
JadexCloud - An Infrastructure for

Enterprise Cloud Applications

Lars Braubach, Alexander Pokahr, and Kai Jander

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{pokahr | braubach}@informatik.uni-hamburg.de

Abstract. Cloud computing allows business users to scale up or down
resource needs according to current demands (utility computing). Infras-
tructures for cloud computing can be distinguished with respect to the
layer they operate on. In case of platform as a service (PAAS) frameworks
are provided in order to simplify the construction of cloud applications
relying on common base abstractions and tool sets. The focus of current
PAAS frameworks is quite narrow and directed towards support for web
applications and also visual tools for non-programmers. We envision that
cloud computing can also substantially push forward typical enterprise
applications if these applications are made to exploit cloud capabilities.
In this paper we present an infrastructure for developing, deploying and
managing distributed applications with the vision of distribution trans-
parency in mind. The infrastructure is meant to be on PAAS layer but
addresses developers instead of end users. It is founded on the active
component paradigm for distributed applications, which allows applica-
tions being composed of agent-like autonomous entities interacting via
services. The model facilitates building scalable and robust enterprise ap-
plications due to the high modularity and independently acting modules
that can be replaced or restarted if unexpected errors occur. In addi-
tion to the infrastructure, a real world scenario of a distributed work�ow
management systems will be explained.

1 Introduction

Cloud computing [8] is seen as a new approach to IT infrastructure management
that facilitates a pay-as-you-go usage model. By making computational resources
available on a demand-driven basis instead of statically devoting physical systems
to certain applications, the approach minimizes wasted resources. Taking this
idea further, it seems reasonable that existing computers in a company network
should contribute their spare resources in a company private enterprise cloud.

Applications in the cloud can be built on the IAAS (infrastructure as a
service) or the PAAS layer. With IAAS, access to the cloud is granted by virtual
machines that allow a �ne-grained control of the software stack to be used,
including low-level aspects like the operating system. On the one hand the level
of access does not restrict the application types deployable on the IAAS layer
but on the other hand it does not contribute to any of the hard problems of how



to develop a complex distributed application. Using PAAS, the cloud operator
establishes a new software layer with a dedicated middleware API (application
programming interface) and in this way abstracts away lower-level details. This
facilitates development of applications on top of the given platform, but on the
other hand it �rmly restrics the types of applications to those supported by
the platform. Today, PAAS platforms are mostly targeted towards typical data-
driven web applications with an additional focus on support for non-programmer
interfaces.

Summarizing the IAAS and PAAS characteristics, an important gap can be
identi�ed for the systematical support for a wide range of enterprise applications
in the cloud. This gap is only partially �lled by existing enterprise solutions like
application servers as these have not been conceived with cloud properties in
mind and do not allow transparently exploiting additional resources of the cloud.
To achieve the vision of a versatile private enterprise cloud two fundamental
challenges remain:

� How to turn a highly dynamic environment consisting of volatile nodes into
a robust, manageable cloud infrastructure.

� How to design and implement enterprise applications such that they are able
to exploit the cloud characteristics.

These two challenges can be broken down into a number of more concrete
requirements. With regard to the �rst challenge, the cloud middleware should
require minimal installation e�ort and zero administration e�ort for the single
nodes, otherwise it would not be feasible to include the many di�erent types of
computers usually found in a company network. Furthermore, the operation of
the cloud infrastructure should not a�ect normal operation of the nodes, e.g.
it should not restrict the way, an employee uses her computer. Therefore, the
infrastructure has to deal with dynamically appearing and disappearing nodes, as
employees turn on and switch o� their computers. To support typical enterprise
applications, the cloud environment needs to support administration tasks also
for applications distributed in the cloud and therefore facilitate a transparent
management of distributed applications as a whole. Finally, the deployment of
applications should be e�cient in terms of resource utilization, which requires
monitoring the available resources and recon�guring the deployment structure
based on current application characteristics and infrastructure shape.

For addressing the second challenge, the infrastructure has to provide an in-
tuitive programming model for distributed systems, which facilitates building
applications such that they can be transparently partitioned and deployed in
the cloud infrastructure. The computing model should also support distribution
transparency in the sense of hiding complex distribution and concurrency issues.
In summary, this paper aims at developing a distributed computing infrastruc-
ture for private enterprise clouds that meets the following requirements:
1. Require minimal installation and administration e�ort for the infrastructure
2. Support independently operated nodes and dynamic environments
3. Provide an intuitive programming model for distributed applications
4. Allow transparent application administration
5. Perform dynamic recon�guration



Fig. 1. Architecture of the Mandelbrot example application

Although all of the above mentioned challenges are vital for a full-�edged
private enterprise cloud, the �rst three are su�cient for an initial solution show-
ing the basic functioning of the cloud. Hence, in this paper mainly the �rst two
questions are tackled and corresponding solutions are presented. An answer to
question three with regard to an intuitive programming model for distributed
systems has already been given as part of our earlier research work [7] and is
only shortly recapped here. The underlying idea consists in using active compo-
nents, which are software agents with features of components and services. Active
components can be seen as extension of SCA (service component architecture)
[6], which is a promising new paradigm for enterprise system development su-
perseding traditional approaches like Java EE and has been pushed forward by
in�uential industry players like IBM and Oracle.1 The last two questions have
been addressed only partially so far and are largely subject of future work.

The remainder of this paper is structured as follows. In Section 2 calculat-
ing Mandelbrot images will be introduced as a running example. Thereafter, in
Section 3 the novel architecture of an agent-inspired cloud middleware will be
presented. In Section 4 an extensive real world scenario from the area of dis-
tributed work�ow management will be described. Section 5 reviews related work
and in Section 6 a conclusion and an outlook to planned future work is given.

2 Running Example

Our approach is illustrated by a running example throughout this paper, that
provides a complete application scenario but is simple enough to be easily un-
derstood. It is called Mandelbrot and allows users to render fractal images. To
speed up the rendering process, the system should be able to distribute the
computation across di�erent hosts in a network.

The application is developed based on the active components paradigm in-
troduced in [7] and the implementation is available as part of the open source
Jadex active components framework.2 Each active component represents an in-
dependent entity, that serves as unit of concurrency. The decomposition into
components thus facilitates a later partitioning and deployment of applications
in a distributed infrastructure. The interdependencies between the active com-
ponents are made explicit by de�ning appropriate required as well as provided

1 http://www.osoa.org
2 http://jadex-agents.informatik.uni-hamburg.de/



Fig. 2. Daemon layer structure

service interfaces, representing functionality that is publicly o�ered and used by
a component. Compositions of an application are designed by specifying concrete
bindings for connecting provided and required services at runtime.

Figure 1 shows the Mandelbrot application architecture. The display compo-
nent provides interaction capabilities for a user of the system. It is responsible
for presenting rendered images to the user and allowing the user to issue new
rendering requests (e.g. by zooming into the picture or by manually entering
area values and selecting a fractal type). The generator component handles user
requests and decomposes them into smaller rendering tasks. It acts as a coor-
dinator responsible for task distribution and result collection. The calculator

component accepts rendering tasks and returns results of completed tasks to the
generator. It implements di�erent fractal algorithms and is thus able to provide
the color values for pixels of the image to be rendered. These components are
connected by respective required and provided service interfaces. E.g. the display
component uses the IGenerateService to issue rendering requests to the gener-
ator component. The explicit speci�cation of required and provided interfaces
allows the application to be dynamically con�gured and adapted to the available
resources in the infrastructure.

3 JadexCloud Architecture

Key concept of the proposed architecture is a layer model that helps separating
responsibilities and managing complexity. It is composed of three layers. The
daemon layer provides a minimal node infrastructure for basic management
of cloud resources, e.g. automatically announcing available nodes participating
in the network. On top, the platform layer supports application related man-
agement tasks including e.g. the deployment of application artifacts to di�erent
nodes as well as starting and stopping components. Finally, the application layer

facilitates the application development by providing APIs and debugging tools.

3.1 Daemon Layer

The daemon layer (cf. Fig. 2) consists of di�erent nodes on which a daemon plat-

form is running in the background. The daemon platform represents the entry
point for a node to the cloud. It has the purpose of facilitating the discovery of
the underlying node, which can only be part of the cloud when announced by the



awareness agent (awa). Depending on the type of network the cloud should span,
di�erent announcement protocols have to be used. In case of a local area net-
work, a simple TCP/IP multicast mechanism is su�cient in many cases, whereas
more complex network setups also require more elaborated announcement meth-
ods.3 Furthermore, the daemon agent (dae) provides a high-level service API for
application management from the platform layer. This API allows for starting
and stopping application platforms, on which application components (App)
can be executed. The design is meant to enforce a strict separation between
daemon and application execution in order to ensure long-lived manageability
of the node even if an application is erroneous. During application execution
the daemon can monitor the application platforms and terminate them when-
ever appropriate. The daemon platform also has access to repositories containing
software bundles. Currently the repository is based on �at �les, but the idea is
to use a chain of Maven repositories to support versioning, etc. In this context
it is distinguished between local, private and public repositories. A local reposi-
tory is located directly on the node of the daemon, whereas a private repository
is typically owned by an organization and shared by the member nodes of this
organization. Public repositories have global scope and are thus available on In-
ternet scale. The daemon uses these repositories for updating itself by regularly
testing if new versions of its library are available.

In the following the role of the daemon layer is illustrated with respect to
the running example of the Mandelbrot application. When a user wishes to de-
ploy the Mandelbrot application on, e.g., a pool of workstation computers she
has to make sure that all nodes can be discovered by the cloud infrastructure.
Therefore, the minimal daemon platform has to be installed on each node. The
platform registers itself e.g. as a unix daemon or windows service, such that it
is started each time the host operating system is started. Therefore, the dae-
mon has to be installed only once and needs no further attention afterwards.
When assuming that the daemon is already present at each of the nodes, e.g. as
part of a customized system distribution used for each pool workstation, then
no administration tasks are required in the daemon layer for the Mandelbrot
application.

3.2 Platform Layer

The purpose of the platform layer (cf. Figure 3) is to provide a management
and execution infrastructure on which applications can be deployed and admin-
istered. It can be seen that the layer reuses many of the functionalities of the
daemon layer, but introduces a di�erent view. The entry point to the manage-
ment functionality is an administration tool called JCC (Jadex Control Center)
on an administration platform. To perform administration tasks, a user would
typically start a local platform including a JCC. Yet, the choice of the admin-
istration platform is unrestricted as the JCC tool can be executed in principle
on any platform. Based on local con�guration options and user privileges, the

3 In ongoing work Internet scale announcement and discovery is analyzed by utilizing
existing peer-to-peer mechasims based on registries and superpeers.



Fig. 3. Platform layer structure

JCC provides access to a subset of the existing nodes called the cloud view. The
administrator can choose, which nodes to include in the deployment of an ap-
plication, by assigning application components to the platforms running on the
di�erent nodes. To start the separate components, each platform will obtain the
required component implementations from the local, private, or public reposi-
tory. Alternatively, e.g. when deploying a new application, the JCC can upload
component implementations to the remote platforms, which store them in their
local repository. During the runtime of an application, the JCC tool can be used
to connect to the platforms hosting the application components. Therefore, an
administrator may at any time inspect the running components as well as alter
the deployment con�guration by starting and stopping components.

The operation of the JCC is further exempli�ed by illustrating the steps
necessary to deploy the Mandelbrot application. The vision is that a user selects
an application to deploy and is presented a cloud view of currently available
nodes according to her pro�le. Based on an optional deployment description with
requirements of the application components the system generates a deployment
plan. By applying the plan the application is started creating components on the
selected nodes. This vision as also covered in challenge 4 from the introduction
is currently only partially realized. Once the JCC is started by the user, it will
discover the available nodes based on the daemon layer awareness and �lter
them according to user preferences, e.g. a speci�c IP range. Using the daemon
service, the user can start new application platforms on each node to host the
Mandelbrot components. Afterwards the user can choose, which components to
start on which nodes. For the Mandelbrot application the user would typically
start calculator components on the remote nodes with the number of components
on each node corresponding to the number of available cores.

3.3 Application Layer

The application layer is concerned with how a distributed application can be
built based on the active components paradigm as well as providing tools for
debugging and testing applications during development. The active component
metaphor (cf. Fig. 4) comprises three aspects: a public interface describing pro-
vided and required services, an internal autonomous behavior, and service bind-
ing speci�cations. Provided services describe the externally available function-



Fig. 4. Application layer structure

ality of the component, while required services explicitly state the dependencies
of a component. The active components metaphor supports an agent-oriented
view where components do not only passively carry out service requests, but
are capable of autonomous behavior. The implementation of such behavior (i.e.
business logic) is based on one of several supported internal architectures allow-
ing to build e.g. BDI (belief desire intention) agents, simple task-based agents
or BPMN (business process modeling notation) work�ows. To establish a con-
nection for service interaction, the active components runtime supports �exible
binding mechanisms, which allow statically wiring components together, dy-
namically searching for available components and even creating new required
components on demand. To enable the autonomous behavior of the component,
each service request is decoupled from the caller and put into a request queue
at the receiver side allowing a component to decide for itself when to react to
a request. The active component runtime infrastructure is complemented by a
suite of tools, included in the JCC, that support common development tasks
such as debugging components, monitoring interactions, executing test cases,
etc. These tools themselves are also realized using active components and are
thus capable of operating transparently on local and remote components. There-
fore a developer can debug remote components easily by starting the JCC on
her local computer.

The Mandelbrot design from Section 2 has been implemented using the sim-
ple task-based agent kernel. Service interfaces and implementations are realized
as plain Java �les containing only application functionality, because the infras-
tructure is capable of adding the required glue for dynamic service binding au-
tomatically. The usage of the runtime tools is illustrated in Fig. 5a, showing the
JCC while running the Mandelbrot application on three distributed nodes. The
tree to the left shows the three platforms on the nodes (alex_neu_896, work-
station1, workstation2 ) and the components on each platform. At the bottom,
it can be seen that the main Mandelbrot application including the display and
generator components is running on the local node, while each remote work-
station runs two calculator components. At the top of the JCC there are tabs
allowing to administer the remote platforms directly. To the right of the JCC,
the debugger tool is activated for a remote calculator running on workstation1.
The tool shows the current step of the agent as well as a history of previously ex-
ecuted steps and furthermore allows a stepwise component execution. In Fig. 5b



Fig. 5. Screenshot of the JCC (a) and the Mandelbrot user interface (b)

the user interface of the Mandelbrot application is shown, which illustrates the
assignment of completed and ongoing tasks to the four calculator components.

Summary The previous sections have illustrated our vision and the cur-
rent state of an infrastructure for a private cloud. The current implementation
automatically discovers nodes in local networks and supports manual remote
deployment of distributed applications based on the intuitive active components
paradigm. In this respect the infrastructure represents a signi�cant improvement
for the development and management of complex distributed applications in e.g.
company networks. Yet we regard it only as one step towards our ultimate private
cloud infrastructure vision, which has to incorporate automatic monitoring and
recon�guration abilities as well as transparent remote application management.

4 Real World Scenario

Business Process Management (BPM) is an important topic for many organi-
zations. Work�ow management systems are widely deployed to automate and
streamline business processes used within an organization. The purpose of such
systems consists of managing work�ow models, work�ow execution, assignment
and distributions of tasks (work items) and providing monitoring functionality,
which allows management and process engineers to review work�ow execution,
improve the work�ow models and intervene if there are problems [9]. Typical
work�ow management systems consist of centralized software which is deployed
on a server and accessed using a web interface. This limits the �exibility regard-
ing system con�guration and makes it vulnerable to server breakdowns.

These shortcomings have been partially remedied by a distributed work�ow
management system implementation shown in Fig. 6, which is based on the cloud
infrastructure presented in this paper. The system is partitioned into �ve compo-
nents which can be distributed and replicated across multiple platforms and act
together to provide the functionality of the system. The access component man-
ages access to the system by external clients connecting to it, providing a uni�ed
interface to invoke system functions. User authentication and authorization is
delegated to the authentication component. The access component uses dynamic



Fig. 6. Architecture of the work�ow management system

service discovery to �nd available authentication services and therefore allows
the authentication component to be replaced by an alternative at runtime.

Execution of work�ows is handled by the execution component, including
the work�ow model repository and the execution service. The model repository
uses the functionality of the platform layer to deploy work�ow models which
can then be started by the execution service. Executing work�ows emit tasks to
be performed by system users. Tasks are represented by work items, which are
processed and distributed to the users by the work item management component.

Finally, the monitoring component receives events such as work item comple-
tion, user authentications and process execution from the other system services
and stores them until accessed using the access component. Like the authentica-
tion component, this relationship is also dynamic and allows service substitution.
Moreover, all available monitoring components are noti�ed about events, allow-
ing them to only store a partial set of the events enabling distributed storage.

Two work�ow clients have been implemented which use the access compo-
nent to interact with the system. The �rst is a standard work�ow management
client with a user interface enabling a work�ow participant to process work
items, monitor the system and perform administrative tasks, provided they pos-
sess the necessary privileges. The second client is an automated client which is
used to test process models by repeated execution of test scenarios [4]. A third,
web-based client is currently being developed. All of the clients use the service
discovery of the infrastructure to �nd available work�ow management systems
and allow the user to choose any system available within the enterprise cloud.

As shown, both the work�ow management system and the available client
software make extensive use of the functionality of the infrastructure. This en-
ables them to distribute the workload across multiple nodes, dynamically replace
parts of the system and access remote functionality. Since the infrastructure man-
ages the technical details, the implementation can be relatively simple, requiring
little e�ort to enable a complex application to be distributed.

5 Related Work

The main rationale of the assessment of related approaches, stemming from grid
and cloud PAAS, consists in evaluating them with respect to the �ve challenges
from Section 1. In Fig. 7 an overview of the analyzed approaches is given.



Fig. 7. Related approaches from cloud and grid computing

The original intent of grid computing approaches is exploiting computing
power of other nodes e.g. for high performance computing. This motivation has
led to client/server approaches with load being distributed from the server to
clients. They perform the assigned tasks and send back the results to the server.

The underlying task distribution model with a rather centralized applica-
tion has inspired several grid approaches like BOINC4 and GridGain5. Other
approaches like the GlobusToolkit [3] and Proactive [1] have extended the com-
putational model from client/server to generic distributed applications. The
programming model of the approaches directly re�ects their application shape
assumptions. While GridGain and Boinc use traditional object oriented tech-
niques with tasks as primary abstraction for work distribution, Globus envi-
sions a service oriented world consisting of introspectable and transient grid
services, which will be created and terminated on demand. Proactive proposes
using a model of components and active objects resembling very much the au-
thor's active component approach [7]. Regarding installation and administration
complexity GridGain and BOINC address an easy integration of nodes o�ering
installer-based solutions, whereas Globus and Proactive assume that an infras-
tructure model is explicitly set up, describing e.g. where registries are located and
components should be deployed. The dynamics of environments is addressed by
very di�erent means. Globus uses service registries, GridGain uses dynamic node
discovery based on awareness and BOINC uses a centralized server infrastruc-
ture. Proactive is rather focused on the static infrastructure model. Dynamic
recon�guration is supported by all approaches to some extent. GridGain and
BOINC allow dynamic distribution of tasks taking into account the current grid
structure. Globus allows dynamic binding of services by registry lookups and
Proactive components can also be rebound by stopping and restarting them.

Cloud PAAS centers on e�cient execution of speci�c application types, cur-
rently dominated by web applications. Typically, cloud PAAS hides distribution

4 http://boinc.berkeley.edu/
5 http://www.gridgain.com/



and concurrency aspects from developers and enable them to deploy a standard
application in the cloud. The application can be scaled by the cloud infras-
tructure according to the customer demands. The approach is appealing but
bounded by the narrow focus of existing PAAS infrastructures. Furthermore, to-
day's applications have to follow vendor speci�c APIs for characteristics that are
subject of scaling, e.g. the storage system. This easily leads to vendor lock-ins
and problems in case scaling does not work as expected.

Google App Engine6 and Run@Cloud from CloudBees7 are two typical plat-
forms in the direction described above. The �rst facilitates development of stan-
dard web applications while the latter supports Java EE enterprise applications.
In contrast Paremus [5] is the only platform similar to JadexCloud targeted at
general distributed applications for private clouds. The underlying programming
models are object orientation in case of the Google App Engine, component ori-
entation in case of Run@Cloud, and component service orientation (SCA) in case
of Paremus. JadexCloud further advances the programming model to active com-
ponents, which rely on a structural model very similar to SCA. Installation and
administration requirements for the �rst two platforms are simpli�ed by central-
ized web access interfaces to the cloud infrastructure. Paremus and Jadex pursue
the idea of a dynamic cloud with a varying number of nodes. For this reason
both use a daemon approach, meaning that a minimal bootstrapping software
has to be installed on all nodes of the cloud. The cloud structure is rather well
known for a typical cloud PAAS like Google App Engine and CloudBees and
made fully transparent to the cloud user. Instead, Paremus and JadexCloud are
built to deal with dynamic cloud infrastructures allowing nodes to be discovered
and dynamically included or excluded to/from the cloud. Thus, the applica-
tion view is di�erent as well. The �rst two keep the standard non-distributed
application view and use internal logic for scaling, the latter two handle truly dis-
tributed applications, meaning that functionally di�erent parts of applications
run on di�erent machines. Despite the application distribution both, Paremus
and JadexCloud, aim at a high-level view on the distributed application being
able to abstract from distribution aspects. All four platforms deal with dynamic
recon�guration of applications. In the Google App Engine and CloudBees, re-
con�guration tasks are completely transparent. Paremus and JadexCloud have
to deal with more complex situations due to the possibly �ne-grained applica-
tion deployment structure. Relocations of components are di�cult to achieve in
Paremus due to its reliance on SCA. In JadexCloud, relocations can be achieved,
as active components support dynamic service bindings.

Summarizing, most grid toolkits are built for dynamic environments and al-
low for runtime grid adaptations but su�er from too simple programming models
(except Proactive) based on object orientation or services. On the contrary, cloud
PAAS infrastructures are typically built to make standard (web) applications
scalable and are narrowly focused (except Paremus). They consider applications
as being non-distributed and use established programming models like object

6 http://code.google.com/intl/de-DE/appengine/
7 http://www.cloudbees.com/run.cb



orientation and components. Approaches like Paremus and JadexCloud go be-
yond the typical cloud PAAS and facilitate building distributed systems running
in a dynamic infrastructure.

6 Summary and Outlook

This paper has argued that enterprises can bene�t from private clouds to per-
form heavy computational tasks allowing a smooth scaling according to current
demands. Such a private cloud may not only consist of dedicated servers but may
also include normal computers used for daily work. In order to run applications
in such a dynamic cloud it is necessary to a) create a robust infrastructure from
a varying set of nodes and b) use a programming model allowing applications
being assembled of independent components that are dynamically coordinated.

As a solution the JadexCloud infrastructure has been presented, consisting of
three layers. The daemon layer is responsible for managing basic cloud resources
by e.g. announcing nodes participating in the network. The platform layer is used
for application management tasks such as deployment and starting of application
components. The application layer supports application development through
APIs and tools. Using a work�ow management application example it has been
shown how a distributed cloud application can be built.

As future work mainly the remaining challenges for allowing transparent ap-
plication administration and performing dynamic recon�gurations will be tack-
led. The �rst requires a conceptual abstraction for distributed applications and
their components, possibly inspired by earlier work [2], while the latter has to
cope with collecting and evaluating non-functional node data such as perfor-
mance, utilization and uptime in order to reorganize a running application.

References

1. F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and
C. Pérez. Gcm: a grid extension to fractal for autonomous distributed components.
Annals of Telecommunications, 64((1-2)):5, 2009.

2. L. Braubach, A. Pokahr, D. Bade, K.-H. Krempels, and W. Lamersdorf. Deploy-
ment of Distributed Multi-Agent Systems. In Proc. of the 5th Int. Workshop on
Engineering Societies in the Agents World (ESAW 2004). Springer, 2005.

3. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration. Technical report,
Global Grid Forum, 2002.

4. K. Jander, L. Braubach, A. Pokahr, and W. Lamersdorf. Validation of agile work-
�ows using simulation. In Third international Workshop on LAnguages, methodolo-
gies and Development tools for multi-agent systemS (LADS010). CEUR, 2010.

5. Paremus Ltd. The paremus service fabric: A technical overview, 2009.
6. J. Marino and M. Rowley. Understanding SCA. Addison-Wesley, 2009.
7. A. Pokahr, L. Braubach, and K. Jander. Unifying agent and component concepts

- jadex active components. In Proceedings of the 8th German conference on Multi-
Agent System TEchnologieS (MATES-2010). Springer, 2010.

8. B. Sosinsky. Cloud Computing Bible. Wiley, Indiana, USA, 2011.
9. Work�ow Management Coalition (WfMC). Work�ow Reference Model, 1995.


