Jadex Active Components Framework

BDI Agents for Disaster Rescue Coordination

Lars BRAUBACH?®, Alexander POKAHR'

2 Distributed and Information Systems Group
Department Informatik, Universitdt Hamburg
Vogt-KolIn-Str. 30, D-22527 Hamburg, Germany
{braubach|pokahr}@informatik.uni-hamburg.de

Abstractin this chapter the Jadex framework is presented that airespgiorting
the construction of distributed and concurrent applicetidviain conceptual entity
in Jadex is an active component that combines propertiegeasfta with software
components in order to strengthen the software technicahmfor developing ap-
plications. The conceptual foundations of Jadex as wellthentages of active
components will be described in a practical way by using asiés management
scenario as a running example. Concretely, the notionsrivfalienvironment, ac-
tive components as well as BDI agents are introduced to slmwehsimulation
scenario can be built, in which different kinds of rescuecésrare coordinated to
handle disasters in a cooperative way.

Keywords. virtual environments, simulation, service component igecture (sca),
active components, software agents, BDI architecture

1. Motivation

The development of distributed applications is intricate tb a number of inherent char-
acteristics of those systems. One fundamental reasondant¢heased complexity is that
separated network nodes lead to implicit concurrency anlitiadally require message
based communication mechanisms. Implications of connayrand inter-address space
communcation are many new error sources, some of which drenesly difficult to
handle and also cannot completely be masked by distribtrgmsparency.

In order to simplify the construction of distributed systethe Jadex framework
proposes conceptual abstractions for dealing with distioln and concurrency by com-
bining ideas from agent and software component orientaBone concept is a so called
active componentvhich is similar to an agent as it represents an autonomtity ehat
has control about its state and execution. Similar to a cor@pbit is seen as service
providerandconsumerwhich may interact with other components by using theirigub
services. Thus, on the one hand active components are aléisst-and natural abstrac-
tion for concurrency because they are executed indepdgpaéeich other. On the other
hand the notion of provided and required services for actv@ponents establishes a
foundation for systematic software architectures wittaciater-component dependen-
cies. Additionally, the service based interrelationskhipsveen components facilitate the

composition of basic components to composite componemtsaater modularity and
reusability of system parts.

On basis of these foundations Jadex offers an open sourcdlewiare software
solution, which consists of a runtime infrastructure aslaslan extensive tool suite.
The runtime infrastructure is a platform that allows apgiicns to be simulated as well
as executed without requiring code changes in componergs wWwitching execution
modes [10]. The platform is capable of running different pament types, e.g. complex
BDI (belief-desire-intention) reasoning agents or BPMMNgibess process modeling no-
tation) workflows. Each component type is characterizedtbynternal architecture
which determines the programming abstractions for the @orapt, e.g. beliefs, plans
and goals in case of a BDI agent. The execution logic of sudhtamal architecture is
realized in &kernel so that new component types can easily be added by justdimngvi
a new kernel for the new type. The tool suite consists of dgraknt and runtime tools,
whereby development tools are kernel specific so that e.gjagPnts can be built rely-
ing on a standard integrated development environment (MEjor BPMN workflows
a new graphical modeling tool is provided. Runtime toolsntyeserve management and
debugging purposes including e.g. a starter tool for stgréind stopping applications
and a debugger tool that can be used for executing companenstepwise manner and
introspect their state.

This chapter will introduce the conceptual foundationsarfek and explain these
concepts relying on a consistent example scenario. Thexgfothe following Section 2
a specific disaster management scenario is introduced yBtens design then first tack-
les the environment modeling aspects in Section 3 and lgigtslihow the virtual exam-
ple environment can be described. Thereafter, in Sectiartideacomponents and com-
ponent services are introduced and will be used to model ia atenario component
types as well as their service interrelationships. In $adhi details about the Jadex BDI
agent architecture are explained and it is shown how compkoue force coordination
can be managed using a BDI coordinator agent. Finally, alasion and an outlook is
given in Section 6.

2. Disaster Management Scenario

Figure 1 shows the AML agent diagram of the disaster sceng@hie presented disaster
scenario targets the coordination between disa&scue Forcesuch ag-ire Brigades
and AmbulancesDistributed Stationsexist for hospitals as well as fire departments,
where each of them has its own fleet of vehiclRegcue Forc®). Different types of ve-
hicles are needed at differeBisastersites that may unexpectedly occur in the envi-
ronment. Main task of the planned disaster managementsystesists in coordinat-
ing the rescue forces for handling disasters in an effeeti efficient manner. Hence
aCommander Agens responsible for handling disasters by assembling anttabng
aRescue Teanbuch a rescue team may consist of an arbitrary numbeestuersi.e.
ambulances and fire brigades.

2.1. Scenario Details

For simulation purposes several simplifications of the adensketched above have
been introduced. It is assumed that only the following kinfiglisasters can occur:

U @8

Commander Commander Agent

is responsible for handling

U > = < Q handles Q

Rescuer Rescue Team Disaster

assembles and controIsI

+size: double
+severe: boolean

/Y7 +victis: int W\

+fires: int

Q +chemicals: int Q
Q < Car Crash ﬂ ‘% Explosion

Station belong to Rescue Force

AR N D

Earthquake Chemical Leakage

Ambulance Fire Brigade

+treatVictim() +extinguishFire()
+clearChemicals()

Figure 1. AML agent diagram for disaster management components

Car CrashesEarthquakesChemical Leakageand Explosions Each disaster instance
is characterized by a set of common properties, namely thpuof victims, fires and
chemicals. Additionally, it has a specific size and is cles$ias normal disaster or se-
vere disaster, whereby severe disasters have priorityravenal disasters with respect
to their resolution, i.e. if a severe disaster occurs ananotigh rescue forces are avail-
able, they may be discharged from the current task and assigmew one related to
the severe disaster. In order to handle a disaster, firedeggand ambulances are used.
A fire brigade can clear chemicals as well as extinguish firesaanbulances have the
capability to transport victims one by one to a nearby haspi{andling disasters is a
complex coordination problem as it has to be determinediwfuices should be sent to
which disasters at what time, possibly needing to disrugioaorg tasks in case of new
severe problems. In the simplified scenario used here itsisnasd that the number of
victims, fires and chemicals is an important factor for disagesolution. Even if one
force of each kind can in principle handle a disaster thisld/be far from optimal with
respect to the amount of time that is needed. The resolufiadisaster is done much
faster, when more than one rescue force is used but withritation that no speedup
is gained in case the number of forces for a given task excéedsirrent number of
victims, fires or chemicals (e.g. if three fires exist, threzlfiridges will extinguish them
three times faster than one fire brigade but four brigaddshwils fast as three). A fur-
ther constraint of disaster resolution is that for safegsoms all chemicals have to be
cleared before ambulances can start treating victims atiffaster site.

3. Environment Support

Jadex applications are often placed in complex and highlyadyic distributed envi-
ronments like the disaster management scenario desciitoe@ aSuch applications are
composed of independently executing active componentdntexact with each other
and with the surrounding environment. As a result, the biehaf these applications
becomes hard to design and predict using traditional soétwagineering approaches.
Instead, simulation approaches can be used for analyzstgraybehavior under specific
conditions and also for benchmarking different behavistiategies against each other.
Thus, for testing purposes, applications need to be exéautgpecifically designed vir-
tual environments. Once, an implementation has been thbtptested using simula-
tions, it can be deployed in the real environment.

To support this common use case of developing both a simulatind a deploy-
ment version of an application, the Jadex framework featareenvironment support
(“EnvSupport” for short). EnvSupport is a set of APIs, framoek classes and tools to
facilitate the development of simulation applications atlieves the following design
objectives:

e Clean separation of environment and active component imgaigéations

e Easy building and configuration of virtual environmentstfsting

e Provision of tools, e.g. for observing running simulatiamscollecting and ana-
lyzing data

The clean separation of the environment from other apjdicatomponents fosters an
easy transition to a deployed system, because the compongleimentations do not
need to be changed in the process. The EnvSupport framewdhef provides many
ready to use classes for typical environments like contisuar grid-based 2D virtual
worlds. Thus test environments for applications can qyibkl constructed from existing
framework classes. Environments are described in dedlargML files that simplify
configuration and thus allow quickly changing environmeatameters for testing ap-
plications in different scenarios. Moreover, tools arevited that allow observing the
current state of 2D environments in graphical views. To émd, environment configura-
tions may include hints for graphical representation ofimmment elements (e.g. geo-
metric shapes and textures), which allows fine-tuning tllgjcal representation of the
environment. Also, the data produced during simulatiorsrcemn be collected, saved to
files and/or rendered in charts for analysis. In the follayitme features of EnvSupport
are shortly introduced. A more detailed introduction carfidasd in [5].

3.1. EnvSupport Realization and Usage

The basic building blocks of the EnvSupport framework argicted in Figure 2. The
environment itself is modeled as a so calepace(Figure 2 left). Jadex applications
may contain an arbitrary number of spaces, which can repré@sides virtual envi-
ronments also other applications structures like orgdioizal models for e.g. assigning
roles to application components (cf. [8] for more detailsspaces). The environment
space containBomainconstructs (left upper area) as welllateractionconstructs (left
lower area). The domain constructs allow defining enviromrobjects Space Objec)s
e.g. ambulances, victims, disasters etc., which togedpesent the current state of the

/Space (2D-Grid, 2D-Continuous, ... A Evaluation
. Space Timin
Domain Executor / Data Data Data
P Consumer
(s)pbfgft \&‘ | Provider (Chart, File)
Partial Environment Data |
Observer
i : : Perspective
Ll Partial Environment Dafa | (2D-Primi(ive§, 2D-Icons, ...)
‘ Avatar Mapping ‘ \ Drawable \
\ Pre-/Post-Layer |
‘ Percept Generator ‘ Percept ‘ NG 4
Acti ’
‘ Percept Processor ‘ Action ‘ con Active Component
» (BDI Agent, Micro Agent, ...
L Y, Percept (9 9)
‘ Legend O Application Part D D EnvSupport Construct

Figure 2. Building blocks of the EnvSupport framework

environment. An object may have one or more associdéstisfor defining some cur-
rently ongoing behavior of the object (e.g. movement of at@ance). In addition to
tasks,Processesllow representing global behavior of the environment.(ewgdom oc-
currence of new disasters). Ti$pace Executoof the environment is responsible for
executing the tasks and processes based on a specific exanutilel (e.g. round-based
or continuous). For evaluation and visualization purpasesoften helpful to restrict
the set of considered environment objects (e.g. focusingrobulances and ignoring
fire brigades). For this purpo&ata Viewscan be defined to select a specific subset of
environment objects based on declarative queries.

Interaction constructs (left lower area of Figure 2) establish the i@tabetween
environment objects and application components.Avatar Mappingdefines a one-to-
one relation between active components and space objectsllowing a component to
be represented in the environment as a space object. Tt avapping serves two pur-
poses. First, the existence of components and space obgttse linked to each other.
In this respect, the developer can specify if corresponsjpage objects should be auto-
matically created and destroyed for each created or destraymponent and vice versa.
Secondly, the avatar mapping influences the percepts amthathat are available to a
component as explained in the followirerceptsepresent information about changes
in the environment that are passed to interested comparteatth percept type declares
the type(s) of space objects that can cause the perceptatypbi(s) of components that
can observe the percepercept Generatorare responsible for creating percepts based
on the declared percept types. Custom percept generatotzedamplemented to serve
specific application requirements, but common use casedsr@rovided in predefined
framework classes, such as a default percept generatoaub@atically creates per-
cepts for all environment changes inside a definable viselal fif an avatar. As compo-
nents might be implemented using one of the different kerpaedvided by Jadex (e.g.
BDI reasoning agents vs. simple micro agern®grcept Processorare used to feed the
generated percepts flexibly into the application logic & tbmponents. Again, custom
implementations can be provided as needed, yet common seg aee readily available,

like automatically updating definable beliefs of BDI ageatsording to specific per-
cepts. Finally, components may schedditgionsin the environment. Actions are imple-
mented as Java classes that may apply arbitrary changes emtfronment state (e.g.
changing properties of space objects, creating/desiyoyfijects, etc.). Th&pace Ex-
ecutorexecutes the scheduled actions along with the tasks andgwes of space objects
as described above. Moreover, the executor invokes thepegenerators and percept
processors for propagating environment changes to agipliceomponents.

A developer can choose to collect data during simulatios usging theEvaluation
facilities of EnvSupport (upper right of Figure Data Providersallow defining the con-
crete data items to be collected as well as specifying didieéntervals and aggrega-
tion functions Data Consumerase the collected data for e.g. rendering charts while the
simulation is running and/or writing collected data to dfsk later analysis. To get a
visual feedback of a running simulation, t&dserver(Figure 2, right) produces a con-
tinuously updated 2D view of the current environment stétee developer can define
so calledPerspectiveshat are visual representations of the environment. A @etse
mainly consists oDrawables,which assign visualizations to space objects. The draw-
able for a space object can be composed from arbitrary maawilg primitives (e.g.
geometric shapes and external images). Drawing primitaesbe further parametrized
using properties of the underlying space object, such tieastate of a space object can
be used to influence its visual appearance. A perspectivéucdrer includePre- and
Post-Layergo add further visual elements (e.g. a map or a grid) that deawespond
to specific space objects.

3.2. Scenario Environment

For the disaster management application the Jadex Env8uppe used to build an
environment for testing the behavior of the commander agéritis environment can
be configured in various aspects, e.g. regarding the nunmokloaation of rescue force
stations as well as the numbers of available vehicles, &ecguand size of disasters, etc.
The environment further allows visually following the opgons of the rescue forces
on a map and inspecting statistical data about the efficiehtye system in graphical
charts.

3.2.1. Scenario Domain

Figure 3 shows the XML-based definition of the domain elemeifithe disaster man-
agement scenario. The environment is situated in a conim@® area of size 1x1 for
simplicity (line 1). If the application should be tested foconcrete city map, the scale
can be adapted to better match the real dimensions. Thableiypes of space objects
are defined in thebjecttypesection (lines 2-17). Each type definition contains the sup-
ported properties of the object as well as optionally thedifvalue for each property.
E.g. thedisastertype is defined in lines (3-10) and has properties as model&tjure

1 (severesizeetc.). The specific disaster subtypes ('Car Crash’, ... raptured in the
typeproperty (line 4) to avoid having to define identical spaceottypes for each disas-
ter subtype. All space objects automatically have a prggerttheir location, and often
space objects do not need any further properties, likditbstationtype (line 11). The
firebrigadedefinition (lines 12-15) shows the use of a default value hHae brigade
has a speed property, which defaults to 0.05 (line 13). THdsebrigade instances in

1 |[<e:envspacetype nane="2dspace" cl ass="ContinuousSpace2D' wi dt h="1"hei ght="1">
2 <e: obj ecttypes>

3 <e: obj ecttype name="di saster">

4 <e:property nanme="type" class="String"/>

5 <e:property nane="severe" class="bool ean"/>

6 <e:property nanme="size" class="int"/>

7 <e:property nanme="victinms" class="int"/>

8 <e:property name="fire" class="int"/>

9 <e:property name="chemi cal s" class="int"/>
10 </ e: obj ecttype>
11 <e: obj ecttype nane="firestation"/>
12 <e: obj ecttype nanme="firebrigade">
13 <e:property nanme="speed" cl ass="doubl e">0. 05</ e: property>
14 <e:property nane="state" class="String"/>
15 </ e: obj ecttype>
16

17 </'e.:'obj ecttypes>
18 <e:tasktypes>

19 <e:tasktype nanme="nove" cl ass="MveTask" />
20 <e: tasktype nanme="extingui sh_fire" class="ExtinguishFireTask" />
21

22 </'e.:'t askt ypes>
23 <e: processtypes>

24 <e: processtype nanme="create" class="Defaul t Obj ect Creati onProcess">
25 <e:property nanme="type">"di saster"</e: property>

26 <e:property nanme="tinerate" dynam c="true">

27 Di sast er Type. get Exponent i al Sanpl e(30000)

28 </ e: property>

29 <e:property nanme="properties" dynam c="true">

30 Di sast er Type. gener at eDi saster()

31 </ e:property>

32 </ e: processtype>

33 </ e: processtypes>
34 <e: avat ar mappi ngs>

35 <e: avat ar mappi ng obj ecttype="firebrigade" conponenttype="FireBrigade"
36 createavatar="fal se" createconponent="true"/>
37

38 </ e: avat ar mappi ngs>
39 |</e:envspacetype>

Figure 3. Domain elements of disaster management environment

the simulation will move with this default speed, unlessdpeed property is specifically
set to a different value for some instance.

The behavior of the space objects is captured in tasks. Idifaster management
scenario only the vehicles (ambulances and fire brigadéspigxndividual behavior.
The tasks are defined in ti@sktypesection (lines 18-22). Thmovetask (line 19) han-
dles movement of a vehicle according to its speed and a cliesgimation. The task is
implemented in a Java class as explained later. Fire brigbgets can further perform
the extinguish_firegtask (line 20), which continuously reduces the amount of dira
nearby disaster object. In case all fires have been extingdiand also no chemicals and
victims are present the task removes the resolved disasjestdrom the space. Further
similar tasks (e.g. clear chemicals and treat victims) anéted for brevity. The global
behavior of the disaster management environment is destubking processes (lines
23-33). Here, a single process is defined that randomly eseatw disaster objects in
the environment. The process implementation is the gefrantework clas®efaultO-
bjectCreationProcesdine 24), that can be used to create arbitrary kinds of dbjesing
a configurable objedlype (line 25),timerate(line 26-28), and objegbroperties(lines
29-31). In the scenario, the time between two disasters lamdlisaster properties are

1 |[public class MveTask extends Abstract Task

2 {

3 public void execute(lEnvironnment Space space, | SpaceCbject obj,

4 I ong progress, |0 ockService clock)

5

6 I Vector2 destination = (IVector?2)getProperty("destination");

7 I Vector2 loc = (I Vector?2)obj.getProperty(Space2D. PROPERTY_POSI TI ON) ;

8 doubl e speed = ((Nunber)obj.get Property("speed")).doubl eVal ue();

9 I Vector2 direction = destination.copy().subtract(loc).nornalize();
10 doubl e di st = ((Space2D)space).get Di stance(l oc, desti nati on). get AsDoubl e();
11 doubl e maxdi st = progress*speed*0.001;

12 I Vector2 newl oc = di st<=maxdi st ? destination

13 : direction.mltiply(maxdist).add(loc);

14 ((Space2D) space) . set Posi ti on(obj.getld(), new oc);
15 i f (newl oc==desti nati on)

16 set Fi ni shed(space, obj, true);

17 }

18 |}

Figure 4. Implementation of the move task

randomly generated using static methods of the helper ElessterTypdlines 27 and

30). The timerate is drawn from an exponential distributigth an average of 30000
milliseconds, while the disaster properties are based enifsp probabilities, e.g. for
disaster type and corresponding numbers of victims, etc.

Finally, in theavatarmappingsection (lines 34-38), the space objects of the vehi-
cles (fire brigade and ambulance) are mapped to concreteammptypes. The map-
ping definition for the fire brigade (lines 35-36) shows thataplication component of
type FireBrigadeshould be created for eaéirebrigadespace object as specified by the
createcomponerdttribute. Therefore, in the scenario configuration asarpd later,
one can simply add or remove fire brigade objects that sulesgiglly lead to automatic
creation of corresponding application components.

Figure 4 shows the Java class implementing the move taskclaks extends the
framework clas#bstractTaskline 1) and overrides thexecute(method (lines 3-17),
which is repeatedly called by the space executor until tek ist marked as finished.
First, the targetlestinationvalue of the task instance as well as tbe(ation) andspeed
of the space object are retrieved (lines 6-8). Based on thedses, thedirection from
the current location to the destination is calculated (Bhes well as thalist(ance) to
the destination (line 10). Theaxdistvalue (line 11) represents the maximal distance the
vehicle could have moved in the available time, incorpogatheprogressof time since
the move task was last executed. The new locati®nlocis calculated by multiplying
the direction vector with the maximal movement distancdessthe vehicle already
reaches the destination with less movement (lines 12-13lli, the new location is set
as a property of the vehicle (line 14) and if the destinatforeached, the task is marked
as finished (lines 15-16).

3.2.2. Scenario Visualization

The last section has shown how to define the data and behd\lue disaster manage-
ment environment. If only statistical data of simulatiomsus required for analyzing
the application performance, there is no need for a visatidia at all. Yet, immediate
visual feedback of running simulations is usually an indisgable help during building

<e: perspective nane="icons" class="Perspective2D' opengl ="true">
<e: drawabl e objecttype="disaster” wi dth="0.08" hei ght="0.08">

<e:property name="drawsi ze" dynam c="true">
new Vect or 2Doubl e($obj ect . get Property("si ze").intVal ue()*0.005)

</ e:property>

<e:ellipse layer="1" size="drawsize" abssize="true" col or="#FAFALE99" >
<e: drawcondi ti on>! $obj ect . get Property("severe") </ e: drawcondi ti on>

</e:ellipse>

<e:ellipse layer="1" size="drawsi ze" abssize="true" col or="#FALE1E99" >

OCO~NOUITAWNE

10 <e: drawcondi ti on>$obj ect . get Property("severe") </ e: drawondition>
11 </e:ellipse>

12 <e:texturedrectangl e | ayer="2" height="1" w dth="1"

13 i mgepat h="i mages/ car crash. png" >

14 <e: drawcondi tion>

15 $obj ect. get Property("type").equal s("Car Crash")

16 </ e:drawcondi ti on>

17 </ e:texturedrectangl e>

18 S

19 <e:text layer="3" x="0.04" y="-0.02" size="6" font="Arial"

20 text="victinms: $victims$\nfire: $fire$\nchenicals: $chenical s$"
21 abssi ze="true" align="left" col or="bl ack"/>

22 </ e: drawabl e>

23 <e:drawabl e objecttype="firestati on" w dth="0.1" height="0.1">
24 <e:texturedrectangl e | ayer="4" height="1" w dth="1"

25 i magepat h="i nages/firestation. png"/>

26 </ e: drawabl e>

27 <e:drawabl e objecttype="firebrigade" w dth="0.05" hei ght="0.05">

28 <e:texturedrectangl e | ayer="3" height="1" w dth="1"

29 i magepat h="i nages/ firebri gade. png"/ >

30 <e:texturedrectangl e | ayer="3" height="0.4" w dth="0.4"

31 i mgepat h="i nages/ beacon. png" x="-0.2" y="-0.35">

32 <e: drawcondi tion>

33 "novi ng_t o_di saster". equal s($obj ect. get Property("state"))
34 </ e:drawcondi ti on>

35 </ e:texturedrectangl e>

36 C

37 </ e: drawabl e>

38 C

39 <e: prel ayers>

40 <e:tiledlayer width="1" height="1" inmagepath="i mages/ map. png" />

41 </ e:prel ayers>
42 | </ e:perspective>

Figure5. A perspective for the disaster management environment

and debugging of the application, as well as for approgsi@@nfiguring the simulation
to resemble realistic behavior.

As shown in Figure 5, a visual perspective for the disastaragament scenario can
be quickly defined. One only has to define a drawable for eagbespbject that should
be visible in the perspective. Here, drawables are definedisasters (lines 2-22), fire
stations (lines 23-26) and fire brigades (lines 27-37). Bindrawables are defined for
ambulances and hospitals (omitted for brevity). If the @pppce of a space object is
static (i.e. does not depend on the properties of the objeetfirawable definition is usu-
ally quite simple. E.qg. the fire station is represented byan {texturedrectangldoaded
from the external imagérestation.pnglines 24-25). The drawable for the disaster is
more complex, as it calculates a drawing size based on thepsiperty of the disaster
object (lines 3-5) and uses this size to draw a cirelépse representing the disaster
area (lines 6-11). Further, the disaster drawable choases & set of different icons,
based on the disaster type. E.g. the icon for a car crash isediefiith a corresponding
drawconditionto match the type property (lines 12-17). Finally, the vislisaster rep-

<e: dat aprovi der s>
<e: dat aprovi der nane="statistics">
<e:source nane="$fire" objecttype="disaster" aggregate="true">
$object.fire
</ e:source>

<e:data nanme="tine">$time</e: data>
<e: data nanme="fire">SFunction. sun{$fire)</e:data>

OCO~NOUITAWNE

10 </ e: dat aprovi der >

11 | </ e:dataproviders>

12 | <e: dat aconsuner s>

13 <e: dat aconsuner nane="statistics_chart" class="XYChartDataConsuner">

14 <e: property nanme="dat aprovi der">"statistics"</e:property>
15 <e:property name="title">"Disaster Statistics"</e:property>
16 <e: property nanme="naxitenctount">500</e: property>

17 <e:property name="| egend">true</e: property>

18 <e:property name="seri esnanme_0">"Fire"</e:property>

19 <e:property name="val uex_0">"ti nme"</e: property>

20 <e:property nanme="val uey_0">"fire"</e:property>

21

22 </ e: dat aconsuner >
23 | </ e: dataconsuner s>

Figure 6. Evaluation settings for the disaster management envirahme

resentation includes text fragments denoting the curremiyers of fires, chemicals and
victims (lines 19-21). Similarly to the disaster drawalbfes visual representation of the
fire brigade adapts itself to the properties of the fire brggalject, e.g. by displaying
a beacon, when the fire brigade moves towards a disastes 885). Besides the in-
dividual space objects, the environment itself is also aliguepresented by using a so
calledprelayer(lines 39-41), which in this case displays a map of an are@réesnishot
how the perspective looks like during a simulation run ishm Section 5.2.3 in Figure
20 (right).

3.2.3. Scenario Evaluation

As described in Section 3.1, an application description melpde an evaluation section
to specify, which data should be collected during simufatind how this data should be
presented. Figure 6 shows the evaluation settings for gestir management applica-
tion. The collection of data is specified usidgtaproviderglines 1-11) while the pre-
sentation of data is defined dataconsumer@ines 12-23). The output of a data provider
is similar to a relational database table, i.e. da¢aentries (lines 7 and 8) represent the
columns of the produced table, and for each simulation timiat@a row is added to
this table. The input of the data entries is basegourcesfor fire (lines 3-5), victims
and chemicals (not shown), as well as predefined valuesi&eurrent simulation time.
Thus the data provider has one column for the current siounldime (line 7) for the
current number of fires as a sum over the fires of all curreiasstiéss (line 8) and for the
sums of victims as well as chemicals (not shown).

The application uses a chart data consumer (line 13) to prése collected data.
The chart is based on data from the previously defined datadeo(line 14) and has
some properties to influence the visual appearance (linels7/L5.e. displaying a title
and a legend and restricting the amount of plotted inforomatio the last 500 data rows.
A chart data consumer can plot multiple data series at oraah ef which requires a

Management Infrastructure

Properties Configurations
[] []
LI LI ™
Provided Active Component (AC) Required
Service Service
Interfaces Interfaces
‘:; “\’ Internal Implementation | 1 o _\'
Lo Architecture P [N

Subcomponents

Figure 7. Active component conceptual view

name, as well as inputs for a X and Y values. E.g. a series wif|gmefor displaying
information about fires (line 18) having the current time asafue (line 19) and the
current number of fires as Y value (line 19). The resultingtissshown in Section 5.2.3
in Figure 20 (middle).

4. Active Componentsand Services

In Figure 7 the concepts of an active component are shows. view is similar to the
definition of a component in the service component architec{SCA) [6] with some
substantial differences. One main aspect of an active casrgathat is shared with
nearly all existing component models is the explicit defamitof provided and required
services.On the one hand this makes the functional component depeiedesxplicit
(required services) and on the other hand it also cleartgstahat can be functionally
expected from the component (provided services). Desayibdmponents with required
and provided service is a necessary precondition for mgldiodular and reusable soft-
ware applications as component dependencies becomeavagiiitherefore manageable
on an architectural level. Hence, adding the notion of sewio agents facilitates the
construction of complex applications in a sound softwacanéal way.

The active component model is also hierarchical meaningdhiaposite compo-
nents can be constructed from basic components by wiringinejand provided ser-
vices. A composite component may thus be a parent of an anpitumber osubcom-
ponents A component can be configured from the outside ugirgpertiesand con-
figurations.Properties are a way to set specific argument values indilidand con-
figurations represent a set of predefined argument valuésanabe referred to via a
user given name. The most obvious difference of an activepoment with regard to
other component definitions is that it is an autonomouslygetieg entity similar to an
agent. Its behavior control is determined byiaternal architecturewhich constitutes
the available conceptual abstractions for programmingatitenomous behavior of an
active component.

a) + <nmet hodnanme>(<paran®[0..*]): void
b) + <methodnanme>(): <type>
c) + <nethodnane>(<paranp[O0..*]): <futuretype>

Figure 8. Allowed service method signature types

4.1. Services

The publicly available functionality of an active compohendefined by an arbitrary
number of provided services. A service is defined via an fater specification, which
allows object oriented access to the service functionatity further allows locating ser-
vices of a given type. In addition to the interfaces activenponents also contain the
concrete service implementations that realize the unithgrlgjomain logic. Typically,
service implementations belong to the component and aeueee decoupled from the
caller on the component thread, but services can also goegsests directly so that the
enclosing active component is not involved at all.

The active components paradigm imposes an important @nistm service inter-
face specifications as it is mandatory that no interactiawéen active components ever
blocks in order to already conceptually avoid deadlocksdisct consequence it is re-
quired that all method signatures are asynchronous, eesehvice caller should never
be blocked when invoking a service. To meet this objectivéhoe signatures can be
defined in three different ways: a) with no return value,\ad, b) as special case also
with a constant return value or c) with a future return vallleese different kinds of
method signatures are schematically shown in Fig. 8. Thectise allows asynchronous
invocation as the caller does not need to wait for a resukt. §¢tond case only applies
to methods, which always return the same value (typically arethods without argu-
ments). Here, the constant return value can be cached imegheand immediately re-
turned on invocation without blocking the caller. In the geal case a method provides
a return value that cannot be known in advance. In order teeetasynchronous calls
with non void return values, the third variant with a futue¢urn value can be used.

A future represents the result of an asynchronous compautatithe sense that a
method call immediately returns the future to the callet,tbe computation result may
be provided later. Normally, futures realizevait-by-necessitgcheme what means that
a future blocks the caller in the moment when it needs to adbesresult of the call and
it has not yet been provided. This deferred waiting does reatgnt deadlocks so that the
future concept has been extended using a callback mechadnsiead of directly fetch-
ing the return value the caller can add a result listenerishadtified as soon as the value
is set by the callee. This allows avoiding blocking calls gbstely and conceptually
prevents technical deadlocks.

1This does not mean that components cannot 'deadlock’ orpipieation layer by endlessly waiting on each
other, but the technical deadlock avoidance also in thie gasrantees that such a 'deadlocked’ component
remains responsive and can handle further service or messggests by executing corresponding domain
logic.

Root Component Root Component

Component focal
scoj

Service

Sibling Component

Service i

application platform
scope scope

Figure9. Search scopes
4.2. Composition

Active components make use of primitive and composite carapts. A composite com-
ponent can be composed of arbitrary many subcomponentarhaither primitive or
composite components again. The composition of compongrmtsne using required
and provided services, which can be interconnected. Dépgnod this specification a re-
quired service can be bound to a service instance of a dideathwvn component but also
to a service instance that will be searched at runtime amttgel according to specified
service requirements. It is also possible to include sulpmmants without service rela-
tionships in the composite component. The reason is thapooents are active and may
perform autonomous computations without being contrdigdhe composite element.
Thus, in certain cases it makes sense having subcompohahtannot be accessed via
services from the outside as part of a composite component.

As active components are meant to support the constructioonoplex distributed
systems service bindings can typically not assumed to kie stethat especially dynamic
composition aspects gain importance. Dynamic compositties on service search,
which is commonly supported by centralized registries t#at be used to store and
search service entries, e.g. in case of web services UDBitrieg can be used. Although
such an approach can be used for active components as wglipwese a decentralized
mechanism without central service repository. The meamaiis based on the observa-
tion that all active components are possible service pergiend their hierarchical com-
position structure can be exploited for searching. Thenatie behind this assumption is
that proximity is often an important factor for estimatimgtservice usefulness, i.e. the
nearer a service is the more relevant it probably is.

Figure 9 shows five different scopes, which can be used taalothe search. If
local scopeis used only declared services of the component itself velcbnsidered.
In contrast, usingomponent scop@cludes also subcomponents aqplication scope
further extends the search to all components of the saméapph. In some cases this
is not sufficient so that the search scope can be further ebgulto include all services
of the platform platform scopgor even all connected remote platforngdobal scopg

provi ded service =
interface:Interface inplenentation: BasicService [direct: bool ean]

required service =
interface:Interface nane: String [nultiple:bool ean] [dynani c: bool ean] [scope: String]

Figure 10. Provided and required service definitions

Having described how services can be located dynamically the composition
approach can be explained in more detail. The specificatiopesties for provided and
required services are listed in Figure 10. It can be seersatipadvided service consists
of aninterfaceas well as a servicanplementatiorof type BasicServicewhich is a
predefined framework class that has to be extended. Additiothe booleamirectflag
can be used to state that service calls should not be execontéte enclosing active
component thread but directly on the caller thread. Perultedd calls are automatically
executed as part of the enclosing active component so thateémplementations can
safely access component internals without consistenky caused by concurrent thread
accesses.

A required service is also characterized by its interfacetHermore, it has a com-
ponent widely visiblename which can be used to fetch a service implementation using
the getRequiredService(nanfeamework method. As it is a common use case that sev-
eral service instances of the same type are needeutltgple declaration can be used.
In this case it is obligatory to fetch the services getRequiredServices(nam8grvice
binding is performed according to tlidyynamicandscopeproperties. Is a required ser-
vice declared to be dynamic it will not be bound at all but slireearch is performed on
each access. The scope properties allow to constrain thehdesseveral different areas
as introduced above, i.e. when scope is set to applicatesehrch will not exceed the
bounds of the application components.

4.3. Application Description

Jadex applications are described using an XML descriptarBiasically, this file allows
declaring component types, environment spaces as wellpisaton instances. Defini-
tions of component types include a logical component typeanas well as the file name
of the component implementation. In this way applicatioeatliptions are independent
of the concrete component types and it becomes possible tp $eterogeneous appli-
cations consisting of different kinds of components, e§l Bgents and BPMN work-
flows. As introduced in Section 3, Jadex also allows diffesxvironment types being
used in concert with components. A space type is also defipeddgical name and an
implementation class but typically allows further spacmednts being declared. These
elements are defined relying on a space type dependent XMdrsehhat is included
as separate namespace in the application descriptor ée.@s Used in the example as
identifier for the EnvSupport namespace).

In addition to type related information also concrete aggilon instances can be
defined. In general, an application instance may consist afrbitrary number of space
and component instances. Both are defined by referring toetsgective logical type
name from the application model and may declare an instaamoenSpace instance def-

public interface | TreatVictinsService extends | Service

public I Future treatVictins(lSpaceObject disaster);
public I Future abort();
}

public interface |ExtinguishFireService extends | Service

OCO~NOUITAWNE

public | Future extinguishFire(lSpacebject disaster);
10 public | Future abort();
1 |}

13 |public interface | Cl earChemical sService extends | Service
15 public | Future clearChenical s(I Space(bj ect disaster);

16 public | Future abort();
17 |}

Figure 11. Disaster management service definitions

initions are space type dependent. In case of the EnvSugpece it is possible to create
instances of element types of the model, e.g. space obtisesses as well as data
providers and consumers. For a component instance, argsin@estart configuration,
and a number can be specified. Arguments can be employeddoalass to component
instances, whereby the instance name is just the name faothponent created. The
start configuration allows creating a component with a piiedd setting and the number
states how many components of the same type will be iniééliz

4.4. Scenario Architecture

The basic scenario design consists of agent types for tferefift rescue forces as well
as for the commander, which has the task of resolving disabte coordinating res-
cue forces. This coordination is based on the componenicesrof the rescue forces,
which reflect their respective capabilities (cf. Figure.lA) ambulance offers an in-
terfacelTreatVictimsServicélines 1-5) that can be used to instruct the rescue force to
start treating injured people at a specific disaster siteilis purpose the interface of-
fers thetreatVictims()method, which takes the disaster space object as paranmeter a
returns a future which indicates when patient treatmenftiheghed and the ambulance
can be assigned to another task. In order to support alscetfssignment of units an
additionalabort() method is available, which tells an ambulance to stop warkin the
current disaster site. Again, the rescue force indicasesviilability via the future return
value. A fire brigade exposes two interfaces. One cdledinguishFireServicglines
7-11), which can be used to instruct a brigade to extingurgls fat a specific disaster
site and another one callé@learChemicalsServic@ines 13-17) for working on chem-
ical problems. Both interfaces are syntactically simitattte first one and also offer an
abort method for task cancellation. It has to be noted thelt eascue force can work on
one task at the same time only, even if it offers more than enéce. In case a unit is
instructed to work on a task while it is busy it is expectedigmal an exception to the
caller via the future return value.

The disaster management application descriptor is showigire 12. It brings to-
gether the different parts of the application. On the onallican be seen that the appli-

1 |<applicationtype ... nane="Di saster Managenent" package="di sast er managenent" >
2 <spacet ypes>
3 <e: envspacet ype nane="2dspace" cl ass="Conti nuousSpace2D" ...
4 </ spacet ypes>
5
6 <conponenttypes>
7 <conponenttype nanme="FireBrigade" filename="FireBrigade. agent.xm"/>
8 <conponenttype name="Conmander" filename="Conmander. agent.xm "/>
9 <conponenttype nanme="Anbul ance" fil ename="Anbul ance. agent. xm "/>
10 </ conponent t ypes>
11
12 <applications>
13 <appl i cation name="smal | ">
14 <spaces>
15 <e:envspace nanme="ny2dspace" type="2dspace">
16 <e: obj ect s>
17 <e:object type="firestation">
18 <e:property name="position">new Vector2Doubl e(0. 8, 0. 4) </ e: property>
19 </ e: obj ect >
20 <e: obj ect type="firebrigade" nunber="10">
21 <e: property nanme="position">new Vector 2Doubl e(0. 8, 0. 4) </ e: property>
22 </ e: obj ect>
23
24 <e: obj ect type="hospital">
25 <e: property nanme="position">new Vector 2Doubl e(0. 3, 0. 3) </ e: property>
26 </ e: obj ect >
27 <e: obj ect type="anbul ance" nunber="10">
28 <e: property name="position">new Vector2Doubl e(0. 3, 0. 3) </ e: property>
29 </ e: obj ect >
30 </ e: obj ect s>
31
32 <e: processes>
33 <e: process type="create"/>
34 </ e: processes>
35
36 <e: dataproviders> ... </e:dataproviders>
37 <e:dataconsuners> ... </e:dataconsuners>
38 </ e: envspace>
39 </ spaces>
40
41 <conponent s>
42 <conponent type="Conmander"/>
43 </ conponent s>
44 </ application>
45 </ applications>
46 |</applicationtype>

Figure 12. Application descriptor of the disaster management

cation is itself understood as a composite component, wiestits own type name and
package (line 1). Next, the space type definition is giverefi2-4). For brevity reasons
this definition is only indicated here and in the real degoriff encompasses all infor-
mation about domain and perspective aspects that have besenped in the previous
section. Hereafter, the component types are declared (D). In this case three dif-
ferent component types are used, namelyrineBrigade AmbulanceandCommander
types. The last part of the application descriptor (linestb2shows the definition of an
application instance nameésimall’ (line 13). This application defines a space instance
called’my2dspacebased on thé&dspace’space type. The space creates several space
objects (lines 16-30), a space process (lines 32-34), dsawelata providers and con-
sumers (lines 36-37). Space objects include a fire statioes(lL7-19), ten fire brigades
(lines 20-22), as well as a hospital (line 24-26) with ten afabces. It can also be seen

that initially the rescue forces are colocated with thegpective home bases, i.e. fire
station or hospital. The process (line 33) is responsiblgénmerating disasters in the en-
vironments at a specific rate and refers to’tieate’ process type defined already in the
space type domain elements (cf. Figure 3). Data providercandumer specifications
(lines 36-37) as already presented in Figure 6 completepthessinstance definition.

In the last part of the application descriptor, initiallyeated components can be
specified. It can be seen that here only a commander agentlarei (lines 42). This
is sufficient because the rescue force agents are autothasizated when their corre-
sponding space objects thanks to the avatar mapping thdidib sides together.

5. BDI Agents

In Jadex, active components can be implemented accordintatty different internal
architectures. An internal architecture and its realain a Jadex kernel represent a
consistent set of concepts and constructs for implemerttiagautonomous behavior
of concrete active components (e.g. a fire brigade). One ipgarhinternal architecture
supported by Jadex is the belief-desire-intention (BDI)deloBDI has been initially
conceived as a philosophical model explaining human ratidecision making [1]. Itis a
folk-psychological model that describes how humpaseivetheir own decision making
processes, instead of describing how the human brain actvwatks. The advantage of
the model is its intuitive usage, as developers can implémehavior very similar to
how they would plan their own everyday activities.

The decision making process described by models like BDalied practical rea-
soning as it determines actions to be taken and is opposeddeoretical reasoning
which is not directed towards concrete actions. The prakcteEasoning process of the
BDI model is two-staged and consists afj@al deliberationand ameans-end reasoning
phase. In the first phase it is decided, which goals an agentigipursue. The latter
phase decides how a chosen goal can be accomplished byiegesuitable plans [13].
Simplified versions of the BDI model continuously have begplied to agent program-
ming, e.g. in the procedural reasoning system (PRS) [11jtasdiccessors like dAMARS
[4] and JACK [12].

5.1. The Jadex BDI Kernel

The Jadex BDI kernel is inspired by earlier PRS systems,rttaduces several signifi-
cant extensions. Unlike other systems, the Jadex BDI kepqmicitly supports the goal
deliberation phase. Goal deliberation is realized usirgsih calledEasyDeliberation
strategy [9], which allows specifying inhibition arcs debing which active goals inhibit
others based on their importance. Inhibition arcs are used@ime to determine a con-
sistent set of goals to be pursued. For each of these goaisttie means-end reasoning
process is triggered. Means-end reasoning is realizedesiynio other PRS systems by
goal and plan declarations. The basic idea is that plangdertbe procedural knowledge
how to accomplish certain tasks and actions, while goalkadsdvely describe the rea-
sons why tasks and activities should be carried out. Therddga of the approach is
that the desired result of agent behavior can be specifieatatgy as a goal and when
certain plans fail during execution, the agent can checkrodiptions for reaching the

Agent Platform

/ — Jadex Agent \

XML i
(follows Jadex ADF i Plan
XML-Schema)

Java

i
<agent name="ping"> E public class PingPlan
<beliefs> ! extends Plan

Jadex
API

e bt
Jadex <goals> : public void body()
¢ i P

p 500
Language <plans>

}

</agent>

e —

Figure 13. BDI agent specification

respective goal. Thus, the means-end reasoning procésstsalll plans that are in prin-
ciple applicable for a goal and checks whether they can bé insthe current context.
Then the most promising plan is chosen and executed andaks dot accomplish the
goal means-end reasoning will try out other plans until thal gs reached or no more
plans are available and the goal is considered as failed.

In Jadex, goals are represented explicitly having a statieaalifecycle (see [3]).
Goals remain part of the mental state of an agent until theycansidered finished or
explicitly dropped. Jadex supports four separate kindoafgthat refine the basic goal
lifecycle in different ways. Aperform goalis related to action execution and is consid-
ered finished, when at least one plan has been executed fgo#thé\chieve goalhave
the purpose to establish some world state, which ist spdafiea target condition. An
achieve goal is finished, when the target condition is felfi/lregardless how many plans
(if any) had to be executed for the goal. Similarlyj@erygoal describes some informa-
tion need and is finished, when the required information &lable (e.g. as agent be-
lief), regardless if the information had to be obtained bgating plans or was readily
available in the agents beliefs. Finally, thmintaingoal observes a specific world state
specified as maintain condition and only becomes activenlie condition is violated.
The goal remains active until the condition becomes val@iage.g. due to the execu-
tion of some plan, which was selected for the goal. Afterwah# goal changes back to
the inactive state, but keeps monitoring the maintain dwrdiThus by default, a main-
tain goal is never finished and is only removed from the agenéntal state, when it is
explicitly dropped.

The implementation of active components using the BDI Kefoleows a hybrid
language approach. An agent type is defined in a so called dgénition file (ADF),
which contains declarative information about the agenicstire consisting e.g. of be-
liefs, goals and plans (see Figure 13, left). The ADF is dbedrin a specific XML di-
alect, which besides the structural information also sujspgava like expressions e.g.
for goal conditions and initial belief values. The actuah&eor of the agent is captured
in the procedural plans, which can be implemented as noraval dlasses that inherit
from the framework clasgdex.bdi.runtime.Plasee Figure 13, right). The BDI func-
tionalities for e.g. creating goals or accessing belieésaamilable in the plan classes via
an application programming interface (API).

1 |<agent nane="Anbul ance" package="di saster managenent">

2 <capabilities>

3 <capability nanme="nove" fil e="Mvenent" />

4 </ capabilities>

5 <bel i ef s>

6 <bel i efref name="env"><concrete ref="nove.env"/></beliefref>

7 <bel i efref name="sel f"><concrete ref="nove.sel f"/></beliefref>
8 <bel i ef ref nanme="hone" ><concrete ref="nove. hone"/></beliefref>
9 </ bel i ef s>

10 <goal s>

11 <achi evegoal ref nanme="nove"><concrete ref="nove. nove"/></achi evegoal ref >
12 <achi evegoal nane="treat_victins">

13 <par anmet er nane="di saster" class="|SpaceObject"/>

14 </ achi evegoal >

15 </ goal s>
16 <pl ans>

17 <pl an nanme="treat_victimplan">

18 <par anmeter nane="di saster" class="|SpaceCbject">
19 <goal mappi ng ref="treat_victins. di saster"/>

20 </ par anet er >

21 <body cl ass="TreatVictinPl an"/>

22 <trigger>

23 <goal ref="treat_victinms"/>

24 </trigger>

25 </ pl an>

26 </ pl ans>
27 <servi ces>

28 <provi dedservice class="ITreat VictinsService">
29 new Treat Vi cti msSer vi ce($scope)
30 </ provi dedservi ce>

31 </ servi ces>
32 |</agent>

Figure 14. Agent definition file of the ambulance agent
5.2. Scenario Agent Type Descriptions

In this section, the implementation of the different BDI agg/pes of the disaster man-
agement application is shortly sketched. First, the anmm@agent is presented as rep-
resentative for the rescue force agents. Afterwards, tipdeimentation of the comman-
der agent is explained. Finally, a short overview of the cletepdisaster management
application is given.

5.2.1. Rescue Force Agents

The rescue force agents (fire brigade and ambulance) arernmeptted very similarly.
Both are based on a separate module catiede capabilitghat handles interaction with
the environment, i.e. the move capability provides acceske avatar of the agent and
includes a goal to move the avatar to some target locatiomeretivironment. For each
service (treat victims, extinguish fire, clear chemicatlsg, respective rescue force BDI
agent defines a separate goal type. The connection betweeageht goal and the service
interface is realized by service implementation classatsdispatch a corresponding goal
for each service request. In response to these goals, thésagecute appropriate plans,
i.e. for each service, a plan class is implemented capttini@gesired agent behavior.
The combination of agent goal, service implementation dad plass is explained
using the ambulance vehicle and the treat victims servie@ axample. Figure 14 shows
the BDI agent definition file of the ambulance component. Tgenadefinition includes

1 |[public class TreatVictinsService extends BasicService
2 i mpl ements | TreatVictinsService {
3 protected | Capability agent;
4 public TreatVictinmsService(lCapability agent) {
5 super (agent . get Servi ceProvi der().getld(), | TreatVictinmsService.class,null);
6 this.agent = agent;
7
8 public I Future treatVictins(final |SpaceCbject disaster) {
9 final Future ret = new Future();
10 i f (agent . get Goal base().get Goal s("treat_victinms").length>0) {
11 ret.set Exception(new Il egal StateException("Anbul ance busy."));
12 1
13 el se {
14 final IGoal tv = (IGoal)agent.getCoal base().createGoal ("treat_victinms");
15 tv.get Paraneter("di saster"). set Val ue(di saster);
16 tv. addGoal Li st ener (new | Goal Li stener() {
17 public voi d goal Fi ni shed(Agent Event ae) {
18 if(tv.isSucceeded())
19 ret.setResult(null);
20 el se
21 ret.set Exception(tv.get Exception());
22
23 1)
24 agent . get Goal base() . di spat chTopLevel Goal (tv);
25
26 return ret;
27 }
28 public I Future abort() {
29 final Future ret = new Future();
30 | Spacehj ect self = (I SpaceObject)agent. getBeliefbase()
31 .getBelief("self").getFact();
32 i f((Bool ean) sel f.getProperty("patient")) {
33 ret.set Exception(new ||l egal StateException("Patient on board."));
34 1
35 el se {
36 | Goal [] goals = (ICoal[])agent. get Goal base().get Goal s("treat_victins");
37 for(int i=0; i<goals.length; i++) {
38 goal s[i].drop();
39
40 ret.setResult(null);
41 }
42 return ret;
43 }
44 |}

Figure 15. Implementation of treat victims service

the movecapability (lines 2-4) and imports some beliefs and goalshef capability.
The envbelief (line 6) provides access to the environment spackidimy the agent
avatar, which is stored in the belisélf (line 7). The move capability further provides
thehomelocation of the vehicle (line 8) and the achieve goalvefor moving the avatar
(line 11). In addition to the goals and beliefs of the incldaapability, the ambulance
agent defines a new achieve gtrelat_victims(lines 12-14), which includes disaster
parameter for the disaster object (line 13). Tglanssection (lines 16-26) declares a
treat_victims_plan(line 17) for handlingtreat_victimsgoals, as specified by the plan
trigger (lines 22-24). The plan carries over tsasterparameter of the goal (lines 18-
20) and is implemented in the clab®atVictimPlan(line 21). To expose the treat victims
service, the agent definition containp@videdservic@eclaration (lines 28-30), which
specifies the service interface class (line 28) as well as¢hdce implementation as a
constructor invocation expression (line 29).

1 |[public class TreatVictinPlan extends Plan {

2 public void body() {

3 Space2D space = (Space2D)getBel i ef base().getBelief("env").getFact();
4 | Spacebj ect self = (I SpaceObj ect) get Bel i ef base()

5 .getBelief("self").getFact();

6 | SpaceOhj ect di saster = (| SpaceObject)get Paraneter("disaster").getVal ue();
7

8 // Step 1: Move to disaster |ocation

9 sel f.setProperty("state", "moving_to_disaster");

10 I Vector2 targetpos = DisasterType.getVictinlLocation(disaster);

11 | Goal nove = createCoal ("nove");

12 nove. get Par anet er ("destination").setVal ue(targetpos);

13 di spat chSubgoal AndWai t (nove);

14

15 /1 Step 2: Treat victim

16 sel f.setProperty("state", "treating_victinl);

17 Map props = new HashMap();

18 props. put (Treat Vi cti nifask. PROPERTY_DI SASTER, di saster);

19 bj ect taski d=space. creat eQbj ect Task("treat_victint, props, self.getld());
20 SyncResul t Li stener res = new SyncResul tListener();
21 space. addTaskLi st ener(taskid, self.getld(), res);
22 res. wait ForResul t();
23
24 /'l Step 3: Move to hospital
25 C
26
27 /| Step 4: Deliver patient.
28 S
29 | }
30 |}

Figure 16. Implementation of treat victims plan

The Java class of the service implementation is shown inr€i@6. The class ex-
tends the framework clag3asicServicdline 1) and implements thBreatVictimsSer-
vice interface shown in Section 4.4 (line 2). The constructore(#t) is used in the am-
bulance agent definition file shown before and keeps a refertertheagentobject (line
6), which can be used to access the BDI internals like bediefsgoals from Java code.
The remainder of the service implementation contains tlertethods defined in the
ITreatVictimsService interface. ThieeatVictims()method (lines 8-27) first checks, if
there exists &reat_victimsgoal in the goalbase of the agent (line 10). As the ambulance
cannot deal with two disasters at once, an exception is getbas the result of the ser-
vice invocation (line 11), if another actiteat _victimsgoal is present. Otherwise a new
treat_victimsgoal is created (line 14), initialized with the disasterauj(line 15) and
dispatched as a new top level goal of the agent (line 24). Da¢lgtener (lines 16-23)
is asynchronously notified of the result of the goal executind passes the success (line
19) or failure (line 21) to the future object, which has beesvjiled as a result of the ser-
vice invocation (line 26). Similarly, thebort() method (lines 28-43) first checks, if the
ambulance currently transports a patient (lines 30-32)hith case the current action
cannot be aborted and an exception is generated (line 3Bgr@ise alltreat_victims
goals of the ambulance are dropped (lines 36-39) and the edaprest succeeds (line
40).

Thus, as a result of the service invocatiotreat_victimsgoal is activated and in
response to this goal, tAeeatVictimPlaras shown in Figure 16 is selected and executed
by the ambulance agent. The plan extends the frameworkrRlasg¢line 1) and overrides
thebody()method (lines 2-29). In the beginning (lines 3-6), somealdds are initialized

Handle Disasters

Handle Disaster

Victims exist

Chenicals exist ™ L
|
\

Extmgulsh Fires

depends on all chemicals have been cleared

Clear Chemicals \ / Treat Vlctlms

Send Rescue Force

Figure 17. AML mental model for commander goals

from the beliefs and the parameters of the plan includingetindronmentspace the
avatarself thehomelocation and thelisasterobject. The first step of the plan is to move
to the disaster location (lines 8-13). This is done by querythe location of a victim
from the disaster object (line 10) and dispatchingavegoal with the victim location
as target destination (lines 11-13). The plan then aut@altiwaits until the goal is
achieved and the victim location has been reached. Aftelsyéine victim is treated and
loaded in to the ambulance (lines 15-22). This activity ifgrened as dreat_victimtask
(lines 17-19) of the ambulance avatar in the environmenrg.dtan waits until the task is
finished, using &yncResultListendlines 20-22), which blocks the plan, but keeps the
ambulance component itself responsive to other requésésoiher two steps of the plan
are similar to the first two steps: After the patient has beadéd into the ambulance, the
avatar moves back to the hospital using a move goal (cf. gtapd. delivers the patient
in the hospital using another environment task (cf. step 2).

Following the behavior described above, the ambulanceraamisly performs ac-
tivities for treating victims as requested through its garinterface. The service is re-
quested by the commander agent as described in the nexirsecti

5.2.2. Commander Agent

The general behavior of the commander agent has been dssestAML mental model,
which is depicted in Figure 17. It shows that the commandsertha top-level goal to
resolve all occurring disasterbl@ndle Disasters This overall goal is decomposed to
theHandle Disastegoal, which represents the commanders objective to tadpedcific
disaster, i.e. for each disaster instance a corresponaialgvgll exist in the comman-
der agent. A disaster is handled by three subgoals. The fissiGear Chemicalshas
the task to ensure that all chemicals will eventually be rezddrom the disaster site.
Similarily, the Extinguish FiresandTreat Victimsgoals represent the respective desires

to extinguish all fires and transport all injured victims tb@spital. It can also be seen
that the goals are only materialized in case it is necessaryhere are chemicals, fires
or victims at the considered disaster site. Furthermoeglbat Victimsgoal depends on
the Clear Chemicalgjoal to be successfully finished so that ambulances can #@er
target area without contamination risks. Each of the thobgeals is realized using the
Send Rescue Forgmal, which allows instructing a rescue force to work at &celd
disaster site.

In Figure 18 a cutout of the commander agent’s agent definftie is shown. In
addition to the goal types introduced above it containsebelihd plan descriptions as
well as required services. In the beliefs section (line®Rthe environment, the known
disaster sites and currently working rescue forces aresepted. Thenvironmenbe-
lief (lines 3-5) is initialized with the environment spadet is accessible via the parent
component acting as application context. Disasters angliassue forces are described
using belief sets. In case dfsasterg(lines 6-8) the belief set is automatically kept up
to date with the current situation by using an update ratechvieevaluates the facts
every second (1000 ms). The disasters are retrieved byirigtepace objects of type
disasterfrom the environment. The belief set fousy_entitiegline 9) does not initially
contain any facts. Instead, plans will use this belief sedtéwe rescue forces that have
been assigned tasks by the commander and are currentlyngarkithese tasks.

The described goal model is mapped directly to the goalsosefiines 11-43). An
exception is the top-level goabndle_disastersvhich needs not to be explicitly mod-
elled as goal entity in the commander ADF. The reason is thabhain purpose consists
in creating individuahandle_disastegoals (lines 12-28) for each incidence. This can
be achieved in a declarative manner by using a creation tondiines 17-19), whereby
each space object of type disaster is bound to a variahiaster In order to make this
variable permanently available in the goal instance, issgned as value to a goal pa-
rameterdisaster(lines 13-15). Additionally using the unique tag (line 1@)sares that
every disaster is represented by exactly baedle disastegoal. The goal is considered
to be achieved when the target condition (lines 25-27) flled, i.e. when the disaster
object is not contained in the belief sdisastersany longer. Finally, the requirement
of treating severe disasters with higher priority than rarincidents is realized using
goal deliberation settings (lines 20-24). Here, an instdacel inhibition relationship is
used. All other known and non severe goals (expressed usiiiplicit variable$ref
pointing to another goal) are inhibited when the considg@l instance is severggoal
refers to the current goal). The other goal types are muchpleimFor brevity reasons
only clear_chemical&ndsend_rescueforcare shown. The first one (lines 29-37) has
a parametedisasterfor storing the disaster space object. As this goal is coefitam
within a plan, the parameter value is set procedurally aretis@ot to be specified on
type level. The target condition (line 36) declares thatdbal is achieved when the
number of chemicals in the considered disaster site is 2alditionally, the goal uses a
deliberation definition (lines 32-34) to inhibit theat_victimgoal for the corresponding
disaster. In this way th&eat_victimgoal is suppressed as long as the fire brigades are
dealing with chemicals and ttodear_chemicalgoal is active. The omittetleat victims
andextinguish_firegoals are structurally very similar with a correspondingéa con-
dition but no deliberation settings. Finally, teend_rescueforagoal is a procedural goal
without target condition (lines 38-42). It has two param&tene for the disaster site and
the other for the rescue force.

<agent nane="Commander" package="di sast er nanagenent. conmander" >
<bel i ef s>
<bel i ef name="environment" cl ass="Conti nuousSpace2D"'>
<f act >$scope. get Parent (). get Space("ny2dspace") </ fact>
</ belief>
<bel i ef set nanme="di sasters" class="1SpaceChject" updaterate="1000">
<f act s>$bel i ef base. envi ronnent . get SpaceCbj ect sByType("di saster™) </ fact s>
</ beli ef set>
<bel i ef set name="busy_entities" class="0bject"/>
10 </ bel i ef s>
11 <goal s>

OCO~NOUITAWNE

12 <achi evegoal nane="handl e_di saster" exclude="never">

13 <par anmeter nane="di saster" class="|SpaceCbject">

14 <val ue>$di sast er </ val ue>

15 </ par anet er >

16 <uni que/ >

17 <creationcondition>

18 | Spacehj ect $di saster && $di saster. get Type().equal s("disaster")
19 </ creationcondition>

20 <del i berati on>

21 <inhibits ref="handl e_di saster">

22 $goal . di saster. severe & $ref. disaster.severe==fal se
23 </'i nhi bi t s>

24 </ del i berati on>

25 <targetcondition>

26 I'Arrays. asLi st ($bel i ef base. di sast ers). cont ai ns($goal . di saster)
27 </targetcondition>

28 </ achi evegoal >

29 <achi evegoal nane="cl ear_chem cal s" excl ude="never">

30 <par anet er nanme="di saster" class="1SpaceCOhject"/>

31 <del i berati on>

32 <inhibits ref="treat_victins">

33 $goal . di sast er==%ref . di saster

34 </'i nhi bi t s>

35 </ del i berati on>

36 <t ar get condi ti on>$goal . di sast er. cheni cal s==0</t ar get condi ti on>
37 </ achi evegoal >

38 <achi evegoal name="send_rescueforce">

39 <par anet er nanme="di saster" class="1SpaceCObject"/>

40 <par anmet er nanme="rescueforce" class="IService"/>

41 <t arget condi ti on>$goal . di saster. fire==0</targetcondition>
42 </ achi evegoal >

43 </ goal s>
44 <pl ans>

45 <pl an nanme="handl e_di sast er_pl an">

46 <par anet er nane="di saster" class="|SpaceObject"/>
47 <body cl ass="Handl eDi sasterPl an"/ >

48 <trigger><goal ref="handl e_disaster"/></trigger>
49 </ pl an>

50 </ pl ans>
51 <servi ces>

52 <requi redservi ce nanme="tvs"cl ass="1Treat Victi nsService"nul tiple="true"/>
53 <requi redservi ce nane="efs"cl ass="1Exti ngui shFireService"mul tiple="true"/>
54 <requi redservi ce nane="ccs"cl ass="1C ear Cheni cal sService"nmul tiple="true"/>

55 </ servi ces>
56 |</agent>

Figure 18. Agent definition file of the commander agent

For each of the described goal types plans exist in the campammander agent
definition file. Due to brevity only thbandle_disaster_plaflines 45-49) is shown and
explained here. It can be seen that the plan reactsamlle_disastegoals (lines 48)
and has a parameter for storing tisastersite (lines 46). The value of this parameter
is automatically mapped from the corresponding goal paramehe execution logic of

1 [public class Handl eDi sasterPl an extends Plan {
2 public void body() {
3 | Spacebj ect di saster = (|SpaceCbject)getParaneter("disaster").getVal ue();
4
5 | Goal cc = createCoal ("clear_chem cal s");
6 cc. get Paranet er ("di saster"). set Val ue(di saster);
7 di spat chSubgoal (cc);
8
9 | Goal ef = createCoal ("extinguish_fires");
10 ef . get Paranet er ("di saster"). set Val ue(di saster);
11 di spat chSubgoal (ef);
12
13 | Goal tv = createCoal ("treat_victinms");
14 tv. get Paraneter("disaster").setVal ue(di saster);
15 di spat chSubgoal (tv);
16
17 wai t For Goal (cc);
18 wai t For Goal (ef);
19 wai t For Goal (tv);
20 | }
21 |}

Figure 19. Handle disaster plan body

the plan is contained in an external Java class file for the Iptaly (line 47), which is
described in detail below.

The last part of the commander ADF contains the servicesose(tnes 51-55),
which may contain provided and required services of theagreoase of the commander
only required services are specified for the three kindsfefefl rescue force tasks (lines
52-54). All of these required services defineaane a serviceclass i.e. its interface type
as well as anultipleattribute. As all required services are multiple they wélimound to
all available rescue force services of a given type.

For illustrating further how a disaster is handled by the owmnder, the plan body
of theHandleDisasterPlatis shown in Figure 19. In the first part of the plan body (line
3) the disaster is extracted from a plan parameter. In thé¢ pent of the plan body
subgoals are created for resolving the disastecle@ar _chemicalsubgoal is created,
initialized with parameter values and dispatched (liné9.5Fhe same is done for fires
using theextinguish_fireglines 9-11) andreat_victimg(lines 13-15) subgoals. The first
two subgoals are active at the same time and may be pursuedaiegb depending on
how many fire brigades are available. Ttheat_victimssubgoal is not activated until all
chemicals have been cleared. This is realized using theudicle deliberation settings
introduced above. After all chemicals are cleared, the camtar deals concurrently
with extinguishing the remaining fires (if any) and treatiictims. The plan finally waits
for all subgoals being accomplished (lines 17-19), becadiserwise the plan would
immediately finish and automatically abort possibly opengmals.

5.2.3. Application overview

Now that all aspects of the disaster management applichéioe been presented, Figure
20 shows a screenshot of the running application. The baskwindow is the Jadex con-
trol center (JCC), in which you can see the model (upper #&ft) runtime view (lower
left) of the Jadex platform. In the model view, tBésasterManagement.application.xml
has been selected for starting. The runtime view shows thetate of the running appli-

@ Jadex Control Center 2,0-rc5 {11. September 2010): Project std bl El ! 23 J

File Model Help

Lo RRABLS 2558 D@ oairs @ 2R Jodex|
& 5 cleanerworld_classic E é‘ DizasterManagement E=till Cl 1l XE .:

§ 14 disastermanagement
o= [+ .5vn Display

o= 1 ambulance
B 1 @

o= |14 commander 2
o= ||l fireengine iz
o | images z T 4

o= {4 movement DisasterStaistics i
{H Disasterianagement appli 2

e | i garbagecoliector

=

)
1

8 Lars-PC_121 =
o= fT SenviceContainer
o (8 kernel_micro
o= [8 kernel_bdibpmn
bl B kernel_bpmn
o &5 rms

=5 awa

& jec
¢ 8 DisasterManagementd

T ..‘ fireengine?

¢ [4¥ SewviceContainer

“4 |ExtinguishFireService

“4 [ClearChemicalsSenv
4y fireengines
iy fireengined
4 fireenginel
a» fireenginet
4 fireengines
u
?

- W

&\ X
| Dulsberg
T

Vondsbek!

e e om SR e o ooomomomom o
I

ambulance12 L3 : : ;
f? SeniceContainer ¥ Yaut .ﬁ:,:;r‘mnwrgs_'éﬁw_. S

i, TreatvictimsSenvice (; b = i 334 'y . = vt ik
3 e omen wman [Kener Gasiook ec {0 tsabok
- - e 2

-3 ~ ks —Fre — Crenicas| e A Y e)
Tl i | I | LW

(B

amhulanced

Figure 20. Screenshot of the disaster management application

cation. You can see a numberfatengineandambulancecomponents, some of which
have been unfolded to show the provided services. Thus titémre view reflects the
application architecture as presented in section 4. Thealiimation of the application
is shown in the frontmost window. To the right, the map of thei@nment displayed,
containing the visual representations of the vehiclesiosta and disaster objects. Left
from the map, the evaluation is included. It displays thédmjsof the victims, fire, and
chemicals values as time series charts. Both aspects anedefsing the EnvSupport
framework presented in Section 3. The evaluation chartfuatteer used to rate the per-
formance of the coordination strategies of the commandemntaginstructing the ambu-
lances and fire brigades, as described in this section.

6. Conclusion

This chapter presented the Jadex framework and its coraleptderpinnings. Main
building blocks that have been introduced are environmewts/e components and ser-
vices as well as the BDI agent model. In general, Jadex stgpparious kinds of envi-
ronments in order to be usable for building simulations asasaeal world applications.
In case of simulations, virtual environments are of vitapartance for enabling rapid
prototyping. Jadex supports virtual 2D environments vigeacsic EnvSupport space,
which offers a complete description model for domain olgentluding environment

processes as well as customizable visualizations via petigps. Active components are
not themselves part of the space, but act on the space bgdgsaciions or by controlling
space objects, such as their avatars.

The second key aspect of Jadex is the concept of active canpoi\n active com-
ponent is seen as an agent that may act as a service providl@oasumer. For this
purpose an active component can explicitly define providetraquired services. This
allows composite components being built from other onesdmnecting service ports.
As active components are typically used in dynamic enviremts, in which e.g. service
providers vanish or newly appear, dynamic service bindiraf special importance. Dy-
namic binding is based on service search, which is handladampletely decentralized
manner by traversing the component hierarchy. Scopes le@reibtroduced to constrain
the areas that should be included in the search, e.g. applicgcope includes only ser-
vice providers of the current application and global scdpe mcludes service providers
from remote platforms.

As third topic the BDI model of agency and the Jadex BDI asttiire have been
introduced. Jadex supports the full practical reasonimdedncluding goal deliberation
as well as means-end reasoning. The firstis responsibleéididg which of the existing
goals are currently pursued and the latter has the task tokaahs for realizing a specific
goal by applying suitable plans. BDI agents are programnsétgua hybrid language
approach, in which declarative agent type information fmsated from procedural plan
knowledge. In the XML based agent definition file (ADF) theiéfsl, goals and plans of
an agent type are defined, whereas Java classes are usedddingrthe plan bodies.

The interworkings of these buildings blocks have been &rrdxplained by an ex-
ample from the disaster management area, in which commageeits are responsible
for handling disasters by coordinating different rescueds such as ambulances and fire
brigades. The scenario has been realized as a simulati@retjnthe environment has
been defined as space that represents rescue units as welii@sssand disaster sites.
Furthermore, the environment automatically generatesstiss using an environment
process. The space definition also contains a perspecthiehwallows a visualization
of the environment at runtime. The application logic hasnbeet into agent types for
the commander as well as for the different rescue forces.cohenander instructs the
rescue forces using their exposed services for treatingnsge clearing chemicals and
extinguishing fires. The internal decision logic of the dgdras been realized using the
BDI approach.

The Jadex active component framework encompasses setteeaimteresting fea-
tures that have not been presented in the context of thisteh&@pne aspect concerns
further platform kernels realizing other active comportgpes. Most importantly, ker-
nels have been developed also for executing workflow desmgpbased on BPMN [7]
and on a newly developed goal oriented process modelingiootealled GPMN [2].
Furthermore, a comprehensive tool suite has been builihardadex, on the one hand
supporting the construction of specific active componentsan the other hand allow-
ing management and debugging at runtime. Jadex is an opecesivamework that is
hosted at SourceForge. The complete disaster managenaempkincluding all sources
presented in this paper is contained in the Jadex distobugince Jadex V2RC6, avail-
able fromht t p: //j adex. sour cef or ge. net , where also further documentation
on Jadex can be found.

References

(1]
[2]

(3]
(4]

9]

(10]

(11]

(12]

(13]

M. Bratman. Intention, Plans, and Practical ReasoHarvard University Press, 1987.

L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and BrrBeister. Go4flex: Goal-oriented process
modelling. InProceedings of the 4th International Symposium on InfitgDistributed Computing
(IDC 2010) Springer, 2010.

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. GBapresentation for BDI Agent Systems.
In Proc. of (ProMAS 2004)pages 44—-65. Springer, 2005.

M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A foral specification of dmars. In M. Singh,
A. Rao, and M. Wooldridge, editor®roceedings of the 4th International Workshop Intelligégents
1V, Agent Theories, Architectures, and Languages (ATALZ 1 §&ges 155-176, 1998.

K. Jander, L. Braubach, and A. Pokahr. Envsupport: A fauork for developing virtual environments.
In Seventh International Workshop From Agent Theory to Agapldmentation (AT2AI-7)Austrian
Society for Cybernetic Studies, 2010.

J. Marino and M. Rowley. Understanding SCA (Service Component Architecturjidison-Wesley
Professional, 1st edition, 2009.

Object Management Group (OM@usiness Process Modeling Notation (BPMN) Specificatiersion
1.1 edition, February 2008.

A. Pokahr and L. Braubach. The notions of applicatiomcgs and agents — new concepts for construct-
ing agent applications. In M. Schumann, L. Kolbe, M. Breitraad A. Frerichs, editord/ultikonferenz
Wirtschaftsinformatik 201(ages 159-160. Universitatsverlag Gottingen, 2010.

A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deldtiem strategy for bdi agent systems. In
T. Eymann, F. Kligl, W. Lamersdorf, M. Klusch, and M. Huhnditers, Proceedings of the 3rd German
conference on Multi-Agent System TEchnologieS (MATES)280ringer, 2005.

A. Pokahr, L. Braubach, J. Sudeikat, W. Renz, and W. Lradmf. Simulation and implementation of
logistics systems based on agent technology. In T. BlebKeKersten, and C. Gertz, editotdamburg
International Conference on Logistics (HICL'08): LogctiNetworks and Nodggages 291-308. Erich
Schmidt Verlag, 2008.

A. Rao and M. Georgeff. BDI Agents: from theory to praeti In V. Lesser, editoRroceedings of the
1st International Conference on Multi-Agent Systems (IGVA95) pages 312—-319. MIT Press, 1995.
M. Winikoff. JACK Intelligent Agents: An Industrial $¢ngth Platform. In R. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editofdulti-Agent Programming: Languages, Platforms and
Applications pages 175-193. Springer, 2005.

M. Wooldridge. An Introduction to MultiAgent Systemdohn Wiley & Sons, 2001.

