
1

Active Components: A Software Paradigm for
Distributed Systems

Alexander Pokahr Lars Braubach
Distributed Systems Group, University of Hamburg

{pokahr, braubach}@informatik.uni-hamburg.de

Abstract—Current trends such as the widespread use of
advanced smart phones and the introduction of multi-core proces-
sors lead to ever increasing demands for distributed applications
especially concerning concurrency and distribution. Software
agents are one metaphor for dealing with these challenges already
on a conceptual level. Despite its advantages, implementing agent-
based systems is found to be a rather complex task compared to
using more traditional object-, component-, or service-oriented
technologies and for this reason the approach has only rarely been
adopted in practice. The approach presented in this paper aims
at simplifying the development of complex distributed systems for
developers with an e.g. object-oriented background. To this end,
current software paradigms are analyzed and as a result, active
components are proposed as a metaphor that incorporates ideas
from services, components, active objects and software agents.

I. INTRODUCTION

Several different technological and social trends lead to
increasing demands of distributed systems. One apparent phe-
nomenon is the introduction of multi-core processors leading
to increased hardware concurrency. This concurrency needs to
be better exploited, otherwise the speedup of single applica-
tions will be limited. Another trend consists in the more and
more widespread usage of mobile phones and in the embed-
ding of computational devices in the environment. Therefore
applications must be able to deal with the dynamics and device
mobility. Internet services are a third interesting application
area, which requires businesses to achieve interoperability
and also to minimize downtimes of their servers. Such 24/7
availability can only be realized when non-functional software
criteria like scalability and security are solved.

Summarizing these trends, it becomes apparent that software
paradigms should offer meaningful conceptual abstractions for
concurrency, distribution, and non-functional aspects. Soft-
ware paradigms, such as (active) objects, components, agents
and services, have been developed to deal with these require-
ments. Our approach aims at combining outstanding features
of these paradigms into a sound overall conceptual framework
as an effort of making the advantages of the agent paradigm
more easily accessible in traditional (e.g. object-, or service-
oriented) system environments. This paper extends initial ideas
from [9] and presents services and component composition as
a new core concepts of our approach in Section II. Section III
discusses related work and afterwards a conclusion is given.

II. ACTIVE COMPONENTS APPROACH

The conceptual approach of active components is backed by
two assumptions regarding the construction of distributed sys-

tems. The first assumption, stemming from agent orientation,
is that modeling systems in terms of active and passive entities
mimics real world scenarios better than object and component
oriented systems, which focus on structure and behavior but
largely ignore where activity originates from [7]. Typically, the
environment is dynamic with entities appearing and vanishing
at any time. Entities may use interactions and negotiations to
distribute work or reach agreements.

The second assumption, emphasized by service orientation,
is that it is often advantageous to build systems using active
entities (such as workflows) that coordinate, select and use
publicly available services of clear-cut business functionality.
In many scenarios the usage of services is sufficient and
preferable compared to more complex interaction schemes,
because of its inherent simplicity. The environmental dynamics
may also influence the available set of services as well. Hence,
in addition to rather static services it seems natural to consider
the active entities as possible service providers.

Following these assumptions, the proposed computational
model adopts an agent oriented view with active (autonomous)
concurrently acting entities. This view is combined with a
service oriented perspective, in which basic functionality is
provided using services that are coordinated by workflows.
In the following, the structure and behavior of the active
component concept are explained and the composition of
active components is discussed. Afterwards, an infrastructure
implementation for active component development and execu-
tion is shortly introduced and important contributions of the
active component concept are summarized.

A. Structure

Definition 2.1 (Active Component): An active component is
an autonomous, managed, hierarchical software entity that ex-
poses and uses functionalities via services and whose behavior
is defined in terms of an internal architecture.

The definition is explained using Figure 1, which shows the
structure of an active component. It is similar to the definition
of a component in SCA [8] with some important differences.
In line with other component definitions, one main aspect of
an active component is the explicit definition of provided and
required services and potentially being a parent of an arbitrary
number of subcomponents. A component can be configured
from the outside using properties and configurations. While
properties are a way to set specific argument values individ-
ually, a configuration represents a named setting of argument



2

Figure 1. Active component structure

values. In this way typical parameter settings can be described
as configuration and stored as part of a component speci-
fication. In contrast to conventional component definitions,
an active component can be seen as autonomously executing
entity similar to an agent. It consists of an internal architecture
determining the way the component is executed. Thus, the
way the business logic of an autonomous component can be
described depends on the component’s internal architecture.
The internal architecture of an active component contains the
execution model for a specific component type and deter-
mines in this way the available programming concepts (e.g.
a workflow or agent programming language). The internal
architecture of an active component is similar to the concept
of an internal agent architecture but widens the spectrum of
possible architectures e.g. in direction of workflows.

As each active component acts as autonomous service
provider (and consumer) and may offer arbitrary many ser-
vices, the definition of what is a service follows.

Definition 2.2 (Active Component Service): An active com-
ponent service represents a clearly defined (business) function-
ality. It consists of a service interface and its implementation.

The definition highlights that services are meant to represent
rather coarse-grained domain functionality similar to services
in the service oriented architecture. Service definition is done
via an interface specification, which allows object-oriented
access and for searching services by interface types.

B. Behavior

In Fig. 2 the behavior model of an active component
is shown. Besides provided and required services (left and
right) it consists of an interpreter (middle) and a lower-level
interface for messages and actions (bottom). The active part
of a component is the interpreter, which has the main task
of executing actions from a step queue.As long as the queue
contains actions, the interpreter removes the first one and
executes it. Otherwise it sleeps until a new action arrives.
Action execution may lead to the insertion of new actions
to the queue whereby it is also supported that actions can
be enqeued with a delay. This facilitates the realization of
autonomous behavior because a component can announce a
future point in time at which its wants to be activated again.
In addition to internal actions that are generated from other
actions, also service requests, external actions (α) and received
messages (µ) are added to the queue.

The semantics of actions depends on the internal archi-
tecture employed but at least three interpreter independent

Figure 2. Active component behavior

categories of actions can be distinguished: business logic,
service and external actions. Business logic actions directly
realize application behavior and are thus provided by the
application developer. Service actions are used to decouple
a service request from the caller and execute them as part of
the normal behavior of the component. Finally, external actions
represent behavior that can be induced to the component by
a tightly coupled piece of software. This mechanism can be
used for executing private actions (in contrast to public actions
defined by a service interface) of a closely linked source like
e.g. the components user interface.

The figure also shows how service requests are processed
and required services can be used. Service processing follows
the basic underlying idea of allowing only asynchronous
method invocations in order to conceptually avoid technical
deadlocks. This is achieved by an invocation scheme based on
futures, which represent results of asynchronous computations
[10]. The service client accesses a method of the provided
service interface and synchronously gets back a future as result
representing a placeholder for the real result. In addition, a
service action is created for the call at the receivers side
and executed on the service’s component as soon as the
interpreter selects that action. The result of this computation is
subsequently placed in the future that the client holds and the
client is notified that the result is available via a callback. The
callback avoids the typical deadlock prone wait-by-necessity
scheme promoted by futures using operations that block the
client until a result is received. The future/callback scheme is
also used for the result (α′) of external actions.

The declaration of required services (Fig. 2, right) allows
these services being used in the implementations of (e.g.
business logic) actions. The active component execution model
assures that operations on required services are appropriately
routed to available service providers according to a corre-
sponding binding as described next.

C. Composition

The composition of active components corresponds to an-
swering the question, which matching provided service(s) of
which concrete component(s) to connect to a specific re-
quired service interface. In traditional component models, this
question is usually answered at design time (e.g. connecting
subcomponents when building composite components) or at
deployment time (e.g. installing and connecting components to
form a running system). This kind of binding is not sufficient
for many real world scenarios in which service providers come



3

Figure 3. Binding specification options

and go dynamically [6]. The dynamic nature of the active
component paradigm itself and the target area of complex
distributed systems motivate the need for being able to delay
composition decisions into the runtime.

Figure 3 shows the options available to a component de-
veloper for specifying the binding for a required service of
a component. In traditional component models, the developer
will know the concrete component to connect to (component
known) and can assume that this component is available in
the deployed system (component exists). For this case an
instance specification can be used to define how the concrete
component instance can be found at runtime. The creation
specification allows components being dynamically created
and contains all necessary information for instantiating a given
component. In case the component providing a service is not
known, a search specification allows stating how to perform a
search for the required service. A search specification primar-
ily contains a definition of the search scope (identifying a set
of components to include in the search), but might be extended
with non-functional criteria to guide service selection.

Regarding the combination of binding specifications, active
components follow a configuration by exception approach
meaning that sensible defaults are applied at all levels to
reduce specification overhead to a minimum. A minimal re-
quired service specification only includes the required service
interface. If no other information is present at runtime, this
specification represents an implicit search specification in the
default scope, including all other components of the applica-
tion. Furthermore, binding specifications can be annotated to
a component itself, thus adjusting the default binding behavior
of this component. Yet, when using this component in a com-
posite definition, further configuration options can be specified
that override default values. Therefore in a specific usage
context, a developer can replace a default search specification
for a required service to an instance specification pointing to
a sibling component inside the same composite.

To support a wide range of scenarios from completely
static to fully dynamic ad-hoc compositions, a generic binding
process is introduced that is triggered whenever a required
service dependency is accessed. The process is responsible
for extracting the explicit and implicit binding specifications
declared for the involved components and composites. The
combined binding specification is then used for locating a
suitable service provider for a required service. In this respect,
the binding process distinguishes between static and dynamic
bindings. Static bindings are resolved on first access and a
reference to the resolved service is kept for later invocations. In
contrast, dynamic bindings are reevaluated on each access. For
advanced usage the binding process can be extended to support
additional features like failure recovery and load balancing,
e.g. by triggering a re-evaluation of binding specifications in
case of component failures or excessive load.

01: componenttype = propertytype* subcomponenttype* prov_service*
req_service* configuration*;

02: propertytype = name:String [type:Class] [defaultvalue:Object];
03: subcomponenttype = name:String [filename:string];
04: prov_service = interface:Interface impl:Class;
05: req_service = interface:Interface name:String [multiple:boolean]

[dynamic:boolean] [scope:String];
06: configuration = name:String property* subcomponent*;
07: property = type:String value:Object;
08: subcomponent = type:String [name:String] [configname:String] property*;

Figure 4. Component definition

D. Specification

As already noted, the internal architectures of active com-
ponents may differ. This implicates that also the behavior
definition of components are different and depend on their
type, e.g. the behavior definition of a BPMN (business process
modeling notation) workflow is completetly different from that
of a BDI (belief desire intention) agent. In constrast, looking
from the outside on a component reveals that their interface
is the same for all kinds of component. The characterizing
aspects of a component are shown in Fig. 1 as part of the
component border, i.e. its properties, configurations, required,
provided services and subcomponents.

In Figure 4 the directly derived component specification
is listed in an EBNF inspired notation. It can be seen that
a componenttype is described using an arbitrary number of
property- and subcomponenttypes, as well as provided and
required services and configurations (line 1). Property types
are used to define strongly typed arguments for the com-
ponent that may have a predefined default value (line 2).
A subcomponent type refers to an external component type
definition using its filename and makes this type accessible
using a local name (line 3). A configuration picks up these
concepts for the definition of component instance (line 6). This
named component instance consists of an arbitrary number
of properties and subcomponents. A property represents an
argument value and refers to a defined property type. It can
override the optional default value with an alternative value
(line 7). A subcomponent instance is based on a subcomponent
type definition (line 8). It may be equipped with a name, a
configuration name, in which the subcomponent should be
started and further properties that serve as argument values.

It can further be seen that a provided service consists of
an interface as well as a service implementation that can be
represented as normal Java class (line 4). A required service
is characterized by its interface and the binding (line 5).
Furthermore, it has a component widely visible name, which
can be used to fetch a service implementation using the getRe-
quiredService(name) framework method. As it is a common
use case that several service instances of the same type are
needed the multiple declaration can be used. In this case it is
obligatory to fetch the services via getRequiredServices(name).
Service binding is performed according to the dynamic and
scope properties. Is a required service declared to be dynamic
it will not be bound at all but a fresh search is performed
on each access. The scope properties allow to constrain the
search to several different predefined and custom areas. i.e.
when scope is set to application the search will not exceed
the bounds of the application components.



4

E. Implementation

The active component approach has been implemented in
the open source Jadex infrastructure providing a platform,
responsible for basic component management and communi-
cation, and kernels, which encapsulate the internal behavior
definition of a specific active component type. Several different
internal architectures have been realized as kernels. The BDI
kernel supports the development of complex reasoning agents
[4]. Additionally, for insect-like agents, a so called micro-
kernel is provided, which provides a simple object oriented
programming style. In addition, two workflow kernels have
been developed. A BPMN kernel targets workflows modeled
in the business process modeling notation whereas a GPMN
kernel interprets the so called goal process modeling notation,
which is a unification of BDI agent and BPMN process
concepts developed in cooperation with Daimler AG [3].

F. Contributions

An active component is a natural metaphor for constructing
concurrent and distributed systems. Concretely, the active
component paradigm contributes to the challenges of building
distributed systems in the following ways:

Control of concurrency: Each active component can act
autonomously and in parallel to other components. The ex-
ecution model hides concurrency details, yet assures internal
consistency and avoids deadlocks.

Distribution transparency: Active components interact
transparently using local or remote services without a need
to know details about service locations or implementations.

Dynamic composition: Composition is based on service
interface specifications and respects environmental dynamics
by using a flexible binding approach.

In general, active components bring together agent and
service ideas and offer common conceptual abstractions for
both. Thus, the construction of applications with services
and active entities controlling the service assembly, being it
workflows or agents, is fostered.

III. RELATED WORK

Many approaches can be found in the literature that consider
combining features from the agent with the component, object
or services paradigm. In general, approaches can be classified
according to the originating paradigm and the direction in
which the paradigm is extended. E.g. the Fractal framework
[5] originates from component ideas, and extensions in the di-
rection of agents have been developed. Fractal is a component
model that provides sophisticated means for realizing hierar-
chical components distinguishing between client and server
interfaces. For parallel and distributed component execution
Fractal has been extended in the ProActive [1] project, which
aims at an integration of active object ideas. The approach
is promising, but has some limitations due to the exclusive
use of method-based interactions, making it hard to realize
application cases that e.g. require negotiation mechanisms.

From existing approaches that aim at extending agents,
WSIG [2] and WADE are extensions of the widely used JADE
agent platform [2] and lead in the direction of services.

Recently, with AmbientTalk a new programming language
for ambient intelligence has been proposed [11]. The funda-
mentals of AmbientTalk are very similar to active components
foundations as it is also based on the idea of autonomous actors
offering services. Most importantly, active components add
notions of composability to this common vision, i.e. composite
components can be built out of more basic ones.

Possible positive ramifications of combining ideas from the
different paradigms have already been mentioned in early
research works. Despite this fact, only few concrete conceptual
integration approaches have been presented so far.

IV. CONCLUSION

Put simply, active components envision a computational
model of active entities concurrently situated in a dynamic
and possibly distributed environment. The entities can act
as service providers and consumers and bring about system
functionality using services. When sophisticated interaction is
required for reaching agreements, message passing can be used
for realizing complex negotiations.

With active components a natural metaphor for concurrency
is established, as active components are capable of indepen-
dent execution. The paradigm also contributes to distribution
challenges with regard to communication flexibility. It fosters
a communication variety by incorporating message passing
as well as an object-oriented service (in remote case RMI)
access and also offers composition means. The paradigm also
contributes conceptually to non-functional characteristics by
adopting the idea of a management infrastructure similar to
component runtimes but their full exploitation is subject of
future work.

REFERENCES

[1] F. Baude, D. Caromel, and M. Morel. From distributed objects to
hierarchical grid components. In CoopIS/DOA/ODBASE, pages 1226–
1242. Springer, 2003.

[2] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
systems with JADE. John Wiley & Sons, 2007.

[3] L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister.
Go4flex: Goal-oriented process modelling. In Proc. of Symposium on
Intelligent Distributed Computing. Springer, 2010.

[4] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent
System Combining Middleware and Reasoning. In Software Agent-
Based Applications, Platforms and Development Kits, pages 143–168.
Birkhäuser, 2005.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
fractal component model and its support in java. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[6] P. Jezek, T. Bures, and P. Hnetynka. Supporting real-life applications
in hierarchical component systems. In Int. Conf. on Software Eng.
Research, Management and Applications(SERA). Springer, 2009.

[7] K.-K. Lau and Z. Wang. Software component models. IEEE Trans.
Software Eng., 33(10):709–724, 2007.

[8] J. Marino and M. Rowley. Understanding SCA (Service Component
Architecture). Addison-Wesley Professional, 1st edition, 2009.

[9] A. Pokahr, L. Braubach, and K. Jander. Unifying agent and component
concepts - jadex active components. In Proc. of MATES’10. Springer,
2010.

[10] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7):54–62, 2005.

[11] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and
W. De Meuter. Ambienttalk: Object-oriented event-driven programming
in mobile ad hoc networks. Chilean Computer Science Society, Inter-
national Conference of the, 0:3–12, 2007.


