster space object as parameter and
returns a future which indicates when patient treatment hasfinished and the ambulance
can be assigned to another task. In order to support also the reassignment of units an
additionalabort()method is available, which tells an ambulance to stop working on the
current disaster site. Again, the rescue force indicates its availability via the future return
value. A fire brigade exposes two interfaces. One calledIExtinguishFireService(lines
7-11), which can be used to instruct a brigade to extinguish fires at a specific disaster
site and another one calledIClearChemicalsService(lines 13-17) for working on chem-
ical problems. Both interfaces are syntactically similar to the first one and also offer an
abort method for task cancellation. It has to be noted that each rescue force can work on
one task at the same time only, even if it offers more than one service. In case a unit is
instructed to work on a task while it is busy it is expected to signal an exception to the
caller via the future return value.

The disaster management application descriptor is shown inFigure 12. It brings to-
gether the different parts of the application. On the one hand it can be seen that the appli-



1 <applicationtype ... name="DisasterManagement" package="disastermanagement">
2 <spacetypes>
3 <e:envspacetype name="2dspace" class="ContinuousSpace2D" ...
4 </spacetypes>
5
6 <componenttypes>
7 <componenttype name="FireBrigade" filename="FireBrigade.agent.xml"/>
8 <componenttype name="Commander" filename="Commander.agent.xml"/>
9 <componenttype name="Ambulance" filename="Ambulance.agent.xml"/>

10 </componenttypes>
11
12 <applications>
13 <application name="small">
14 <spaces>
15 <e:envspace name="my2dspace" type="2dspace">
16 <e:objects>
17 <e:object type="firestation">
18 <e:property name="position">new Vector2Double(0.8,0.4)</e:property>
19 </e:object>
20 <e:object type="firebrigade" number="10">
21 <e:property name="position">new Vector2Double(0.8,0.4)</e:property>
22 </e:object>
23
24 <e:object type="hospital">
25 <e:property name="position">new Vector2Double(0.3,0.3)</e:property>
26 </e:object>
27 <e:object type="ambulance" number="10">
28 <e:property name="position">new Vector2Double(0.3,0.3)</e:property>
29 </e:object>
30 </e:objects>
31
32 <e:processes>
33 <e:process type="create"/>
34 </e:processes>
35
36 <e:dataproviders> ... </e:dataproviders>
37 <e:dataconsumers> ... </e:dataconsumers>
38 </e:envspace>
39 </spaces>
40
41 <components>
42 <component type="Commander"/>
43 </components>
44 </application>
45 </applications>
46 </applicationtype>

Figure 12. Application descriptor of the disaster management

cation is itself understood as a composite component, whichhas its own type name and
package (line 1). Next, the space type definition is given (lines 2-4). For brevity reasons
this definition is only indicated here and in the real descriptor it encompasses all infor-
mation about domain and perspective aspects that have been presented in the previous
section. Hereafter, the component types are declared (lines 6-10). In this case three dif-
ferent component types are used, namely theFireBrigade, AmbulanceandCommander
types. The last part of the application descriptor (lines 12-45) shows the definition of an
application instance named’small’ (line 13). This application defines a space instance
called ’my2dspace’based on the’2dspace’space type. The space creates several space
objects (lines 16-30), a space process (lines 32-34), as well as data providers and con-
sumers (lines 36-37). Space objects include a fire station (lines 17-19), ten fire brigades
(lines 20-22), as well as a hospital (line 24-26) with ten ambulances. It can also be seen



that initially the rescue forces are colocated with their respective home bases, i.e. fire
station or hospital. The process (line 33) is responsible for generating disasters in the en-
vironments at a specific rate and refers to the’create’ process type defined already in the
space type domain elements (cf. Figure 3). Data provider andconsumer specifications
(lines 36-37) as already presented in Figure 6 complete the space instance definition.

In the last part of the application descriptor, initially created components can be
specified. It can be seen that here only a commander agent is declared (lines 42). This
is sufficient because the rescue force agents are automatically started when their corre-
sponding space objects thanks to the avatar mapping that ties both sides together.

5. BDI Agents

In Jadex, active components can be implemented according tomany different internal
architectures. An internal architecture and its realization in a Jadex kernel represent a
consistent set of concepts and constructs for implementingthe autonomous behavior
of concrete active components (e.g. a fire brigade). One prominent internal architecture
supported by Jadex is the belief-desire-intention (BDI) model. BDI has been initially
conceived as a philosophical model explaining human rational decision making [1]. It is a
folk-psychological model that describes how humansperceivetheir own decision making
processes, instead of describing how the human brain actually works. The advantage of
the model is its intuitive usage, as developers can implement behavior very similar to
how they would plan their own everyday activities.

The decision making process described by models like BDI is calledpractical rea-
soning, as it determines actions to be taken and is opposed totheoretical reasoning,
which is not directed towards concrete actions. The practical reasoning process of the
BDI model is two-staged and consists of agoal deliberationand ameans-end reasoning
phase. In the first phase it is decided, which goals an agent should pursue. The latter
phase decides how a chosen goal can be accomplished by executing suitable plans [13].
Simplified versions of the BDI model continuously have been applied to agent program-
ming, e.g. in the procedural reasoning system (PRS) [11] andits successors like dMARS
[4] and JACK [12].

5.1. The Jadex BDI Kernel

The Jadex BDI kernel is inspired by earlier PRS systems, but introduces several signifi-
cant extensions. Unlike other systems, the Jadex BDI kernelexplicitly supports the goal
deliberation phase. Goal deliberation is realized using the so calledEasyDeliberation
strategy [9], which allows specifying inhibition arcs describing which active goals inhibit
others based on their importance. Inhibition arcs are used at runtime to determine a con-
sistent set of goals to be pursued. For each of these goals, then the means-end reasoning
process is triggered. Means-end reasoning is realized similarly to other PRS systems by
goal and plan declarations. The basic idea is that plans encode the procedural knowledge
how to accomplish certain tasks and actions, while goals declaratively describe the rea-
sons why tasks and activities should be carried out. The advantage of the approach is
that the desired result of agent behavior can be specified separately as a goal and when
certain plans fail during execution, the agent can check other options for reaching the



Figure 13. BDI agent specification

respective goal. Thus, the means-end reasoning process collects all plans that are in prin-
ciple applicable for a goal and checks whether they can be used in the current context.
Then the most promising plan is chosen and executed and if it does not accomplish the
goal means-end reasoning will try out other plans until the goal is reached or no more
plans are available and the goal is considered as failed.

In Jadex, goals are represented explicitly having a state and a lifecycle (see [3]).
Goals remain part of the mental state of an agent until they are considered finished or
explicitly dropped. Jadex supports four separate kinds of goals that refine the basic goal
lifecycle in different ways. Aperform goalis related to action execution and is consid-
ered finished, when at least one plan has been executed for thegoal.Achieve goalshave
the purpose to establish some world state, which ist specified as a target condition. An
achieve goal is finished, when the target condition is fulfilled, regardless how many plans
(if any) had to be executed for the goal. Similarly, aquerygoal describes some informa-
tion need and is finished, when the required information is available (e.g. as agent be-
lief), regardless if the information had to be obtained by executing plans or was readily
available in the agents beliefs. Finally, themaintaingoal observes a specific world state
specified as maintain condition and only becomes active, when this condition is violated.
The goal remains active until the condition becomes valid again, e.g. due to the execu-
tion of some plan, which was selected for the goal. Afterwards the goal changes back to
the inactive state, but keeps monitoring the maintain condition. Thus by default, a main-
tain goal is never finished and is only removed from the agent’s mental state, when it is
explicitly dropped.

The implementation of active components using the BDI kernel follows a hybrid
language approach. An agent type is defined in a so called agent definition file (ADF),
which contains declarative information about the agent structure consisting e.g. of be-
liefs, goals and plans (see Figure 13, left). The ADF is described in a specific XML di-
alect, which besides the structural information also supports Java like expressions e.g.
for goal conditions and initial belief values. The actual behavior of the agent is captured
in the procedural plans, which can be implemented as normal Java classes that inherit
from the framework classjadex.bdi.runtime.Plan(see Figure 13, right). The BDI func-
tionalities for e.g. creating goals or accessing beliefs are available in the plan classes via
an application programming interface (API).



1 <agent name="Ambulance" package="disastermanagement">
2 <capabilities>
3 <capability name="move" file="Movement" />
4 </capabilities>
5 <beliefs>
6 <beliefref name="env"><concrete ref="move.env"/></beliefref>
7 <beliefref name="self"><concrete ref="move.self"/></beliefref>
8 <beliefref name="home"><concrete ref="move.home"/></beliefref>
9 </beliefs>

10 <goals>
11 <achievegoalref name="move"><concrete ref="move.move"/></achievegoalref>
12 <achievegoal name="treat_victims">
13 <parameter name="disaster" class="ISpaceObject"/>
14 </achievegoal>
15 </goals>
16 <plans>
17 <plan name="treat_victim_plan">
18 <parameter name="disaster" class="ISpaceObject">
19 <goalmapping ref="treat_victims.disaster"/>
20 </parameter>
21 <body class="TreatVictimPlan"/>
22 <trigger>
23 <goal ref="treat_victims"/>
24 </trigger>
25 </plan>
26 </plans>
27 <services>
28 <providedservice class="ITreatVictimsService">
29 new TreatVictimsService($scope)
30 </providedservice>
31 </services>
32 </agent>

Figure 14. Agent definition file of the ambulance agent

5.2. Scenario Agent Type Descriptions

In this section, the implementation of the different BDI agent types of the disaster man-
agement application is shortly sketched. First, the ambulance agent is presented as rep-
resentative for the rescue force agents. Afterwards, the implementation of the comman-
der agent is explained. Finally, a short overview of the complete disaster management
application is given.

5.2.1. Rescue Force Agents

The rescue force agents (fire brigade and ambulance) are implemented very similarly.
Both are based on a separate module calledmove capabilitythat handles interaction with
the environment, i.e. the move capability provides access to the avatar of the agent and
includes a goal to move the avatar to some target location in the environment. For each
service (treat victims, extinguish fire, clear chemicals),the respective rescue force BDI
agent defines a separate goal type. The connection between the agent goal and the service
interface is realized by service implementation classes that dispatch a corresponding goal
for each service request. In response to these goals, the agents execute appropriate plans,
i.e. for each service, a plan class is implemented capturingthe desired agent behavior.

The combination of agent goal, service implementation and plan class is explained
using the ambulance vehicle and the treat victims service asan example. Figure 14 shows
the BDI agent definition file of the ambulance component. The agent definition includes



1 public class TreatVictimsService extends BasicService
2 implements ITreatVictimsService {
3 protected ICapability agent;
4 public TreatVictimsService(ICapability agent) {
5 super(agent.getServiceProvider().getId(),ITreatVictimsService.class,null);
6 this.agent = agent;
7 }
8 public IFuture treatVictims(final ISpaceObject disaster) {
9 final Future ret = new Future();

10 if(agent.getGoalbase().getGoals("treat_victims").length>0) {
11 ret.setException(new IllegalStateException("Ambulance busy."));
12 }
13 else {
14 final IGoal tv = (IGoal)agent.getGoalbase().createGoal("treat_victims");
15 tv.getParameter("disaster").setValue(disaster);
16 tv.addGoalListener(new IGoalListener() {
17 public void goalFinished(AgentEvent ae) {
18 if(tv.isSucceeded())
19 ret.setResult(null);
20 else
21 ret.setException(tv.getException());
22 }
23 });
24 agent.getGoalbase().dispatchTopLevelGoal(tv);
25 }
26 return ret;
27 }
28 public IFuture abort() {
29 final Future ret = new Future();
30 ISpaceObject self = (ISpaceObject)agent.getBeliefbase()
31 .getBelief("self").getFact();
32 if((Boolean)self.getProperty("patient")) {
33 ret.setException(new IllegalStateException("Patient on board."));
34 }
35 else {
36 IGoal[] goals = (IGoal[])agent.getGoalbase().getGoals("treat_victims");
37 for(int i=0; i<goals.length; i++) {
38 goals[i].drop();
39 }
40 ret.setResult(null);
41 }
42 return ret;
43 }
44 }

Figure 15. Implementation of treat victims service

the movecapability (lines 2-4) and imports some beliefs and goals ofthe capability.
The env belief (line 6) provides access to the environment space including the agent
avatar, which is stored in the beliefself (line 7). The move capability further provides
thehomelocation of the vehicle (line 8) and the achieve goalmovefor moving the avatar
(line 11). In addition to the goals and beliefs of the included capability, the ambulance
agent defines a new achieve goaltreat_victims(lines 12-14), which includes adisaster
parameter for the disaster object (line 13). Theplanssection (lines 16-26) declares a
treat_victims_plan(line 17) for handlingtreat_victimsgoals, as specified by the plan
trigger (lines 22-24). The plan carries over thedisasterparameter of the goal (lines 18-
20) and is implemented in the classTreatVictimPlan(line 21). To expose the treat victims
service, the agent definition contains aprovidedservicedeclaration (lines 28-30), which
specifies the service interface class (line 28) as well as theservice implementation as a
constructor invocation expression (line 29).



1 public class TreatVictimPlan extends Plan {
2 public void body() {
3 Space2D space = (Space2D)getBeliefbase().getBelief("env").getFact();
4 ISpaceObject self = (ISpaceObject)getBeliefbase()
5 .getBelief("self").getFact();
6 ISpaceObject disaster = (ISpaceObject)getParameter("disaster").getValue();
7
8 // Step 1: Move to disaster location
9 self.setProperty("state", "moving_to_disaster");

10 IVector2 targetpos = DisasterType.getVictimLocation(disaster);
11 IGoal move = createGoal("move");
12 move.getParameter("destination").setValue(targetpos);
13 dispatchSubgoalAndWait(move);
14
15 // Step 2: Treat victim.
16 self.setProperty("state", "treating_victim");
17 Map props = new HashMap();
18 props.put(TreatVictimTask.PROPERTY_DISASTER, disaster);
19 Object taskid=space.createObjectTask("treat_victim", props, self.getId());
20 SyncResultListener res = new SyncResultListener();
21 space.addTaskListener(taskid, self.getId(), res);
22 res.waitForResult();
23
24 // Step 3: Move to hospital
25 ...
26
27 // Step 4: Deliver patient.
28 ...
29 }
30 }

Figure 16. Implementation of treat victims plan

The Java class of the service implementation is shown in Figure 15. The class ex-
tends the framework classBasicService(line 1) and implements theITreatVictimsSer-
vice interface shown in Section 4.4 (line 2). The constructor (line 4) is used in the am-
bulance agent definition file shown before and keeps a reference to theagentobject (line
6), which can be used to access the BDI internals like beliefsand goals from Java code.
The remainder of the service implementation contains the two methods defined in the
ITreatVictimsService interface. ThetreatVictims()method (lines 8-27) first checks, if
there exists atreat_victimsgoal in the goalbase of the agent (line 10). As the ambulance
cannot deal with two disasters at once, an exception is generated as the result of the ser-
vice invocation (line 11), if another activetreat_victimsgoal is present. Otherwise a new
treat_victimsgoal is created (line 14), initialized with the disaster object (line 15) and
dispatched as a new top level goal of the agent (line 24). The goal listener (lines 16-23)
is asynchronously notified of the result of the goal execution and passes the success (line
19) or failure (line 21) to the future object, which has been provided as a result of the ser-
vice invocation (line 26). Similarly, theabort() method (lines 28-43) first checks, if the
ambulance currently transports a patient (lines 30-32), inwhich case the current action
cannot be aborted and an exception is generated (line 33). Otherwise alltreat_victims
goals of the ambulance are dropped (lines 36-39) and the abort request succeeds (line
40).

Thus, as a result of the service invocation atreat_victimsgoal is activated and in
response to this goal, theTreatVictimPlanas shown in Figure 16 is selected and executed
by the ambulance agent. The plan extends the framework classPlan(line 1) and overrides
thebody()method (lines 2-29). In the beginning (lines 3-6), some variables are initialized



Figure 17. AML mental model for commander goals

from the beliefs and the parameters of the plan including theenvironmentspace, the
avatarself, thehomelocation and thedisasterobject. The first step of the plan is to move
to the disaster location (lines 8-13). This is done by querying the location of a victim
from the disaster object (line 10) and dispatching amovegoal with the victim location
as target destination (lines 11-13). The plan then automatically waits until the goal is
achieved and the victim location has been reached. Afterwards, the victim is treated and
loaded in to the ambulance (lines 15-22). This activity is performed as atreat_victimtask
(lines 17-19) of the ambulance avatar in the environment. The plan waits until the task is
finished, using aSyncResultListener(lines 20-22), which blocks the plan, but keeps the
ambulance component itself responsive to other requests. The other two steps of the plan
are similar to the first two steps: After the patient has been loaded into the ambulance, the
avatar moves back to the hospital using a move goal (cf. step 1) and delivers the patient
in the hospital using another environment task (cf. step 2).

Following the behavior described above, the ambulance continuously performs ac-
tivities for treating victims as requested through its service interface. The service is re-
quested by the commander agent as described in the next section.

5.2.2. Commander Agent

The general behavior of the commander agent has been described as AML mental model,
which is depicted in Figure 17. It shows that the commander has the top-level goal to
resolve all occurring disasters (Handle Disasters). This overall goal is decomposed to
theHandle Disastergoal, which represents the commanders objective to tackle aspecific
disaster, i.e. for each disaster instance a corresponding goal will exist in the comman-
der agent. A disaster is handled by three subgoals. The first one,Clear Chemicals,has
the task to ensure that all chemicals will eventually be removed from the disaster site.
Similarily, theExtinguish FiresandTreat Victimsgoals represent the respective desires



to extinguish all fires and transport all injured victims to ahospital. It can also be seen
that the goals are only materialized in case it is necessary,i.e. there are chemicals, fires
or victims at the considered disaster site. Furthermore, theTreat Victimsgoal depends on
the Clear Chemicalsgoal to be successfully finished so that ambulances can enterthe
target area without contamination risks. Each of the three subgoals is realized using the
Send Rescue Forcegoal, which allows instructing a rescue force to work at a selected
disaster site.

In Figure 18 a cutout of the commander agent’s agent definition file is shown. In
addition to the goal types introduced above it contains belief and plan descriptions as
well as required services. In the beliefs section (lines 2-10) the environment, the known
disaster sites and currently working rescue forces are represented. Theenvironmentbe-
lief (lines 3-5) is initialized with the environment space that is accessible via the parent
component acting as application context. Disasters and busy rescue forces are described
using belief sets. In case ofdisasters(lines 6-8) the belief set is automatically kept up
to date with the current situation by using an update rate, which reevaluates the facts
every second (1000 ms). The disasters are retrieved by fetching space objects of type
disasterfrom the environment. The belief set forbusy_entities(line 9) does not initially
contain any facts. Instead, plans will use this belief set tostore rescue forces that have
been assigned tasks by the commander and are currently working on these tasks.

The described goal model is mapped directly to the goals section (lines 11-43). An
exception is the top-level goalhandle_disasters, which needs not to be explicitly mod-
elled as goal entity in the commander ADF. The reason is that its main purpose consists
in creating individualhandle_disastergoals (lines 12-28) for each incidence. This can
be achieved in a declarative manner by using a creation condition (lines 17-19), whereby
each space object of type disaster is bound to a variable$disaster. In order to make this
variable permanently available in the goal instance, it is assigned as value to a goal pa-
rameterdisaster(lines 13-15). Additionally using the unique tag (line 16) ensures that
every disaster is represented by exactly onehandle_disastergoal. The goal is considered
to be achieved when the target condition (lines 25-27) is fulfilled, i.e. when the disaster
object is not contained in the belief setdisastersany longer. Finally, the requirement
of treating severe disasters with higher priority than normal incidents is realized using
goal deliberation settings (lines 20-24). Here, an instance level inhibition relationship is
used. All other known and non severe goals (expressed using the implicit variable$ref
pointing to another goal) are inhibited when the consideredgoal instance is severe ($goal
refers to the current goal). The other goal types are much simpler. For brevity reasons
only clear_chemicalsandsend_rescueforceare shown. The first one (lines 29-37) has
a parameterdisasterfor storing the disaster space object. As this goal is created from
within a plan, the parameter value is set procedurally and needs not to be specified on
type level. The target condition (line 36) declares that thegoal is achieved when the
number of chemicals in the considered disaster site is zero.Additionally, the goal uses a
deliberation definition (lines 32-34) to inhibit thetreat_victimgoal for the corresponding
disaster. In this way thetreat_victimgoal is suppressed as long as the fire brigades are
dealing with chemicals and theclear_chemicalsgoal is active. The omittedtreat_victims
andextinguish_firesgoals are structurally very similar with a corresponding target con-
dition but no deliberation settings. Finally, thesend_rescueforcegoal is a procedural goal
without target condition (lines 38-42). It has two parameters, one for the disaster site and
the other for the rescue force.



1 <agent name="Commander" package="disastermanagement.commander">
2 <beliefs>
3 <belief name="environment" class="ContinuousSpace2D">
4 <fact>$scope.getParent().getSpace("my2dspace")</fact>
5 </belief>
6 <beliefset name="disasters" class="ISpaceObject" updaterate="1000">
7 <facts>$beliefbase.environment.getSpaceObjectsByType("disaster")</facts>
8 </beliefset>
9 <beliefset name="busy_entities" class="Object"/>

10 </beliefs>
11 <goals>
12 <achievegoal name="handle_disaster" exclude="never">
13 <parameter name="disaster" class="ISpaceObject">
14 <value>$disaster</value>
15 </parameter>
16 <unique/>
17 <creationcondition>
18 ISpaceObject $disaster && $disaster.getType().equals("disaster")
19 </creationcondition>
20 <deliberation>
21 <inhibits ref="handle_disaster">
22 $goal.disaster.severe && $ref.disaster.severe==false
23 </inhibits>
24 </deliberation>
25 <targetcondition>
26 !Arrays.asList($beliefbase.disasters).contains($goal.disaster)
27 </targetcondition>
28 </achievegoal>
29 <achievegoal name="clear_chemicals" exclude="never">
30 <parameter name="disaster" class="ISpaceObject"/>
31 <deliberation>
32 <inhibits ref="treat_victims">
33 $goal.disaster==$ref.disaster
34 </inhibits>
35 </deliberation>
36 <targetcondition>$goal.disaster.chemicals==0</targetcondition>
37 </achievegoal>
38 <achievegoal name="send_rescueforce">
39 <parameter name="disaster" class="ISpaceObject"/>
40 <parameter name="rescueforce" class="IService"/>
41 <targetcondition>$goal.disaster.fire==0</targetcondition>
42 </achievegoal>
43 </goals>
44 <plans>
45 <plan name="handle_disaster_plan">
46 <parameter name="disaster" class="ISpaceObject"/>
47 <body class="HandleDisasterPlan"/>
48 <trigger><goal ref="handle_disaster"/></trigger>
49 </plan>
50 </plans>
51 <services>
52 <requiredservice name="tvs"class="ITreatVictimsService"multiple="true"/>
53 <requiredservice name="efs"class="IExtinguishFireService"multiple="true"/>
54 <requiredservice name="ccs"class="IClearChemicalsService"multiple="true"/>
55 </services>
56 </agent>

Figure 18. Agent definition file of the commander agent

For each of the described goal types plans exist in the complete commander agent
definition file. Due to brevity only thehandle_disaster_plan(lines 45-49) is shown and
explained here. It can be seen that the plan reacts onhandle_disastergoals (lines 48)
and has a parameter for storing thedisastersite (lines 46). The value of this parameter
is automatically mapped from the corresponding goal parameter. The execution logic of



1 public class HandleDisasterPlan extends Plan {
2 public void body() {
3 ISpaceObject disaster = (ISpaceObject)getParameter("disaster").getValue();
4
5 IGoal cc = createGoal("clear_chemicals");
6 cc.getParameter("disaster").setValue(disaster);
7 dispatchSubgoal(cc);
8
9 IGoal ef = createGoal("extinguish_fires");

10 ef.getParameter("disaster").setValue(disaster);
11 dispatchSubgoal(ef);
12
13 IGoal tv = createGoal("treat_victims");
14 tv.getParameter("disaster").setValue(disaster);
15 dispatchSubgoal(tv);
16
17 waitForGoal(cc);
18 waitForGoal(ef);
19 waitForGoal(tv);
20 }
21 }

Figure 19. Handle disaster plan body

the plan is contained in an external Java class file for the plan body (line 47), which is
described in detail below.

The last part of the commander ADF contains the services section (lines 51-55),
which may contain provided and required services of the agent. In case of the commander
only required services are specified for the three kinds of offered rescue force tasks (lines
52-54). All of these required services define aname, a serviceclass, i.e. its interface type
as well as amultipleattribute. As all required services are multiple they will be bound to
all available rescue force services of a given type.

For illustrating further how a disaster is handled by the commander, the plan body
of theHandleDisasterPlanis shown in Figure 19. In the first part of the plan body (line
3) the disaster is extracted from a plan parameter. In the next part of the plan body
subgoals are created for resolving the disaster. Aclear_chemicalssubgoal is created,
initialized with parameter values and dispatched (lines 5-7). The same is done for fires
using theextinguish_fires(lines 9-11) andtreat_victims(lines 13-15) subgoals. The first
two subgoals are active at the same time and may be pursued in parallel depending on
how many fire brigades are available. Thetreat_victimssubgoal is not activated until all
chemicals have been cleared. This is realized using the declarative deliberation settings
introduced above. After all chemicals are cleared, the commander deals concurrently
with extinguishing the remaining fires (if any) and treatingvictims. The plan finally waits
for all subgoals being accomplished (lines 17-19), becauseotherwise the plan would
immediately finish and automatically abort possibly open subgoals.

5.2.3. Application overview

Now that all aspects of the disaster management applicationhave been presented, Figure
20 shows a screenshot of the running application. The backmost window is the Jadex con-
trol center (JCC), in which you can see the model (upper left)and runtime view (lower
left) of the Jadex platform. In the model view, theDisasterManagement.application.xml
has been selected for starting. The runtime view shows the structure of the running appli-



Figure 20. Screenshot of the disaster management application

cation. You can see a number offireengineandambulancecomponents, some of which
have been unfolded to show the provided services. Thus the runtime view reflects the
application architecture as presented in section 4. The visualization of the application
is shown in the frontmost window. To the right, the map of the environment displayed,
containing the visual representations of the vehicles, stations and disaster objects. Left
from the map, the evaluation is included. It displays the history of the victims, fire, and
chemicals values as time series charts. Both aspects are defined using the EnvSupport
framework presented in Section 3. The evaluation charts arefurther used to rate the per-
formance of the coordination strategies of the commander agents, instructing the ambu-
lances and fire brigades, as described in this section.

6. Conclusion

This chapter presented the Jadex framework and its conceptual underpinnings. Main
building blocks that have been introduced are environments, active components and ser-
vices as well as the BDI agent model. In general, Jadex supports various kinds of envi-
ronments in order to be usable for building simulations as well as real world applications.
In case of simulations, virtual environments are of vital importance for enabling rapid
prototyping. Jadex supports virtual 2D environments via a specific EnvSupport space,
which offers a complete description model for domain objects including environment



processes as well as customizable visualizations via perspectives. Active components are
not themselves part of the space, but act on the space by issuing actions or by controlling
space objects, such as their avatars.

The second key aspect of Jadex is the concept of active components. An active com-
ponent is seen as an agent that may act as a service provider and consumer. For this
purpose an active component can explicitly define provided and required services. This
allows composite components being built from other ones by connecting service ports.
As active components are typically used in dynamic environments, in which e.g. service
providers vanish or newly appear, dynamic service binding is of special importance. Dy-
namic binding is based on service search, which is handled ina completely decentralized
manner by traversing the component hierarchy. Scopes have been introduced to constrain
the areas that should be included in the search, e.g. application scope includes only ser-
vice providers of the current application and global scope also includes service providers
from remote platforms.

As third topic the BDI model of agency and the Jadex BDI architecture have been
introduced. Jadex supports the full practical reasoning cycle including goal deliberation
as well as means-end reasoning. The first is responsible for deciding which of the existing
goals are currently pursued and the latter has the task to findmeans for realizing a specific
goal by applying suitable plans. BDI agents are programmed using a hybrid language
approach, in which declarative agent type information is separated from procedural plan
knowledge. In the XML based agent definition file (ADF) the beliefs, goals and plans of
an agent type are defined, whereas Java classes are used for encoding the plan bodies.

The interworkings of these buildings blocks have been further explained by an ex-
ample from the disaster management area, in which commanderagents are responsible
for handling disasters by coordinating different rescue forces such as ambulances and fire
brigades. The scenario has been realized as a simulation, whereby the environment has
been defined as space that represents rescue units as well as stations and disaster sites.
Furthermore, the environment automatically generates disasters using an environment
process. The space definition also contains a perspective, which allows a visualization
of the environment at runtime. The application logic has been put into agent types for
the commander as well as for the different rescue forces. Thecommander instructs the
rescue forces using their exposed services for treating victims, clearing chemicals and
extinguishing fires. The internal decision logic of the agents has been realized using the
BDI approach.

The Jadex active component framework encompasses several other interesting fea-
tures that have not been presented in the context of this chapter. One aspect concerns
further platform kernels realizing other active componenttypes. Most importantly, ker-
nels have been developed also for executing workflow descriptions based on BPMN [7]
and on a newly developed goal oriented process modeling notation called GPMN [2].
Furthermore, a comprehensive tool suite has been built around Jadex, on the one hand
supporting the construction of specific active components and on the other hand allow-
ing management and debugging at runtime. Jadex is an open source framework that is
hosted at SourceForge. The complete disaster management example including all sources
presented in this paper is contained in the Jadex distribution since Jadex V2RC6, avail-
able fromhttp://jadex.sourceforge.net, where also further documentation
on Jadex can be found.
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