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Abstract—To live up to its promised business impact, the
emerging Internet of Things must be accompanied by new
ways to decentralize and adapt business logic for smart objects.
Smart object lifecycle management refers to the decentralized,
event-based, context-sensitive execution and adaptation of pro-
cesses by smart physical objects during their path through
different domains and their interaction with other entities.
These entities include the end-user or consumer, other objects,
or web-based information services. In this paper, we propose
an approach how events and reaction to those events can
be virtually attached to certain situations in the lifecycle of
physical smart objects. In addition, we present an smart object
lifecycle architecture for enabling multiple stakeholders to
provide the necessary event and processing information for
specific domains.

Keywords-Internet of Things, Smart Objects, Event-Driven
Architecture

I. INTRODUCTION

Research and practical approaches to establish an Internet
of Things are currently mostly data-focused, not process-
focused. An example is the proposed EPCglobal architecture
[1] where current standards exclusively emphasize data flow
between smart objects like RFID-tagged items and back-
ground infrastructures for data discovery and storage. To
increase its business impact, the Internet of Things needs to
be extended by process-oriented business logic. Especially, it
must be accompanied by new ways to decentralize and adapt
business processes and workflows for smart objects. The
management and control of distributed dynamic processes
for individual objects poses several challenges to supporting
information systems [2], [3]. This applies to an even higher
degree to processes spanning across several organizations
and different physical locations. The challenges include
flexibility in sharing object data and business logic for sup-
porting dynamic value chain processes [4]. Other challenges
concern achieving system scalability and reactivity in order
to timely handle events in the processes [3]. In this paper,
we present an infrastructure that facilitates event processing
for smart objects and aids developers in coping with these
emerging challenges.

The main contributions of this paper are: (i) to provide
an approach that allows objects to influence their processes
across different domains, (ii) the development of the Smart
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Objects Lifecycle Architecture (SOLA), including mecha-
nisms to decentralize data control as well as to accelerate
data access and (iii) testing the architecture in a global
setting.

The rest of the paper is structured as follows: First, we
present related work in the following Section II, which also
serves as an introduction to the multiple and heterogeneous
research areas important for our approach. In Section III,
we give a more detailed problem definition based on an
example, followed by an initial solution approach in Section
IV. Section V presents SOLA. In particular, we show how
to conduct smart object lifecycle management, including
the necessary global discovery, retrieval, and processing of
the corresponding data. Then, in Section VI, we present
experiment results of SOLA. In Section VII we discuss
our research and outline areas for future work. Section
VIII reviews the impact of SOLA on interorganizational IT
infrastructures and Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

Related work in the research area of this paper can be
found in four major disciplines: Business Process Manage-
ment (BPM), Complex Event Processing (CEP), IOT or
EPCglobal discovery service design, and content delivery
systems.

The discipline of BPM [5] focuses on deadline-based
escalation in process-aware information systems. In order
to handle escalations, the authors propose the so-called 3D
approach, which means Detect late processes, Decide what
to do, and Do the escalation which was decided on. In
[6], the authors apply worklets, an extensible repertoire of
self-contained sub-processes and associated selection rules.
Their work is similar to the escalation approach presented
by [5], since each task of a process instance may be linked
to an extensible repertoire of actions that can continuously
be developed, especially through experiences gained during
run-time. In [7] the authors developed the ADEPT flex
system for supporting dynamic changes of running workflow
instances while preserving their correctness and consistency.
They show that complex structural changes can be applied
to a workflow instance during its execution. So far, little
attention has been devoted to research concerning usability



aspects of managing processes involving complex events.
[8] provides a mapping from Web Service Business Process
Execution Language (WS-BPEL) statements to Business
Process Modeling Notation (BPMN) artifacts. They integrate
their mapping into the open-source modeling framework
Oryx.!. In contrast, our approach focuses on events, which
makes it harder to provide a complete integration to a
process modeling language such as BPMN.

The second discipline where related work can be found is
CEP. The usage of CEP techniques in the context of RFID
and sensor applications has been proposed by [9], [10], [11],
among others, but existing approaches incorporating CEP
are primarily designed for a specific purpose and do not
consider the integration of superordinated business processes
with event data. Especially the latter aspect also holds
for more general data stream processing architectures, e.g.,
GSN [12]. In [13], a commercial patient monitoring system
that applies above mentioned technologies is presented.
The respective company states that their product allows for
workflow automation in the healthcare domain, but only
few details are given. [14] recently proposed to extend the
Sensor Alert Service of the Sensor Web Enablement [15]
with CEP capabilities and described how this is achieved
in their SAPHE project. All projects make use of CEP
techniques in order to detect complex patterns in streams
of primitive RFID or sensor events to derive higher-level
information about perceived conditions or to trigger certain
actions. The overall lifecycle of the related objects and their
respective processes are not considered.

[16] motivated the use of software agents as building
blocks for CEP middlewares and applications while [17] is
(among others) using an agent-based middleware incorpo-
rating CEP techniques for asset management.

The recently coined term Event-Driven BPM (ED-BPM)
is the combination of the two research disciplines mentioned
before. In [18] and [19], the authors show the potential
of the combined usage of CEP and BPM in the logistics
and finance sector. [20] proposes an architecture for event
processing of RFID data in enterprise information systems
applying workflow models to extract complex event patterns.

The third research area directly relevant to our work is
the design of IOT (or EPCglobal Network [1]) discovery
services to globally locate relevant information sources for
objects, where, contrary to the EPC Information Services
(EPCIS) repositories for actual object information itself [21],
no common standards are finalized yet. Notable discovery
service designs have been created by the BRIDGE project
[22], [23], the company Afilias, and an IETF working group
on Extensible Supply chain Discovery Services (ESDS) [24],
[25]. P2P-based approaches for ONS and discovery services
have also been proposed by [26] and [27], among others. To
our knowledge, none of those proposals for discovery service
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design specifically considers cross-domain data of smart
objects, where not only historic general object information
is discovered and exchanged, but also rather future-oriented
complex event patterns and event-processing workflows can
be discovered to influence processes directly.

The fourth technological area related to our work are
content distribution networks (CDN). The solution of Aka-
mai [28] supports scalability for data retrieval as well as
reduction of network latency. Scalability is achieved trough
hosting multiple copies of the data. Reduction of network la-
tency is addressed by distributing the data to edge networks,
i.e., networks of local Internet providers. Users are directed
to the closest copy of the requested data through specialized
name servers in the DNS system.

While the design of Akamai is suitable for Web data, it
does not fit well for the IoT application domain because with
Web data, few pieces of data are relevant for a potentially
very large number of users. In contrast, RFID events result
in many pieces of data that are only relevant to a very small
group of users. In addition, Web data is relatively static.
This is fundamentally different to RFID events, which are
continuously captured throughout the supply chain. Such
dynamics also impact the required caching and redirection
mechanisms.

III. APPLICATION SCENARIO

For illustration of the real world challenges, we especially
focus on a reference example, the life cycle of fish fillet.
Figure 1 depicts the overall lifecycle using BPMN [29].
Notation artifacts colored in white represent the different
stages in the lifecycle of an fish fillet, while the artifacts
and the annotations colored in grey are part of the solution
approach presented in Section IV.

The different domains in the lifecycle of an fish fillet are:
manufacturer, logistics service provider, wholesaler distri-
bution hub, wholesaler store, and the customer. The normal
lifecycle of the fish fillet would be: load the fish fillet on
a truck and ship it to the wholesaler distribution hub. Next,
the fish fillet is unloaded and stored in a cold store. The
fish fillet is then again loaded on a truck and shipped to the
wholesaler store, where it is offered in in a cold shelf on
the shop floor. Finally, the customer buys and eats the fish
fillet.

During the lifecycle of an fish fillet, there are many situa-
tions and events that could influence the planned workflow,
e.g., a cold store breakdown or a late or missing shipment.
Ideally, a reaction to such events is immediately initiated
right on spot, by the object itself. Our solution approach to
this issue is presented in the next section.

IV. SOLUTION OUTLINE

We distinguish between escalation and exception events,
adopting the terminology from [5] who focus on the prob-
lem of escalation handling in insurance processes. While
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Figure 1.

escalation corresponds to events that are expected to happen
regularly and can be anticipated in advance, an exception can
be caused by any change of the environment, is difficult to
identify, and even more difficult to handle. In our current
research and in this paper we focus on escalation.

During the object lifecycle of a fish fillet displayed in
Figure 1, there are many escalation events, presented as
BPMN escalation event artifacts, which have to be taken
care of. These escalation events need to be identified and
reacted on, as the fish fillet needs to be treated very carefully
in order not to spoil it. We assume that the required context
information is provided through RFID readers or sensor
networks located along the way of the object. Due to space
limitations, we only focus in detail on one escalation event
within the overall object lifecycle. That is, we consider the
case where the fish fillet is shipped to the wholesaler store
(see Figure 1 ES.4).

In our approach, we identify certain escalation events in
the lifecycle of an object, e.g., if the temperature of an

Process Diagram of Fish Fillet Lifecycle

object exceeds a specified threshold, then a certain Event-
Processing Workflow (EPW) needs to be executed. The
escalation events are defined as Complex Event Patterns
(CEPA) in an Event Pattern Language (EPL) [30, pp.33]. An
example of a complex event pattern — attached as annotation
to the BPMN escalation event artifact — is depicted in
Figure 1, Escalation 4 (Es. 4). Similar to a database, this
statement is continuously evaluated upon arrival of new
sensor events, but only generates a result in case its condition
— temperature above 6°C or weight below 120 g — is fulfilled.
Once the system detects sensor events coming from the
sensor network, which correspond to (or match) the complex
event pattern statement (here ES. 4), it shall execute the
corresponding event-processing workflow (here EPW 4) —
that is to say, alert the manufacturer that a new fish fillet has
to be shipped and extract the object. The event-processing
workflows, are modeled as BPMN workflows, which are
directly executed by the middleware (processing service)
of our system; they are used to orchestrate service agents



handling the pre- and post-processing of (complex) events
(see next Section). For this purpose, the event-processing
workflows are annotated with additional information used
to specify the sequence of task execution as well as to
parameterize the tasks (see Figure 1, EPW 4).

In order to realize such kind of scenario, we developed
SOLA which is detailed in the following section.

V. SMART OBJECT LIFECYCLE ARCHITECTURE

Now, we turn the discussion to the details of SOLA. The
pyramid in Figure 2 gives an overview about all building
blocks of SOLA, i.e., software components, languages, etc.
The building blocks in italic bold letters have been developed
and implemented by ourselves, whereas those in normal
letters have been specified by standardization organizations,
such as EPCglobal. Based on the event producers in the
sensor layer, the data flow continues with the data discovery
and retrieval layer and the processing layer, finally reaching
the top in the form of an event consumer, i.e., the applica-
tion layer. Some of the building blocks have already been
introduced; the others are introduced in the next paragraphs
where an overview of the core system elements, especially
the event-processing middleware, the P2P discovery service,
and the cloud EPCIS is given.
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Figure 2. SOLA Pyramid

For the near-future IOT, we anticipate that most of the
data will be stored in distributed repositories rather than
on the object itself or on attached tags because on-tag
memory is still expensive and therefore limited. In addition,
information about objects must also be available for retrieval
or update, even if an object is temporarily not connected
to the IOT. This assumption is shared by the large industry
consortium EPCglobal that is responsible for standardizing a
global networked information architecture for smart objects.
This EPCglobal Network [1] promises to enhance global
information flow for simple as well as smart objects [31].
Parallel to general object information, we expect a high

prevalence of storing data on-network (vs. on-tag) also for
complex event patterns and event-processing workflows.

The backbone of our system architecture (cf. Figure 3)
is compliant with the EPCglobal standards [1] where RFID
tags are associated with unique Electronic Product Codes
(EPC). Information about the EPC and the corresponding
object is stored in distributed information sources on the
Internet, such as the EPC Information Service (EPCIS)
repositories, which are located by looking up their addresses
— based on the EPC as a search key — from a discovery
service. As an extension to this basic architecture, we
introduce cloud EPCIS that mirror EPCIS repositories and
reduce network delay in data access.

Similar to the EPCglobal proposal, we use the EPCIS
repositories of different domains to store the complex event
patterns and event-processing workflows for individual ob-
jects (depicted in Figure 3 step (1)). Those are defined at
an administration point (step (0)), according to the method
described in Section IV and then stored at the corresponding
EPCIS repository.

Before the middleware is able to interact with our dis-
covery service for EPCIS repositories, it initially has to be
bootstrapped and configured by registering a special event-
type filter and an initialization workflow for orchestrating the
service agents of the middleware, each of them is responsible
for processing exactly one workflow activity. The filter is
used to trigger the execution of the initialization workflow
upon every RFID-related event. The initialization workflow
itself specifies the steps for looking up the addresses of
the corresponding EPCIS repositories, and prepares the
subsequent retrieval and registration of the complex event
pattern and event-processing workflow for the individual
EPCs.

Once an RFID tag is read, the RFID reader dispatches the
EPC to the middleware. The event passes the registered filter
and thereby triggers the orchestration of the initialization
workflow of the middleware (cf. Figure 3, step 2). The
service agent is responsible for executing the first step within
this orchestration and establishes a connection to the proxy
(3), which in turn connects to the discovery service gateway
(4). The discovery service takes arbitrary object identifiers,
in our case the EPC, as well as a domain identifier as
input (see Section V-B for details) and resolves them to
a list of corresponding information sources, e.g., EPCIS
repositories and associated cloud EPCIS, where public or
domain-specific information about the object is stored. The
list is then filtered for the most suitable information sources
and returned to the middleware (see Section V-C for details).
With the help of the filtered list, the middleware connects
to the corresponding EPCIS repositories and requests the
complex event patterns and event-processing workflows for
the domain in which the object is currently located (5).

The complex event patterns and event-processing work-
flows are then registered at the complex event processing
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engine of the middleware. From that point onwards, the
sensor data and event streams are analyzed and compared
with the registered complex event patterns designed for
the current domain of an object. Once a complex event
pattern is matched, a complex event is generated and the
corresponding event-processing workflow, handling the es-
calation, is executed. Finally, in step (6), the escalation event
that occurred and the event-processing workflow that was
executed, are updated in the object history at the EPCIS
repository, enabling an information exchange among all
stakeholders, which have legitimate access to the object’s
lifecycle. In some cases, the event-processing workflow may
additionally include the creation of an Application-Level
Event (ALE), transmitted to and interpreted by a service
or an application (7). In addition, an user is also able to
view the event and process history for individual objects at
the administration point (8).

A. SOLA Agent-Based Middleware

As part of SOLA, we created an agent-based middleware
architecture for the detection and processing of complex
event patterns within streams of primitive events [32]. Such
primitive events may originate from RFID systems or wire-
less sensor networks, and usually contain raw sensor mea-
surements, such as an EPC read by an RFID reader. In order
to detect complex relationships between multiple primitive
events, possibly spanning different event streams, complex
event-processing techniques (cf. [33]) are applied. For this
purpose, our middleware incorporates a high-performance,
open source event-processing engine (Esper [30]), which
allows to define complex event patterns using an SQL-like
event-processing language (see Figure 1, Es. 4).

Moreover, our middleware allows to individually pre-
process the incoming events before they are forwarded to
the complex event-processing engine, and to post-process the
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resulting generated complex events. During pre- and post-
processing, arbitrary, user-defined actions may be carried
out. These actions are defined using annotated BPMN-based
processing workflows, which represent the orchestration of
service agents and are used for escalation handling. An
example of such post-processing is the initialization of the
middleware as described previously. A simplified event-
processing workflow, which is enacted once the complex
event pattern is fulfilled, is also depicted in Figure 1 (EPW
4) and was further discussed in Section IV.

In addition to executing arbitrary actions (e.g., inform-
ing a third party about a specific condition), the post-
processing stage may also be used to create individually
tailored application-level events, which only contain relevant
information in a desired format, by invoking conversion,
translation, and encoding services. The results can then
directly be further processed by enterprise systems, such as
supply chain management and workflow-management sys-
tems, other smart objects, or web-based services. This way,
event producers (RFID/sensor readers) and event consumers
(like enterprise systems) do not need to adapt their business
logic to the middleware’s functionality and data formats, but
may abstract from how events are generated and how actions
are carried out, benefiting from the middleware’s ability to
conduct the overall processing.

Figure 4 depicts the subscription process, the post-
processing of sensor data once a complex pattern has
been detected (for brevity, the pre-processing stage as well
as components related to security, event-logging, and the
tasking of sensors are omitted), and the generation of an
application-level event. In step (la-b) the complex event
pattern and event-processing workflows are subscribed at
the middleware. From that point onwards, incoming streams
of primitive events (2) are continuously analyzed by the
event-processing component (Esper) in order to detect the
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Figure 4. SOLA Agent-Based Middleware

registered patterns within the incoming streams of primitive
events (3).

Once a match has been detected, a complex event is gen-
erated (4) and handed over to an orchestration agent, which
subsequently executes the corresponding event-processing
workflow (5) by activating service agents capable of exe-
cuting the specified workflow tasks (6). Besides the effects
of the workflow tasks themselves (e.g., a message sent to
a third party), the result of this process may also be an
application-level event transmitted to applications (7).

Due to its flexible, agent-based design, the middleware
can easily be deployed in different scales. An industry
application may require a distributed setting in order to pro-
cess thousands of reads per minute, whereas reading events
in smart home environments only occur once in a while
and hence lightweight, localized middleware deployments
may be more appropriate. Moreover, the middleware can
easily be extended to incorporate new functionalities by
simply adding new types of service agents and referencing
them within the event-processing workflows. This way, the
middleware is (runtime) adaptable to changing conditions
once requirements, standards, or best-practices evolve in the
future.

B. SOLA Discovery Service

According to the EPCglobal architecture standards, object
information will be stored in globally distributed EPCIS
repositories [21], which themselves will be discovered by
using a DNS-based Object Naming Service (ONS) [34] and
— potentially multiple — discovery services [22]. The ONS
is responsible for class-level resolution of EPCs into EPCIS
repository addresses of the object manufacturer, whereas
discovery services will also provide serial-level resolution
of multiple information providers. We emphasize that for a
flexible, cross-domain discovery of complex event patterns
and event-processing workflows for individual objects, a
discovery service is needed. Due to the fact that currently
no EPCglobal specification or implementation of a discovery
service exists, we developed a P2P-based discovery service
(see [26]), which offers secure and robust serial-level res-
olution. This SOLA discovery service can easily function

as a lightweight discovery service for multiple information
providers per object, as will be described later, and involves
the following main ideas: Each interested company deploys
dedicated nodes, in addition or instead of ONS servers.
Those nodes form an overlay network based on a Distributed
Hash Table (DHT) [35]. A cryptographic hash function
maps EPCs and nodes to overlay IDs. This pseudorandom
mapping of identifiers to storage nodes balances load more
evenly, allows for easy replication, avoids single points of
failure, and reduces the feasibility of targeted attacks against
specific information providers or clients.

The DHT provides the routing to the responsible nodes, as
well as joining, leaving, repair, and optimization procedures,
without a central entity managing those operations. Nodes
store deterministically assigned, but from an outside per-
spective apparently random, encrypted, and digitally signed
documents belonging to EPCs mapped to certain hash value
ranges. Those documents may contain either EPCIS repos-
itory addresses or even object data. Hence, following the
data-on-network strategy, the complex event patterns and
event-processing workflows may be stored on the nodes, too,
and can directly be retrieved without additionally querying
an EPCIS repository. In our current approach, however, we
comply with the EPCglobal model [1] of using a separate
EPCIS repository, in our case a cloud infrastructure, to
retrieve the actual data.

C. SOLA Cloud EPCIS

In order to facilitate high speed access and scalability, we
developed a solution for physically distributing data from
EPCIS repositories [36]. It is inspired by content distribution
networks but tailored to event data and the IOT. Experiments
reported in [36] show the impact of application level network
delay in fetching globally distributed EPCIS data. In our
solution, we minimize network delay through physically
distributed EPCIS mirrors called cloud EPCIS. Central to
our solution are mechanism for event data distribution and
request redirection.

The mechanism for data distribution is in charge of
proactively pushing RFID events from the corresponding
EPCIS repositories (origin EPCIS) to cloud EPCIS. Each
origin EPCIS can be associated with cloud EPCIS at various
physically distributed locations. The goal is to have RFID
events available in close proximity to the origin of future
requests. The mapping between origin EPCIS and cloud
EPCIS can be optimized with different strategies. A default
strategy is to choose one cloud EPCIS per continent. How-
ever, background knowledge about the application domain
allows the user to limit cloud EPCIS to certain regions of
interest in the given value chain. The distribution mechanism
follows the observer design pattern and waits for new RFID
events at origin EPCIS. On the arrival of new events the
distribution mechanism pushes the RFID events into all
associated cloud EPCIS.



The service for request redirection directs user requests
for RFID data to the closest corresponding cloud EPCIS. It
thereby ensures that the requested RFID data are recalled
with low network delay. The redirection mechanism sets
up on our implementation of the discovery service and
the discovery service proxy. For redirection, we register all
cloud EPCIS along with the origin EPCIS in the DHT. In
addition, we store information about the location of each
cloud EPCIS. When the discovery service proxy requests
the EPCISs for a given EPC it filters the responses in
accordance to its own physical location. The client receives
a list of relevant EPCIS repositories where each repository
is represented by the closest corresponding cloud EPCIS
thereby minimizing network delay in communication with
the EPCIS repository.

VI. EXPERIMENT

In this section, a proof of concept for SOLA as well
as performance results for the individual components is
presented. The scenario described in Section III serves as
underlying application scenario.

In order to get realistic event data, an OMNet [37]
event simulation was conducted assigning EPCs with read
event timestamps. The simulation considers two interacting
partners: the manufacturer located in Asia (Singapore) and
the wholesaler distribution hub located in EU (Berlin). An
overview of the individual components is given in Table
I. As far as the individual machines are concerned, the
Amazon EC2 mirco instances had 613 MB of RAM, up to
2 EC2 Compute Units (1 EC2 Compute Unit provides the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor), and ran a Ubuntu 10.4 64 bit
operating system. The notebook had 3 GB of RAM, a Core
2 Duo 1.6 GHz CPU, and ran Ubuntu 10.4, 32 bit operating
system. The virtual machines at HU Berlin had 512 MB of
RAM, 1 virtual core (equivalent to a Xeon X5460 core with
3,166 GHz), and ran Ubuntu 10.4, 32 bit operating system.

As reference measuring point, the wholesaler distribution
hub was used where the performance of (i) the wholesaler
distribution hub middleware, (ii) the performance of the
cloud EPCIS and origin EPCIS of the manufacturer, when
queried from the wholesaler distribution hub middleware,
and (iii) the performance of the discovery service, were
measured. Figure 5 shows the system load at the online phar-
macy distribution hub, i.e., when objects are scanned by the
reader. The figure indicates that 480 events were simulated
to arrive in 550 s in batches of about 20 objects. The initial
bootstrapping procedures were excluded. Accordingly, the
results are an 550 seconds slice from a system in operation.

Figure 6 shows the performance results of the discovery
service when queried from the wholesaler distribution hub.
The median of the response time was 933 ms and the average

600

™
500 |- e
Wm
L 400 | Pl
g WW
3 i
2300 f hal
5 P
£ 200 -
M
MWW
100 F el
M
0 g 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450
EPC

[ Time of Event Occurrence ___+ |

Figure 5. Event Schedule
Table I
EXPERIMENT OVERVIEW OF 10T SERVICES
Component Location Machine
Amazon EC2

Manufacturer origin EPCIS Asia (Singapore)

micro instance

Wholesaler distribution hub

middleware EU (Berlin)

Notebook

Amazon EC2

Cloud EPCIS Europe . .
micro instance

EU (Ireland)

Discovery service node 1 EU (Berlin) VM HU-Berlin

VM HU-Berlin

Discovery service node 2 EU (Berlin)

response time was 920 ms. The fastest response took 135
ms and the slowest response 2164 ms.

As far as the performance of the wholesaler distribution
hub middleware is concerned (see also Figure 6), the median
of the processing time was 52 ms, the average 57 ms; the
longest processing step toke 383 ms and the shortest 28 ms.
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In Figure 7 the performance of the processing service
request to the cloud EPCIS in EU and to the manufacturer’s



origin EPCIS in Asia is displayed. The median response time
of the cloud EPCIS was 169 ms, the average response time
267 ms. The slowest response took 2051 ms and the fastest
95 ms. In contrast, the response time for the origin EPCIS in
Asia was on average 893 ms, the median was 848 ms. The
slowest response took 2969 ms and the fastest response 520
ms. The performance difference between the cloud EPCIS
and the origin EPCIS was 625 ms on average.
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All in all (see Figure 8), it can be stated that the average
total round trip time (discovery, retrieval, and processing)
for one EPC in SOLA was 1869 ms for the origin EPCIS
in Asia and 1245 ms for the cloud EPCIS in EU, while the
median was 1849 ms and 1196 ms, respectively. The fastest
round trip with the origin EPCIS in Asia was 736 ms; the
slowest 3486 ms. For the round trip with the cloud EPCIS
in EU, the results were 315 ms and 3812 ms, respectively.
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VII. DISCUSSION AND FUTURE WORK

The SOLA middleware has been designed for processing
massive amounts of events when deployed in a distributed
setting [32]. The main building blocks of the middleware,
the underlying agent system Jadex v2 [38], and the complex
event processing engine Esper [30], have proven to be high-
performing in our experiment.

As far as the discovery service is concerned, special
emphasis was placed on designing a robust and flexible
solution that avoids bottlenecks, can handle XML-based web
service and ONS requests on the inside, and can actually
connect to several different DHTs on the outside, if nec-
essary. We investigated latency as part of overall efficiency
for our discovery service. Experiments indicate that the P2P
discovery service will be able to provide query results with
an average latency of 920 ms.

The implementation of cloud EPCIS draws on concepts
of content delivery networks and reduces application level
network delay in globally distributed value chains [36].
The proposed approach is in line with existing EPCglobal
standards and transparent to the end user. We showed that
the usage of the cloud EPCIS leads to a performance
improvement of 625 ms on average compared to the origin
EPCIS.

In future work, we plan to extent the performance test for
domain specific scenarios and include more stakeholders.
Further, a deployment of the middleware on android mobile
phone platfrom is planned in order to include end users
in the SOLA experiments. Providing comprehensive and
decentralized security mechanisms will as well be part of
our future research.

VIII. IMPACT ON INTERORGANIZATIONAL IT
INFRASTRUCTURES

SOLA facilitates the use of smart objects in interorga-
nizational settings, where technological choices interrelate
with organizational aspects. The provided functionality and
architectural properties of SOLA open up new options for
collaboration and business models. In particular, SOLA
impacts (i) the provisioning of object related data, (ii)
the discovery of object related data sources, and (iii) the
management of object related processing logic.

Provisioning of object related data: SOLA proposes
cloud EPCIS for data provisioning. This opens up opportuni-
ties for intermediaries who offer cloud EPCIS as third party
service. Our experiments in previous work have shown that
cloud EPCIS can benefit from scale effects and statistical
multiplexing [39]. These effects enable cloud providers to
run cloud EPCIS at lower cost than supply chain participants
could do on their own. Hosting cloud EPCIS is therefore
an appealing business model that SOLA enables for cloud
providers.

Discovery of object related data sources: Discovery
of object related data sources plays a key role in the



flexible exchange of object data. EPCglobal has proposed
the ONS standard for this purpose. However, this standard
is greatly debated for its centralized design and the resulting
implications on control over this critical part of the system
[40]. The SOLA discovery service uses a P2P-based design
that is completely decentralized. It thereby mitigates the
problem of placing a key component under control of a
single player.

Management of object related processing logic: SOLA
uses an agent-based middleware and processing rules in
EPCIS to handle escalations in the object lifecycle. This
design presents a fundamental shift in managing processing
logic at the point of operation. SOLA decouples the control
over processing logic from the physical location of the object
by storing rules in the EPCIS. Its design can enable different
players in the value chain to influence the object throughout
the whole object lifecycle and enable the development and
execution of fine-grained business rules, e.g., for supply
chain escalation management.

IX. CONCLUSION

In this paper, we presented SOLA, an architecture that
enables smart object lifecycle management across different
domains and includes mechanisms for decentralizing data
control and for accelerating data access.

We believe that the presented concepts will enhance the
business impact of the emerging Internet of Things and
Services, specifically by adding process logic to the flow of
objects and data. In particular, our completely decentralized
architecture allows objects to influence the processes they
are taking part in, e.g., their own lifecycle. In addition,
our solution includes novel components and architectural
concepts that enhance different aspects of communication
in the Internet of Things. That is, we provide (i) a scalable
discovery service with a decentralized control structure, (ii)
cloud EPCIS which facilitate fast and standard conform
access to RFID data around the globe, and (iii) a middle-
ware that enables flexible adaption of object specific event-
processing rules. We strongly believe that the presented
solutions and underlying concepts can aid development of a
broad range of applications in the Internet of Things.
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