
Addressing Challenges of Distributed
Systems using Active Components

Lars Braubach and Alexander Pokahr

Abstract The importance of distributed applications is constantly rising
due to technological trends such as the widespread usage of smart phones
and the increasing internetworking of all kinds of devices. In addition to
classical application scenarios with a rather static structure these trends push
forward dynamic settings, in which service providers may continuously vanish
and newly appear. In this paper categories of distributed applications are
identi�ed and analyzed with respect to their most important development
challenges. In order to tackle these problems already on a conceptual level
the active component paradigm is proposed, bringing together ideas from
agents, services and components using a common conceptual perspective.
It is highlighted how active components help addressing the initially posed
challenges by presenting an example of an implemented application.

1 Introduction

Technological trends like the widespread usage of smart phones and the in-
creased internetworking of all kinds of devices lead to new application areas
for distributed systems and pose new challenges for their design and im-
plementation. These challenges encompass the typical software engineering
challenges for standard applications and new aspects, summarized in this
paper as distribution, concurrency, and non-functional properties (cf. [9]).

Distribution itself requires an underlying communication mechanism based
on asynchronous message passing and in this way introduces a new poten-
tial error source due to network partitions or breakdowns of nodes. Concur-
rent computations are an inherent property of distributed systems because
each node can potentially act in parallel to all other nodes. In addition,
also on one computer true hardware concurrency is more and more available
by the advent of multi-core processors. This concurrency is needed in order

Distributed Systems and Information Systems Group, University of Hamburg
{braubach, pokahr}@informatik.uni-hamburg.de

1



2 Lars Braubach and Alexander Pokahr

to exploit the available computational resources and build e�cient solutions.
Non-functional aspects are important for the e�cient execution of distributed
applications and include aspects like scalability and robustness.

In order to tackle these challenges di�erent software or programming par-
adigms have been proposed for distributed systems. A paradigm represents
a speci�c worldview for software development and thus de�nes conceptual
entities and their interaction means. It supports developers by constraining
their design choices to the intended worldview. In this paper object, com-
ponent, service and agent orientation are discussed as they represent suc-
cessful paradigms for the construction of real world distributed applications.
Nonetheless, it is argued that none of these paradigms is able to adequately
describe all kinds of distributed systems and inherent conceptual limitations
exist. Building on experiences from these established paradigms in this paper
the active components approach is presented, which aims to create a uni-
�ed conceptual model from agent, service and component concepts and helps
modeling a greater set of distributed system categories.

The next section presents classes of distributed applications and challenges
for developing systems of these classes. Thereafter, the new active components
approach is introduced in Section 3. An example application is presented in
Section 4. Section 5 discusses related work and Section 6 concludes the paper.

2 Challenges of Distributed Applications

To investigate general advantages and limitations of existing development
paradigms for distributed systems, several di�erent classes of distributed ap-
plications and their main challenges are discussed in the following. In Fig. 1
theses application classes as well as their relationship to the already intro-
duced criteria of software engineering, concurrency, distribution and non-
functional aspects are shown. The classes are not meant to be exhaustive,
but help illustrating the diversity of scenarios and their characteristics.
Software Engineering: In the past, one primary focus of software de-

velopment was laid on single computer systems in order to deliver typical
desktop applications such as o�ce or entertainment programs. Challenges
of these applications mainly concern the functional dimension, i.e. how the
overall application requirements can be decomposed into software entities
in a way that good software engineering principles such as modular design,
extensibility, maintainability etc. are preserved.
Concurrency: In case of resource hungry applications with a need for ex-

traordinary computational power, concurrency is a promising solution path
that is also pushed forward by hardware advances like multi-core proces-
sors and graphic cards with parallel processing capabilities. Corresponding
multi-core and parallel computing application classes include games and video
manipulation tools. Challenges of concurrency mainly concern preservation
of state consistency, dead- and livelock avoidance as well as prevention of
race condition dependent behavior.



Addressing Challenges of Distributed Systems using Active Components 3

Fig. 1 Applications and paradigms for distributed systems

Distribution: Di�erent classes of naturally distributed applications exist
depending on whether data, users or computation are distributed. Example
application classes include client/server as well as peer-to-peer computing ap-
plications. Challenges of distribution are manifold. One central theme always
is distribution transparency in order to hide complexities of the underlying
dispersed system structure. Other topics are openness for future extensions
as well as interoperability that is often hindered by heterogeneous infrastruc-
ture components. In addition, today's application scenarios are getting more
and more dynamic with a �exible set of interacting components.
Non-functional Criteria: Application classes requiring especially non-

functional characteristics are e.g. centralized backend applications as well as
autonomic computing systems. The �rst category typically has to guarantee
secure, robust and scalable business operation, while the latter is concerned
with providing self-* properties like self-con�guration and self-healing. Non-
functional characteristics are particularly demanding challenges, because they
are often cross-cutting concerns a�ecting various components of a system.
Hence, they cannot be built into one central place but abilities are needed to
con�gure a system according to non-functional criteria.
Combined Challenges: Today more and more new application classes

arise that exhibit increased complexity by concerning more than one funda-
mental challenge. Coordination scenarios like disaster management or grid
computing applications like scienti�c calculations are examples for categories
related to concurrency and distribution. Cloud computing subsumes a cate-
gory of applications similar to grid computing but fostering a more centralized
approach for the user. Additionally, in cloud computing non-functional as-
pects like service level agreements and accountability play an important role.
Distributed information systems are an example class containing e.g. work-
�ow management software, concerned with distribution and non-functional
aspects. Finally, categories like ubiquitous computing are extraordinary di�-
cult to realize due to substantial connections to all three challenges.



4 Lars Braubach and Alexander Pokahr

Objects

Services

Components

Agents

Software 
Engineering

Concurrency Distribution
Non-functional 
Criteria

intuitive abstraction for 
real-world objects

reusable building blocks

entities that realize 
business activities

Challenge
Paradigm

entities that act based on 
local objectives

-

-

-

agents as autonomous 
actors, message-based 
coordination

agents perceive and 
react to a changing 
environment

service registries, 
dynamic binding

-

RMI, ORBs -

external configuration, 
management 
infrastructure

SLAs, standards (e.g. 
security)

-

Fig. 2 Contributions of paradigms

Fig. 2 highlights which challenges a paradigm conceptually supports. Ob-
ject orientation has been conceived for typical desktop applications to mimic
real world scenarios using objects (and interfaces) as primary concept and has
been supplemented with remote method invocation (RMI) to transfer the pro-
gramming model to distributed systems. Component orientation extends ob-
ject oriented ideas by introducing self-contained business entities with clear-
cut de�nitions of what they o�er and provide for increased modularity and
reusability. Furthermore, component models often allow non-functional as-
pects being con�gured from the outside of a component. The service oriented
architecture (SOA) attempts an integration of the business and technical
perspectives. Here, work�ows represent business processes and invoke ser-
vices for realizing activity behavior. In concert with SOA many web service
standards have emerged contributing to the interoperability of such systems.
In contrast, agent orientation is a paradigm that proposes agents as main
conceptual abstractions for autonomously operating entities with full con-
trol about state and execution. Using agents especially intelligent behavior
control and coordination involving multiple actors can be tackled.

Yet, none of the introduced paradigms is capable of supporting concur-
rency, distribution and non-functional aspects at once, leading to di�culties
when applications should be realized that stem from intersection categories
(cf. Fig. 1). In order to alleviate these problems already on a conceptual level
the active component paradigm is proposed in the following.

3 Active Components Paradigm

The active component paradigm brings together agents, services and compo-
nents in order to build a worldview that is able to naturally map all existing
distributed system classes to a uni�ed conceptual representation [8]. Recently,
with the service component architecture (SCA) [6] a new software engineer-
ing approach has been proposed by several major industry vendors including
IBM, Oracle and TIBCO. SCA combines in a natural way the service ori-
ented architecture (SOA) with component orientation by introducing SCA
components communicating via services. Active components build on SCA
and extend it in the direction of sofware agents. The general idea is to trans-
form passive SCA components into autonomously acting service providers and
consumers in order to better re�ect real world scenarios which are composed



Addressing Challenges of Distributed Systems using Active Components 5

Fig. 3 Active component structure

of various active stakeholders. In Fig. 3 an overview of the synthesis of SCA
and agents to active components is shown. In the following subsections the
implications of this synthesis regarding structure, behavior and composition
are explained.

3.1 Active Component Structure

In Fig. 3 (right hand side) the structure of an active component is depicted. It
yields from conceptually merging an agent with an SCA component (shown
at the left hand side). An agent is considered here as an autonomous entity
that is perceiving its environment using sensors and can in�uence it by its
e�ectors. The behavior of the agent depends on its internal reasoning capa-
bilities ranging from rather simple re�ex to intelligent goal-directed decision
procedures. The underlying reasoning mechanism of an agent is described as
an agent architecture and determines also the way an agent is programmed.
On the other side an SCA component is a passive entity that has clearly de-
�ned dependencies with its environment. Similar to other component models
these dependencies are described using required and provided services, i.e.
services that a component needs to consume from other components for its
functioning and services that it provides to others. Furthermore, the SCA
component model is hierarchical meaning that a component can be composed
of an arbitrary number of subcomponents. Connections between subcompo-
nents and a parent component are established by service relationships, i.e.
connection their required and provided service ports. Con�guration of SCA
components is done using so called properties, which allow values being pro-
vided at startup of components for prede�ned component attributes. The
synthesis of both conceptual approaches is done by keeping all of the afore-
mentioned key characteristics of agents and SCA components. On the one
hand, from an agent-oriented point of view the new SCA properties lead to
enhanced software engineering capabilities as hierarchical agent composition
and service based interactions become possible. On the other hand, from an
SCA perspective internal agent architectures enhance the way how compo-
nent functionality can be described and allow reactive as well as proactive
behavior.



6 Lars Braubach and Alexander Pokahr

3.2 Behavior

The behavior speci�cation of an active component consists of two parts: ser-
vice and component functionalities. Services consist of a service interface and
a service implementation. The service implementation contains the business
logic for realizing the semantics of the service interface speci�cation. In ad-
dition, a component may expose further reactive and proactive behavior in
terms of its internal behavior de�nition, e.g. it might want to react to speci�c
messages or pursue some individual goals.

Due to these two kinds of behavior and their possible semantic interfer-
ences the service call semantics have to be clearly de�ned. In contrast to nor-
mal SCA components or SOA services, which are purely service providers,
agents have an increased degree of autonomy and may want to postpone or
completely refuse executing a service call at a speci�c moment in time, e.g.
if other calls of higher priority have arrived or all resources are needed to
execute the internal behavior. Thus, active components have to establish a
balance between the commonly used service provider model of SCA and SOA
and the enhanced agent action model. This is achieved by assuming that in
default cases service invocations work as expected and the active component
will serve them in the same way as a normal component. If advanced rea-
soning about service calls is necessary these calls can be intercepted before
execution and the active component can trigger some internal architecture de-
pendent deliberation mechanism. For example a belief desire intention (BDI)
agent could trigger a speci�c goal to decide about the service execution.

To allow this kind service call reasoning service processing follows a com-
pletely asynchronous invocation scheme based on futures. The service client
accesses a method of the provided service interface and synchronously gets
back a future representing a placeholder for the asynchronous result. In addi-
tion, a service action is created for the call at the receivers side and executed
on the service's component as soon as the interpreter selects that action. The
result of this computation is subsequently placed in the future and the client
is noti�ed that the result is available via a callback.

In the business logic of an agent, i.e. in a service implementation or in its
internal behavior, often required services need to be invoked. The execution
model assures that operations on required services are appropriately routed
to available service providers (i.e. other active components) according to a
corresponding binding. The mechanisms for specifying and managing such
bindings are part of the active component composition as described next.



Addressing Challenges of Distributed Systems using Active Components 7

Fig. 4 Helpline system architecture

3.3 Composition

One advantage of components compared to agents is the software engineering
perspective of components with clear-cut interfaces and explicit usage depen-
dencies. In purely message-based agent systems, the supported interactions
are usually not visible to the outside and thus have to be documented sep-
arately. The active components model supports the declaration of provided
and required services and advocates using this well-de�ned interaction model
as it directly o�ers a descriptive representation of the intended software archi-
tecture. Only for complex interactions, such as �exible negotiation protocols,
which do not map well to service-based interactions, a more complicated and
error-prone message-based interaction needs to be employed.

The composition model of active components thus augments the existing
coupling techniques in agent systems (e.g. using a yellow page service or a
broker) and can make use of the explicit service de�nitions. For each required
service of a component, the developer needs to answer the question, how to
obtain a matching provided service of a possibly di�erent component. This
question can be answered at design or deployment time using a hard-wiring
of components in corresponding component or deployment descriptors. Yet,
many real world scenarios represent open systems, where service providers
enter and leave the system dynamically at runtime [4]. Therefore, the active
components approach supports besides a static wiring (called instance bind-
ing) also a creation and a search binding (cf. [8]). The search binding facilities
simpli�ed speci�cation and dynamic composition as the system will search at
runtime for components that provide a service matching the required service.
The creation binding is useful as a fallback to increase system robustness,
e.g. when some important service becomes unavailable.

4 Example Application

The usefulness of active components is shown by describing an example sys-
tem from the disaster management area, implemented using the Jadex frame-



8 Lars Braubach and Alexander Pokahr

work.1 The general idea of the helpline system, currently implemented as a
small prototype, is supporting relatives with information about missing fam-
ily members a�ected by a disaster. For information requests the helpline
system contacts available helpline providers (hosted by organizations like
hospitals or �re departments) and integrate their results for the user. The
information is collected by rescue forces using mobile devices directly at the
disaster site. The system can be classi�ed as ubiquitous computing applica-
tion and exhibits challenges from all areas identi�ed in Section 2.

The main functionality of the system is implemented in the decentral-
ized helpline provider components (cf. Fig. 4). Each component o�ers the
helpline service allowing to access information as well as adding new in-
formation about victims into a database. To improve data quality, helpline
providers perform autonomous information processing, by querying other
helpline providers and integrating information about victims. This behav-
ior is realized using the micro agent internal architecture, which includes
a scheduler for triggering agent behavior based on agent state and exter-
nal events. Simpli�ed versions of the helpline provider components are in-
stalled in PDAs used by rescue forces, which synchronize newly added data
with backend helpline providers, when a connection is available. To process
user requests, access points issue information queries to all available helpline
providers and present the collected information to the users.

The red markers in Fig. 4 highlight advantages of active components. They
provide a natural metaphor for conceptually simplifying system development
by supporting autonomous behavior and asynchronous interaction, which ef-
fectively hide details of concurrency and communication and thus reduce the
risk of errors related to race conditions or deadlocks. The composition model
allows for dynamic binding making it especially well suited for open systems
in dynamic environments. On a technical level, the distributed infrastructure
for active components provides a uni�ed runtime environment with awareness
features to discover newly available nodes that can also span mobile devices
like android phones. Moreover, active components o�er external access inter-
faces for easy integration with 3rd-party code, e.g. for integration in a web
application or desktop user interface.

5 Related Work

In the literature many approaches can be found that intend combining fea-
tures from the agent with the component, object or service paradigm. Fig. 5
classi�es integration proposals according to the paradigms involved.

In the area of agents and objects especially concurrency and distribution
has been subject of research. One example is the active object pattern, which
represents an object that conceptually runs on its own thread and provides an
asynchronous execution of method invocations by using future return values
[11]. It can thus be understood as a higher-level concept for concurrency

1 http://jadex.sourceforge.net



Addressing Challenges of Distributed Systems using Active Components 9

Fig. 5 Paradigm integration approaches

in OO systems. In addition, also language level extensions for concurrency
and distribution have been proposed. One in�uential proposal much ahead
of its time was Ei�el [7], in which as a new concept the virtual processor is
introduced for capturing execution control.

Also in the area of agents and components some combination proposals
can be found. SoSAA [2] and AgentComponents [5] try to extend agents with
component ideas. The SoSAA architecture consists of a base layer with some
standard component system and a superordinated agent layer that has con-
trol over the base layer, e.g. for performing recon�gurations. In AgentCompo-
nents, agents are slightly componenti�ed by wiring them together using slots
with prede�ned communication partners. In addition, also typical component
frameworks like Fractal have been extended in the direction of agents e.g. in
the ProActive [1] project by incorporating active object ideas.

One active area, is the combination of agents with SOA [10]. On the one
hand, conceptual and technical integration approaches of services or work-
�ows with agents have been put forward. Examples are agent-based service
invocations from agents using WSIG (cf. JADE2) and work�ow approaches
like WADE (cf. JADE) or JBees [3]. On the other hand, agents are consid-
ered useful for realizing �exible and adaptive work�ows especially by using
dynamic composition techniques based on semantic service descriptions, ne-
gotiations and planning techniques.

The discussion of related works shows that the complementary advantages
of the di�erent paradigms have led to a number of approaches that aim at
combining ideas from di�erent paradigms. Most of the approaches focus on
a technical integration that achieves interoperability between implementa-
tions of di�erent paradigms (e.g. FIPA agents and W3C web services). In
contrast, this paper presented a uni�ed conceptual model that combines the
characteristics of services, components and agents.

2 http://jade.tilab.com



10 Lars Braubach and Alexander Pokahr

6 Conclusions and Outlook

In this paper it has been argued that di�erent classes of distributed sys-
tems exist that pose challenges with respect to distribution, concurrency, and
non-functional properties for software development paradigms. Although, it
is always possible to build distributed systems using the existing software
paradigms, none of these o�ers a comprehensive worldview that �ts for all
these classes. Hence, developers are forced to choose among di�erent options
with di�erent trade-o�s and cannot follow a common guiding metaphor. From
a comparison of existing paradigms the active component approach has been
developed as an integrated worldview from component, service and agent
orientation. The active component approach has been realized in the Jadex
platform, which includes modeling and runtime tools for developing active
component applications. The usefulness of active components has been fur-
ther illustrated by an application from the disaster management domain.

As one important part of future work the enhanced support of non-
functional properties for active components will be tackled. In this respect it
will be analyzed if SCA concepts like wire properties (transactional, persis-
tent) can be reused for active components. Furthermore, currently a company
project in the area of data integration for business intelligence is set up, which
will enable an evaluation of active components in a larger real-world setting.

References

1. F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid
components. In CoopIS, pages 1226�1242. Springer, 2003.

2. M. Dragone, D. Lillis, R. Collier, and G. O'Hare. Sosaa: A framework for integrating
components & agents. In Symp. on Applied Computing. ACM Press, 2009.

3. L. Ehrler, M. Fleurke, M. Purvis, B. Tony, and R. Savarimuthu. AgentBased Work�ow
Management Systems. Inf Syst E-Bus Manage, 4(1):5�23, 2005.

4. P. Jezek, T. Bures, and P. Hnetynka. Supporting real-life applications in hierarchi-
cal component systems. In 7th ACIS Int. Conf. on Software Engineering Research,
Management and Applications (SERA 2009), pages 107�118. Springer, 2009.

5. R. Krutisch, P. Meier, and M. Wirsing. The agent component approach, combining
agents, and components. In 1st German Conf. on Multiagent System Technologies
(MATES), pages 1�12. Springer, 2003.

6. J. Marino and M. Rowley. Understanding SCA (Service Component Architecture).
Addison-Wesley Professional, 1st edition, 2009.

7. B. Meyer. Systematic concurrent object-oriented programming. Commun. ACM,
36(9):56�80, 1993.

8. A. Pokahr and L. Braubach. Active Components: A Software Paradigm for Distributed
Systems. In Proceedings of the 2011 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2011). IEEE Computer Society, 2011.

9. A. Pokahr, L. Braubach, and K. Jander. Unifying Agent and Component Concepts -
Jadex Active Components. In MATES'10. Springer, 2010.

10. M. Singh and M. Huhns. Service-Oriented Computing. Semantics, Processes, Agents.
Wiley, 2005.

11. H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue,
3(7):54�62, 2005.


