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Abstract. The paper contains an overview of the roles played by rules
and rule-based systems in distributed and multi-agent systems. These
roles include an overview of traditional and newly emerging application
areas as well as internal agent architectures and frameworks implement-
ing these architectures.

1 Introduction

This paper strives to shed light on the connections of rule based systems and
multi-agent systems. In order to give an overview about the di�erent areas rules
play an important role in, it is coarsely distinguished between application areas
of agents with rules and multi-agent system construction aspects. Interesting
application areas of rules and agents that will be discussed include rather tra-
ditional �elds like parallel and distributed rule-based systems, service oriented
architecture, grid and peer-to-peer computing as well as upcoming new trends
such as cloud computing, rule based wireless networks and complex event pro-
cessing scenarios. From a construction perspective it will be shown which role
rules play in the context of individual agent architectures and also with respect to
multi-agents systems as a whole. The former will delve into various rule inspired
agent architectures, distinguishing between reactive, deliberative and hybrid ap-
proaches while the latter will primarily deal with rules as part of communication,
negotiations and also teamwork approaches.

The rest of the paper is structured as follows. In the next Section 2.1 ap-
plication areas of rules and agents are presented. Thereafter, in Section 3 the
construction-related issues of rules in agents and multi-agent systems are dis-
cussed. A conclusion is given in Section 4.

2 Rule-Based Distributed Systems

The early relative success of rule-based expert systems employing more e�cient
rule-based inference engines, pushed forward the application of rule technologies



to distributed computing and multi-agent systems. This research direction fol-
lowed the generalization of rule inference to parallel, as well as to distributed
computational models. At least two trends can be observed here: (i) improvement
of inference algorithms for rule systems using parallel and distributed systems'
technology; (ii) exploiting the more declarative nature of rule-based languages
as compared to the procedural languages, for the development of more complex
systems composed of autonomous components known as software agents.

2.1 Parallel Rule-based Systems

Parallel Forward Chaining Production Systems Advances of computa-
tional models for rule-based production systems, mainly related to the devel-
opment of the RETE algorithm [39] and its extensions for e�cient matching of
rule patterns and working memory elements [2], but also addressing concurrent
processing and activation of rules in production systems, opened a vivid research
path, starting in the second half of the '80s and lasting also during the '90s. The
main outcome of these researches was the development of powerful implementa-
tion technologies for rule-based systems. Note that most of these works use the
terms production and production system as synonymous to rule and rule-based
system, so these terms will be interchangeably used in this paper.

Authors of [46] proposed a new parallel architecture for exploiting �ne-
grained parallelism of forward chaining inference algorithms for rule-based pro-
duction systems on multiprocessor systems. The main outcome of this work was
the signi�cant improvement of the execution speed of a rule-based production
system expressed as number of rule �rings/second, as well as working memory
element changes/second. Their approach targeted all the phases of the forward
chaining inference cycle: matching, con�ict resolution and right hand side rule
evaluation.

Authors of [53], [54] propose an in-depth analysis of concurrent computa-
tional approaches for improving the performance of single and multiple rule
systems. The authors start with some considerations regarding the performance
of rule-based systems. The book covers: (i) parallel production systems includ-
ing algorithms for parallel rule �rings, (ii) distributed production systems under
distributed control, and multiagent production systems as well as their related
control issues.

Authors of [5] proposed a parallel and distributed version of the RETE al-
gorithm that uses the master-slave paradigm. The pattern matching system is
decomposed into master and slave modules, working in parallel. Each component
holds a copy of the RETE network. Rules are activated in parallel by master
components. When a rule is activated, it sends all the activating facts to an
available slave component that performs the activation and returns the results.
Therefore rules can be activated in parallel, while computation of the activations
is distributed among the slave components.

Note that parallel �ring of multiple rules for improving the execution perfor-
mance of forward chaining production systems can compromise the consistency



or the working memory by possible interference of rules' actions and conditions.
Solutions to this problem are outlined in [53] and later in [75].

Authors of [3] introduced an architecture that allows parallel production
�ring by allowing the concurrent execution of the activities of matching, selecting
and acting of productions. The architecture is proved correct with respect to
the principle of serialization that relaxes the commutativity principle that was
proposed by [53].

Parallel Backward Chaining Rule-Based Systems E�cient processing in
rule-based systems was also addressed for top down inference engines. An early
work is [48] that introduced Backpac, a backward-chained inferencing system
designed to run on parallel processor machines. More signi�cant achievements in
this area are however related to the development of parallelized versions of the
well-known logic programming language Prolog that traditionally uses backward
chaining as implementation technology. See [47] for an overview of techniques
for parallelizing Prolog programs.

Parallel Deductive Databases Rules played an important role in the devel-
opment of new databases models, including deductive and active databases [93].
Deductive databases are a suitable model for building large knowledge bases by
exploiting both database and knowledge technologies. For example, chapter 6 of
[93] contains an overview of parallel processing of rules in production systems,
deductive and active databases, while chapter 7 introduces the authors' parallel
object-oriented knowledge-based system called PRACTICKB .

Techniques for data and rule partitioning for parallelizing deductive databases
are also reported in [94] and [98]. More important, these results were later on
exploited for implementing large scale rule reasoning on computer clusters (see
Subsection 2.4).

Distributed Jess Our literature review also revealed e�orts for distributing
classical state-of-the-art rule based systems shells, including Jess4 [43].

In paper [27] the authors introduce a model for distributing rule-based in-
ference systems called Web of Inference Systems (WoIS). Each member of WoIS
is composed of an inference system (IS) and a rule base, while all ISs operate
on a single Shared Working Memory (SWM). WoIS is controlled by a dedicated
component called manager (M). Each IS holds a copy of a part of the SWM in
its local working memory, while all ISs run independently in parallel. This model
was utilized to implement a distributed version of Jess called DJess. Synchro-
nization between interfering rules is achieved by means of shadow facts and ghost
facts. A shadow fact is a Jess fact linked to a Java bean object. Each shared
fact is implemented as a shadow fact, and thus an associated Java bean object
is created. All the proxies corresponding to the same shared fact are linked to-
gether by means of a Java remote object called ghost fact. Access of the ISs to

4 http://www.jessrules.com/



the ghost facts are synchronized by acquiring locks during the transition from
the con�ict resolution stage to the act stage of an inference cycle.

A di�erent approach for distributing Jess called Octopus was reported in
the paper [76]. With the Octopus approach several independent Jess engines
are interconnected in a star topology as clients of a central server. The server
allows them to asynchronously exchange messages using Jess functions for socket
communications. The Octopus approach was experimented on a computer cluster
running Condor workload management system [90].

2.2 Rule-Based Systems as Agent Reasoning Models

Early works proposed the use of rule-based systems as the basic reasoning model
of agents that are part of a multi-agent system. Using this approach, each agent
of the system incorporates a rule engine and therefore, its behavior is reduced to
performing rule based inference. Agent coordination can be achieved either via
a shared working memory or by asynchronous message passing.

Multi-Agent Production Systems In paper [37] it is described a multi-agent
system called MAGSY where each agent is a rule-based system. Agents are able
to communicate asynchronously, as well as they are able to provide services to
other agents. MAGSY is in fact a general-purpose multi-agent framework. It has
been applied in practice for distributing solving of transportation and logistics
problems. Each MAGSY agent is a triple comprising facts, rules, and services.
The agent can receive messages from other agents that trigger the update of their
facts. An agent can also invoke services provided by other agents. As a side-e�ect,
service execution can change the agent's sets of facts and rules. Each MAGSY
agent performs rule-based inference using a forward-chaining rule-interpreter
based on the well-known RETE algorithm [39].

Author of [53] and [54] consider multi-agent production systems, that are
conceptually di�erent from parallel and distributed production systems. While
parallel production systems emphasize parallel rule matching and �ring and
distributed production systems emphasize dynamic distribution of productions
among the agents of an organization with the goal of execution performance
improvement (the response time), multi-agent production systems concern the
integration of multiple independent production systems acting on a shared work-
ing memory that is useful for their coordination.

Multi-Agent Jess Integration of Jess engine into JADE agents [9] is discussed
in [29]. This paper is in fact a tutorial showing how a JADE agent can incorpo-
rate a Jess engine with the following functionalities: (i) allowing Jess to capture
messages received by the agent as Jess facts; (ii) allowing the agent to send mes-
sages to other agents directly from Jess; (iii) implementing the agent behavior as
Jess inference. Using this approach it is possible to implement rule-based agents
in Jess that interact by exchanging FIPA ACL messages using the JADE middle-
ware (see also rule interaction agents, an example of reactive agent architectures
discussed in subsection 3.1).



2.3 Rules for Service Oriented Architecture

2.4 Rule-based Grid/Cloud/High-Performance Computing Systems

A recent research trend can be observed in investigating synergies between high-
performance computing and rule-based systems and reasoning. On one hand,
the higher expressivity of rule-based languages determines an increase of the
computational complexity of the inference algorithms, thus limiting the potential
of rule-based systems in applications that require large scale reasoning, as it is
for example the Semantic Web [10]. On the other hand, the higher expressivity
of rule-based languages can help to improve resource and job management in
high-performance computing systems, and thus have the potential for improving
the overall performance of these systems. Both trends are brie�y reviewed in this
section of the paper.

Scalable Rule Reasoning Availability of high-performance computing opened
new possibilities for scalable rule reasoning in distributed systems. High-performance
computing systems include supercomputers, computer clusters, as well as Grid
and more recently Cloud computing infrastructures.

Paper [88] is probably the �rst reporting the exploitation of the results earlier
obtained in parallelizing of deductive databases [94,98] as well as the availability
of clusters for parallel computing to investigate the improvement of the reasoning
performance for the Semantic Web. The authors of [88] proposed a data parti-
tioning scheme, a parallel algorithm, as well as several optimizations for scalable
parallel inference with materialized OWL knowledge bases. The implementation
of the algorithm was based on the Jena5 open source rule-based reasoner and it
was experimented on a 16 node computer cluster.

Paper [70] describes MARVIN � a parallel and distributed platform for pro-
cessing large amounts of RDF data, on a network of loosely coupled peers using
a new strategy called divide-conquer-swap. The idea of this approach is to con-
tinuously partition the set of RDF triples, compute the closure of each partition
in parallel and then swap partitions by exchanges between peers. This technique
is shown to eventually reach completeness of reasoning and an e�cient strategy
called SpeedDate for exchanging data between peers is proposed.

Map-Reduce is a technique for programming large data processing tasks on
large computer clusters [33]. Hadoop6 is an Apache project that �develops open-
source software for reliable, scalable, distributed computing� and that also pro-
vides a Map-Reduce programming framework. [92] shows how to apply MapRe-
duce on Hadoop for large-scale RDFS reasoning. This work is closely related
to: (i) the Large Knowledge Collider (LarKC) project7 [49] for reasoning with
billions of facts and rules that are distributed across di�erent locations, as well

5 http://jena.sourceforge.net/
6 http://hadoop.apache.org/
7 http://www.larkc.eu/



as to (ii) WebPIE8 [91] � a parallel reasoner based on Map-Reduce which aims
at reasoning on the scale of the Web.

Rule-based Work�ow and Resource Management for Grid and Cloud
Computing Grid and Cloud are modern forms of distributed computing that
put a high emphasis on virtualization and software services technologies. Grid is a
�coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations� [40]. Cloud allows provisioning and utilization of comput-
ing power with minimal management e�ort and minimal knowledge of the in-
frastructure supporting it. This section brie�y presents the role that rules and
rule reasoning can play to improve resource and work�ow management in the
Grid. Most of these results apply also to Cloud computing environments.

Paper [85] introduces a new mechanism for on-demand synthesis of available
activities in the Grid by applying ontology rules. Rule-based synthesis combines
multiple primitive activities to form new compound activities.

Paper [50] introduces WS-CAM � a rule-based application for collaborative
awareness management in grid environments. The idea of this work is to repre-
sent complex requirements imposed on Grid environments, either behavioral or
functional, as business rules implemented using Drools9.

Paper [66] presents the Active Grid Information Server providing versatile
resource management in grid environments, including resource discovery and
selection. The server is using an Event-Condition-Action rule-based system that
supports dynamically adjustable schedulers.

A recent trend is the representation of grid scheduling algorithms using rule-
based formalisms ([71]). Paper [44] proposes a new rule-based languages called
SiLK (Simple Language for worK�ows) that provides a rule-chaining represen-
tation of scienti�c work�ows. SiLK rule-based work�ows can be executed and
monitored using OSyRIS (Orchestration System using a Rule based Inference
Solution) inference engine, as well as with its distributed version D-OSyRIS.
The implementation of OSyRIS is based on Drools. SiLK allowed the rule-based
representation of several well-known grid scheduling heuristics.

Flexibility of grid resource management can be enhanced by endowing the
Grid with semantic descriptions of resources covering the various software and
hardware characteristics, as well as their utilization policies. Grid schedulers can
thus bene�t of these representations by enhancing monitoring and discovery sys-
tems with semantic matchmaking capabilities. Performance of resource discovery
can be further improved by exploitation of rule-based systems. For an overview
of ontology-based semantic approaches for grid resource management the reader
is invited to consult reference [4].

Finally, rule-based approaches were shown to be useful for implementing
�exible control strategies and decisions that allow the Grid to achieve Quality
of Service commitments required by various applications using a Service Level
Agreement (SLA) management system. For example, the authors of the paper

8 http://www.few.vu.nl/~jui200/webpie.html
9 http://www.jboss.org/drools



[72] propose predictive decision rules for adaptive SLA management on the Grid.
In [74] a declarative Rule Based Service Level Agreement (RBSLA) framework
is described.

2.5 Rule-based P2P Systems

Peer-to-peer (P2P) is a model of distributed systems in which distributed, equally
weighted and directly connected peers collaborate by providing resources and
services to each other. P2P systems have important applications in distributed
processing, distributed content management, and ubiquitous computing. The
combination of the decentralization of P2P approach with the declarativeness
and �exibility of rules enables the development of new types of intelligent dis-
tributed systems. Applications are presented in the domains of heterogenous
schema mapping and ubiquitous computing.

Heterogenous Schema Mapping Paper [34] introduces a method for using in-
ference engines to express and process semantics of digital library resources in
heterogenous environments. The approach is applied to de�ne metadata map-
pings between heterogenous schemas in P2P-based digital libraries. The map-
pings are de�ned by extracting facts from the XML metadata of resources and
then by applying rule-based inference to automatically derive relations between
local schemas and other retrieved schemas.

Paper [63] introduces LogicPeer, a P2P extension of Prolog. LogicPeer is a
straightforward extension of Prolog with operators that enable goal evaluation
over peers in a P2P system. LogicPeer de�nes two network models: (i) opaque
peer network model in which each peer does not know the identi�ers of its neigh-
bors and a certain query propagation protocol is assumed, and (ii) transparent
peer network model in which is possible for each peer to obtain the identi�ers of
its neighbors and thus it allows implementation of customized query propagation
protocols. Paper [22] discusses an application of LogicPeer for specifying schema
mappings and agents' actions in XML-based data integration tasks.

Ubiquitous Computing Paper [45] presents the use of Mandarax10 and Sens-ation
sensor platform for creating the new SensBution infrastructure for ubiquitous
computing. SensBution abstracts the access to sensor data using rule-base infer-
ence, while the underlying P2P network propagates queries between peers. Each
peer incorporates a rule base and uses it and rule inference to answer the queries
received from the other peer via JXTA11 network programming environment.

Papers [12] and [11] propose a distributed reasoning solution that could be
used in ambient environments modeled as P2P networks of agent. Each agent has
a partial view of the environment and it holds a locally consistent theory. Local
theories are connected via bridging rules, which may result in inconsistency of the
global knowledge base. Dealing with the inconsistency is achieved by representing
bridging rules with defeasible logics.

10 http://mandarax.sourceforge.net/
11 http://jxta.kenai.com/



Paper [14] introduces the concept of Intelligent Domotic Environment (IDE)
that is capable of providing Ambient Intelligence (AmI) to home environments
through rule-based reasoning. Firstly, IDE proposes a formalization of the home
environment as DogOnt ontology [13]. Secondly, IDE proposes a new middleware
called Domotic OSGi Gateway (DOG) based on OSGi12 that supports interop-
erability of hardware and software components of the home automation system.
Thirdly, IDE properties are de�ned from the perspectives of what information
is necessary (state and structural), as well as of the type of inference required
(direct, recursive and multi-stage) for their derivation.

2.6 Rule-based Event Processing Agent Systems

(Complex) Event processing (CEP) is a set of techniques and technologies that
helps to understand and control event-driven systems. CEP has emerged as a
substantial new �eld of software engineering and computer science over the last
ten years from various research �elds addressing event processing. In general,
CEP aims at achieving actionable, situational knowledge from distributed sys-
tems in real-time or quasi-real-time. CEP tools detect complex event patterns
(a.k.a. complex event types) and situations (complex events + conditional con-
texts), i.e. detecting transitions in the universe of interest that requires action
either "reactive" or "proactive" in realtime. It is now one of the fastest grow-
ing segments in enterprise middleware software. The decoupled event process-
ing model in distributed event processing systems and in particular intelligent
complex event processing systems which exploit rules for processing event mes-
sages and making decisions on detected relevant situations can be implemented
as event processing networks (EPNs) with distributed event processing agents
(EPAs). The Event Processing Technical Society (EPTS) de�nes an Event pro-
cessing agent (EPA) (event processing component, event mediator) as a software
module that processes events.

Various agent-oriented event processing systems have been developed such
as Starview13, Amit [1], AgentLogic RulePoint 14, Spade [65] and Prova 15.

Amit The core the Amit (Active Middleware Technology) framework is the IBM
Situation Manager Rule Language (SMRL) [1] which is a markup language for
describing situations, which are semantic concepts in the customers domain of
discourse and syntactically equivalent to (complex) event patterns. Events in
SMRL have a �at structure, and have a unique name and attributes that can be
standard or user de�ned. The conceptual model de�nes an event type general-
ization hierarchy. Amit rule engines are deployed as event processing agents in
the active middleware.

12 http://www.osgi.org
13 http://www.starviewtechnology.com
14 http://www.agentlogic.com/
15 http://prova.ws/



RulePoint RulePoint is a server based Event Processing platform based on a
reactive agent model. It supports detecting events and is able to responde in re-
active manner using event action rule de�nitions. The agents act as (distributed)
realtime alerting systems.

Prova see 3.2

System-S Spade System-S Stream Processing Application Declarative Engine
(SPADE) [65]. System S is a large-scale, distributed data stream processing
middleware developed at the IBM T. J. Watson Research Center. Its runtime can
execute a large number of long-running jobs (queries) that take the form of Data-
Flow Graphs. A data-�ow graph consists of a set of Processing Elements (PEs)
connected by streams, where each stream carries a series of Stream Data Objects
(SDOs). The PEs implement data stream analytics and are basic execution units
that are distributed over the compute event processing agent nodes. The PEs
communicate with each other via their input and output ports, connected by
streams.

Starview Remote Agents Starview Remote Agents are based on built-in CEP
engines for real-time event processing. The agents can collaborate and cooperate
across multiple streams of data by exchanging event messages. The agent follow
the "actors" approach where event-processing agents listen for incoming events,
and can take action according to predetermined rules.

3 Roles of Rules in Multi-Agent Systems

In this section di�erent roles of rules in agent systems will be presented. This
will be done on the micro as well as on the macro layer. The �rst refers to the
meaning of roles for internal agent behavior control, whereas the latter considers
rules with multiple agents especially in the context of rule-based interactions.

3.1 Rules on the Micro Layer

The role of rules within agents depends crucially on the internal agent architec-
ture employed. According to Wooldridge and Jennings [96, p. 23-24] an agent
architecture is de�ned as follows: �[. . . ] It speci�es how [. . . ] the agent can be
decomposed into the construction of a set of component modules and how these
modules should be made to interact. The total set of modules and their interac-
tions has to provide an answer to the question of how the sensor data and the
current internal state of the agent determine the actions [. . . ] and future internal
state of the agent. [. . . ]�. The de�nition highlights the architecture's responsibil-
ity of deducing agent actions and future state on basis of environmental percepts
and its current knowledge. One main di�culty of agent architectures is that reac-
tive and deliberative behavior have to be balanced so that an agent is capable of
realtime responses to environmental changes as well as planned actions leading



Fig. 1. Agent architecture classi�cation (based on [96])

to achievement of its goals. Reactive capabilities require fast decisions whereas
deliberative behavior typically needs time to be thoroughly prepared taking into
account possible alternatives and occurring di�culties. The question of how re-
active and deliberative behavior should be intertwined is further complicated
by the fact that an agent is a resource bounded entity meaning that it has to
intentionally devote capabilities to the reactive or deliberative decision making
processes. Hence, these limitations led to the development of architectures that
disregard one in favor of the other.

These considerations also led to a classi�cation scheme of agent architectures
according to the nature of their decision making processes [96]. The class of reac-
tive agent architectures emphasizes fast decision making based on sensory input,
whereas deliberative architectures put the focus on planned actions. Hybrid archi-
tectures are those that try to combine reactive and deliberative aspects. Figure
1 shows these categorization classes alongside with several agent architectures.
The classi�cation scheme is considered here as a spectrum with reactive and
deliberative architectures as boundaries and hybrid in the middle. At the left
hand side of this spectrum so called purely reactive architectures are located,
which represent the event action architectures without a model of the world. On
the right hand side the spectrum is bordered by purely deliberative approaches
that act purely based on cognitive action often based on planning. The spectrum
helps understanding the applicability of di�erent architectures. The idea is not
considering one architecture as generally superior to another but understanding
the application requirements and matching them to the architecture, i.e. if fast
responses are indispensable for an application to function an agent architecture
should be located in the reactive or hybrid zone. It has further to be noted that
the boundaries between the three categories are rather fuzzy and not all archi-
tectures can be clearly assigned to one of the categories. In the following rules
are discussed with respect to their role in each of the aforementioned internal
agent architecture categories.



Reactive Agent Architectures In a purely reactive rule based agent archi-
tecture an agent possesses only reaction rules allowing it to deduce actions from
incoming messages or environmental percepts. In the simplest form it can be
imagined that the agent behavior completely consists of if-then-else statements
containing guards and actions. Its processing would be triggered whenever it
receives new input from other agents or the environment. As for nearly all kinds
of non-trivial scenarios internal state of an agent is required - otherwise it will
repeat wrong behavior over and over again because it cannot remember older
outcomes - practical architectures have included mechanisms for autonomous
behavior control based on internal state. Though, in contrast to deliberative ar-
chitectures internal agent state might be kept simple and may not represent a
thorough model of the environment. The inclusion of state led to many archi-
tectures existing on the boundary between the reactive and hybrid zone and the
di�erences between those and some weakly hybrid architectures are small.

Examples of rather reactive agent architectures include Brook's subsump-
tion architecture [21], task model based architectures [19], as well as several rule
based agent architectures (cf. Fig. 1). The subsumption architecture is the proto-
typical representative for reactive agent architecture and Brooks always insisted
on avoiding an internal representation of the world. Despite this fact, even in the
subsumption architecture an internal state is preserved in the state machines so
that variable values can be saved. Another rather simple but intuitive architec-
ture is the task model, which assumes an agent can be supplied with di�erent
behavior snippets called tasks. It has gained some practical attention due to its
simplicity and popular agent frameworks such as JADE [8] o�ering this kind of
agent programming abstractions. Both do not rely on rules and thus will not be
covered here in more details.

With respect to approaches having relationships to rules teleo-reactive sys-
tems [69], situated automata [56] and the rule interaction agent architecture [56]
and the rule interaction agent architecture [30] will be discussed.

Teleo-Reactive Agents Nilsson has conceived a reactive agent architecture and
programming language with reactive characteristics called teleo-reactive [69]. In
order to achieve instantaneous reactions to environmental changes circuit seman-
tics is introduced, i.e. agent actions are not assumed to be executed atomically
but need constant conditional support. The architecture assumes that a teleo-
reactive agent is constructed from teleo-reactive behaviors, which consist of a
set of conditionally guarded atomic actions or subbehaviors. In case the behav-
ior is active all branches of actions are evaluated in parallel. The �rst branch
with a ful�lled condition is then executed until the condition becomes invalid.
As subbehaviors can be used as actions, hierarchical execution structures named
teleo-reactive trees can emerge at runtime. The architecture shares interesting
similarities with production rule systems with some important di�erences. The
guarded actions of a teleo-reactive program could be interpreted as a set of pro-
duction rules that are evaluated in order to determine the current execution
path. The �rst di�erence is that production rule systems are typically �at in
the sense that all rules are on the same level. In contrast, teleo-reactive pro-



grams are hierarchical having earlier layers ful�lling conditions for the execution
of deeper layers. Furthermore, production rule systems assume atomic action
execution, whereas teleo-reactive actions are executed continuously as long as
its guarding condition holds. Agent platforms supporting teleo-reactive agents
are AgentMT(TR) [58] and AgentFactory16 [31].

Situated Automata The situated automaton architecture [56] considers an agent
as a �nite-state machine whose inputs are fed by environmental sensors and
whose outputs are directly connected to its actuators. Considering the agent as
�nite-state machine expressed as a �xed sequential circuit allows for a e�cient
execution and thus facilitates reactive responses in dynamic environments. The
behavior of a an agent is described using goal reduction rules, which help in
mapping higher-level goals into more concrete goals. A compiler is then used to
transform the goal rules and top-level goal speci�cation into a simple circuit that
is able to map input vectors to output vectors according to the goal rules. This
means that symbol manipulation for solving a goal is used only at compile time
while at runtime the agent simply behaves according to the generated circuit
semantics. To the knowledge of the authors there are no cuurent platforms using
the situated automata agent architecture.

Rule Interaction Agents The rule interaction architecture is based on the idea of
combining FIPA speech act communication semantics[41,42] with rule oriented
behavior descriptions. In general, the agent architecture consists of a rule engine
that contains domain behavior rules as well as speci�c prede�ned interaction
transformation rules. Whenever an agent receives a message with FIPA-SL con-
tent it will automatically execute rules that perform a knowledge representation
conversion from FIPA-SL to CLIPS assuming speci�c semantics of SL speech
acts, i.e. in case of an 'inform' the receiver will store the new information in
its knowledge base, whereas a 'request' performative act directly leads to action
execution. For outgoing message the architecture provides a conversion in the
opposite direction. The architecture has been realized based for the JESS and
Jamocha Rete rule engines [30].

Deliberative Agent Architectures A deliberative agent architecture in its
purist sense only consists of a thinking process driving the decisions of the agent.
The underlying assumption of deliberative agents is the physical symbol system
hypothesis of Newell and Simon [86, p. 35] that states: �A physical symbol system
has the necessary and su�cient means for general intelligent action.� This strong
claim assumes that human thinking is e�ectively based on symbol manipulation
so that machines applying symbol manipulation can act intelligently. Hence, in
contrast to a reactive agents the internal representation of the world combined
with its processing capabilities enables deliberative agents anticipating incidents
and adapt itself accordingly [36]. Typically, an deliberative agent is equipped
with achievement goals that describe desired world states and applies problem

16 http://www.agentfactory.com/index.php/Main_Page



solving methods to �nd a sequence of actions that form a path from its current
state to the desired state. Deliberative architectures in many cases use planning,
search or rule techniques or a combination of those in order to realize this kind of
problem solving. The advanced cognitive capabilities of deliberative agents are
often also re�ected in additional architecture skills like learning or knowledge
deduction.

IRMA (Intelligent Resource-bounded Machine Architecture) [18], MicroPSI
[6] PRODIGY [28] and ICARUS [59] represent internal agent architectures with
a focus on deliberative processing tasks. IRMA is an architecture, developed
by Pollack and Bratman, that tried to directly adopt Bratman's BDI (belief-
desire-intention) model of practical reasoning for agent decision making. It uses
the aforementioned attitudes belief, desires and intentions and mainly relies on
planning techniques to re�ne partial plans and deduce agent actions. MicroPSI
is based on Dörner's PSI (personality-systems-interactions) theory and includes
aspects like perception, thinking, emotions, motivation and memory. MicroPSI
realizes the PSI theory by relying on a neural network inspired approach. In
contrast to these architectures Prodigy and ICARUS, which have been imple-
mented as agent systems, employ some rule based ideas and will be presented in
more detail in the following.

PRODIGY The PRODIGY architecture [28] is based on a general problem
solver and planner that searches for operator sequences bringing about a set
of achievement goals as described in an initial state de�nition. The search pro-
cess is guided by control rules that can be domain dependent or independent.
Furthermore, PRODIGY enables di�erent kinds of learning mechanisms for con-
trol rules. Problem solving in PRODIGY is a two-staged process operating on
a tree of nodes, each node representing a world state and the goal set that is to
pursue. In the decision phase four kinds of decisions can be controlled via rules:
1) determination of the node to expand, 2) selection of the goal to satisfy, 3)
selection of an operator to try, and 4) binding of parameter values of the opera-
tor. Thereafter, in the expansion phase the operator is applied and a new node
is created for the derived state. In case the operator cannot be executed due
to unsatis�ed preconditions, a new subgoals for establishing the preconditions
are created and also a new node for processing them is created. Control rules in
PRODIGY have a speci�c form. They consist of a left-hand side condition for
testing applicability and a right-hand side with an action that can be 'select',
'reject' or 'prefer'. In the �rst step selection rules are �red to determine the valid
set of candidates (node, goal, operator or bindings). If no selection rules trigger
all candidates are included. In the next step rejection rules are executed in order
to exclude unwanted candidates. Finally, in the last step preference rules are
used to order the remaining elements and �nd the most promising candidates.
In case backtracking has to be employed the next most preferred candidate is
selected.

ICARUS ICARUS [59] has been conceived as cognitive architecture mainly for
controlling agents in complex physical environments. The ICARUS architecture



mainly consists of three components: a perceptual, a planning and an execution
system. They are meant to operate concurrently and interact using a speci�c
memory system. This memory system is based on a categorization of concepts in
tree form. Whenever new percepts are detected by the perceptual module, these
experiences are classi�ed in memory using similarity functions of categories. The
organization of the memory in form of a lattice and its operation has similarities
with a Rete network used for production system matching [38]. At the heart of
the architecture the planner module uses means-end analysis to generate plans. It
tries to achieve a goal by comparing the goal state with the initial state and then
breaking down the problem into subproblems, which are recursively solved by the
planner. The planner uses the memory to retrieve suitable operators called skills
based on the problems pre- and postconditions or the reduction of di�erences
between the states it can bring about. In case the planner encounters problems
it may backtrack resulting in a heuristic depth-�rst search. The categorized
memory allows the planner learn from previous experiences by fetching entire
plans that can be used as starting point for the problem at hand and may
be subject to further adaptations or re�nements. The architecture has been
extended with the possibility of specifying a degree of persistency in performing
its activities allowing to adjust its degree of reactivity.

3.2 Hybrid agent architectures

Hybrid agent architectures aim at providing a balanced mixture of reactive and
deliberative behavior speci�cation means and execution. Due to resource bound-
edness agent architectures have to solve the question of how much e�ort to spend
for each type of behavior and how often to rethink courses of actions they have
committed to. Several experiments have shown the degree of commitment should
be dependent on the degree of dynamics exposed by the environment the agent is
situated in [78,57]. This has led to the development of architectures with di�er-
ent commitment strategies ranging from bold agents strongly committed to their
intentions to cautious agents reconsidering frequently. In contrast to deliberative
agent architecture which are often based on planning approaches hybrid archi-
tectures rather employ reactive planning or purely rule-based behavior control.
Reactive planning, originally stemming from PRS, describes an iterative but
very fast planning approach that is based on the idea of planning step by step
at runtime taking into account immediate feedback of the environment, i.e. an
agent only decides upon the next plan or action and during execution expands
subgoals to further plans at runtime. This scheme of acting has been adopted also
by many other architectures such as 2/3APL and GOAL, described hereafter.

AOP Agents The AOP (Agent Oriented Programming) architecture [84] envi-
sions a mentalistic agent description based on the notions beliefs, capabilities
and commitments. The fundamental idea is that an agent commits to execute
an action for another agent or itself at the current or a future point in time.
Actions are described as capabilities with a guard determining the applicabil-
ity in regard to the agent's context. The means for engaging in commitments



is based on commitment rules that may include a message as well as a mental
condition. In case a commitment rule �res, a new commitment is added and kept
until it got executed or belief changes render the capability's condition invalid. If
the latter situation occurs the commitment is removed and a noti�cation to the
agent the commitment belong to should be prepared. Rule evaluation is done in
each agent deliberation cycle. Frameworks using AOP inspired architectures are
AgentFactory [31] and AgentBuilder17 [81].

PRS Agents The PRS (procedural reasoning system) architecture [80] builds
on the BDI (belief-desire-intention) model of agency [17], which explains hu-
man behavior on basis folk-psychological notions, i.e. the BDI model explains
rational behavior in the way humans think that they think. Foundation of the
BDI model is the process of practical reasoning, which is composed of two sub-
sequent subprocess: goal deliberation and means-end reasoning [95]. The �rst
refers to the responsibility of deciding what goals to pursue, which might be
di�cult when goals are con�icting. The latter is concerned with determining on
the means how to achieve a previously selected goal. The PRS architecture only
considers means-end resoning by casting BDI to beliefs, goals and plans. Goals
appear in form of events that trigger a plan selection and execution process
(means-end reasoning). Similar to processing event-condition-action rules the
PRS interpreter �rst selects a subset of applicable plans according to the event
type and then selects among those using the �rst plan with ful�lled precondi-
tions. In case of plan errors the means-end reasoning process can be initiated
again and other plans may used out until the goal is achieved or the last plan has
been chosen. The traditional PRS architecture has also been described as pro-
gramming language called AgentSpeak(L) [79]. Architectural extensions of PRS
have addressed the inclusion of declarative goal semantics by including di�erent
goal types like achievement and maintenance [20] as well as conceptual support
for the goal deliberation phase [77,67]. Both forms of extensions emphasize the
role of rules in the PRS architectures as goal states have to be observed and
trigger actions. The PRS architecture has been used in many agent frameworks
including JIAC18, JACK19, Jason20 and Jadex21[15,16].

2/3APL Agents 3APL (an abstract agent programming language) [52] and 2APL
(a practical agent programming language) [32] are similar approaches for pro-
gramming agents using mentalistic notions and rules. As 2APL is the successor
of 3APL only the former will be described in the following. A 2APL agent is
described by the typical BDI attitudes beliefs, goals, and plans and additionally
by three types of rules: planning goal rules, procedure call rules and plan repair
rules. Beliefs are speci�ed as Prolog facts or belief inference rules that gener-
ate additional knowledge based on the agent's beliefs. Goals are represented as

17 http://www.agentbuilder.com/
18 http://www.jiac.de/
19 http://www.aosgrp.com.au/
20 http://jason.sourceforge.net/Jason/Jason.html
21 http://jadex-agents.informatik.uni-hamburg.de/



formulas describing world states the agent wants to attain. Planning goal rules
serve the generation of plans for goals. The condition part of a planning goal
rules consist the goal to be present as well as a speci�c belief state to be valid.
The action part contains a plan description composed of an action recipe, which
can consist of concrete as well as abstract actions. Procedure call rules are similar
to goal planning rules with the di�erence that as part of the condition instead
of goal, message events, environmental events or abstract actions can be used.
The usage of both kinds of rules allows for a context based interpretation of
goals and runtime expansion of plans. In addition, the third kind of rules called
plan repair rule enables reacting on plan failures. Such failures occur when an
action of a plan leads to an exception. The condition part of a plan repair rule
consists of a belief state check and an action description denoting the beginning
of the plan to repair, i.e. the �rst actions of that plan. The action part contains
a replacement plan description that can be used as alternative for the original
actions. The 2/3APL architectures have also been implemented in corresponding
agent platforms.22

GOAL Agents A GOAL agent [51] is a BDI style of agent that makes use of
the following types of mentalistic notions. It uses knowledge and beliefs as data
structures for storing information. In this respect knowledge represents static
facts that will not change during runtime and beliefs contains more volatile
data that depends on the perceptual input and received messages. Both kinds of
structures may also contain knowledge re�nement rules for generating additional
deduced facts. The motivations of an agent are synthesized as achievement goals
using formulas for describing the desired world states. The program logic is
de�ned by action rules referring to actions that are speci�ed similar to STRIPS
actions and make use of pre- and postconditions. An action rule is similar to a
production rule consisting of a condition and action part. The condition part is a
mental state guard that can e.g. check for goal existence or belief states and the
action part contains an action that will be executed when the corresponding rule
�res. If more than one action rule is activated a GOAL agent arbitrary selects
among them yielding non-deterministic agent behavior. The GOAL architecture
is implemented in the GOAL agent system.23

SOAR Agents The SOAR (originally for state, operator and result) agent archi-
tecture [60,61] has been developed as a candidate for a UTC (uni�ed theories
of cognition) [68] helpful for explaining the full gamut of human behavior in-
cluding e.g. problem solving, learning, and language. SOAR tries to achieve this
following the 'parsimony principle', which states that the architecture complexity
should be low and it should rely on as few architecture mechanisms as possible.
The SOAR architecture is based on the idea of problem solving through operator
search and application. In contrast to other architectures SOAR completely relies
on production rules for realizing its goal directed behavior. These rules belong

22 http://apapl.sourceforge.net/, http://www.cs.uu.nl/3apl/
23 http://mmi.tudelft.nl/trac/goal



to di�erent conceptual groups and their matching and �ring is controlled in a
sophisticated way by the agent's deliberation cycle. This cycle �rst transfer sen-
sory input to the SOAR working memory. Thereafter, in the proposal phase, the
interpreter �res all activated inference, proposal and comparison rules. Inference
rules are used to generate new knowledge from the existing knowledge. Proposal
rules serve for operator generation adding them also to the working memory and
�nally comparison rules are used to establish preferences among the proposed
operator instances. In the following decision phase, SOAR has to select exactly
one operator. In case the choice is easy and exactly one operator was proposed
or one operator is preferred against all others the interpreter directly enters the
next application phase. But it may also happen that no operator was selected,
several operators are equally well suited or insu�cient information is available
for operator execution. As the interpreter performs only knowledge decisions it
will solve the problem by automatic subgoaling. This means that a subcontext
will be established in which SOAR tries to bear new knowledge to resolve the
impasse. In the application phase the operator will be executed by �ring rules
that have been activated by the new operator. In the last phase domain de-
pendent output functions will be called using speci�c working memory elements
as parameters. An implementation of SOAR is developed by an active research
community24.

Vivid Agents Vivid agents [83] is an approach that combines reactive and proac-
tive behavior using rules and planning. The underlying Vivid agent architecture
is named CAP (concurrent action and planning) and consists of two indepen-
dent modules. The reactive module relies on two kinds of rules: reaction and
action rules. Reaction rules are similar to event-condition-action rules and are
triggered by incoming messages and new environmental percepts. In case the op-
tional condition part is ful�lled the rule is activated and can be �red. In contrast
to reaction rules, action rules do not have a triggering event and operate on the
agents knowledge only. In Vivid agents three types of (reaction and action) rules
are distinguished based on the kind of e�ects involved: epistemic, physical and
communicative. Epistemic rules only have internal e�ects on the agent's knowl-
edge, whereas physical actions refer to actions performed in the environment
and communicative actions deal with sending a message to another agent. The
planning module of CAP is responsible for proactive agent behavior. It uses a
STRIPS [82] inspired approach that is able to generate a plan for achieving a
goal. The planner uses the available action rules as operators and thus produces
a plan in form of a sequence of action rules that have to be executed in order to
reach the desired world state. After plan generation has been �nished the pro-
duced plan is executed interleaved with reactive rules. A current implementation
of the architecture is not available.

Rule Responder Rule Responder [73] is a Semantic Web infrastructure for dis-
tributed rule-based event processing multi-agent eco-systems. The Rule Respon-

24 http://sitemaker.umich.edu/soar/home



der middleware is based on modern enterprise service technologies and Seman-
tic Web technologies for implementing intelligent rule-based agent services that
access data and ontologies, receive and detect events (e.g., for complex event
processing in event processing agent networks), and make rule-based inferences
and (semi- )autonomous pro-active decisions for reactions based on these rep-
resentations. The core of a Rule Responder agent (cf. Figure 2) are reasoning
engines such as the Prova rule engine 25 26 which implements the decision and
behavioral reaction logic of the agents' roles. The Prova rule engine supports
di�erent rule types:

� Derivation rules to describe the agent's decision logic
� Integrity rules to describe constraints and potential con�icts
� Normative rules to represent the agent's permissions, prohibitions and obli-
gation policies

� Defeasible rules to priorities rules for, e.g. handling con�icts between agent's
goals and modularization of the agent's KB to support multiple roles of an
agent

� Reaction rules to de�ne reaction logic which are triggered on the basis of
detected (complex) events

� Messaging reaction rules to de�ne the agents conversation-based work�ow
reactions and behavioral logics based on complex event processing

An agent can employ vocabularies de�ned as Semantic Web ontologies (e.g.,
based on RDFS or OWL) or Java class hierarchies to give its rules a domain-
speci�c meaning. The vocabularies can be used within the conversation with
other agents to enable a semantic and pragmatic interpretation of the messages,
e.g. FIPA ACL pragmatic primitives as semantic ontology concepts in messaging
reaction rules.

For the deployment of agents on the Web and for the communication in
agent networks, Rule Responder uses an enterprise service bus (ESB) middle-
ware, which supports a multitude of synchronous and asynchronous transport
protocols (>40) such as MS, SMTP, JDBC, TCP, HTTP, XMPP, etc. to trans-
port rulebases, queries and answers between the agents. The de facto standard
Reaction RuleML 27 is used as a platform-independent rule interchange for-
mat for agent conversation using Reaction RuleML messages. Reaction RuleML
incorporates various kinds of production, action, reaction, and knowledge rep-
resentation temporal/event/action logic rules as well as (complex) event/action
messages into the native RuleML standard syntax.

Emerald Emerald http://lpis.csd.auth.gr/systems/emerald/rel.html like
Rule Responder employs reasoning engines as reasoning services that are im-
plemented as reasoner agents, which intercommunicate via FIPA ACL-based

25 http://prova.ws
26 and other rule engines, such as OO jDREW, DR-Device (initially in Emerald), Euler,

or Drools as long as they support Reaction RuleML as general interchange format
for agent communication

27 http://reaction.ruleml.org



Fig. 2. Rule Responder

communication protocols. EMERALD is built on-top of the JADE multi-agent
system. The emerald framework can be used as one platform speci�c agent frame-
work in the general Rule Responder Semantic Web middleware.

3.3 Rules on the Marco Layer

Rule-Based Negotiation According to [64], negotiation is the process by
which a group of agents communicate to try to come to a mutually acceptable
agreement on some matter. It is one of the important methods for establishing
agent cooperation. Understood in this way, negotiation consists of two parts:
(i) negotiation protocol that represents the conventions under which negotiation
operates as a set of public rules of the agents' interaction process. Agents must
comply to the protocol of the negotiation in order to be able to communicate; (ii)
negotiation strategy that represents the speci�cation of the sequence of actions
that an agent plans to make during negotiation and that are supposed to lead
to a desired outcome.

Negotiation Protocols Rules can be used to de�ne a reusable formalization of the
semantics of the interaction between several negotiation participants. The par-
ticipants are required to obey the rules speci�c to a given negotiation protocol �
for example a certain type of auction. One of the �rst approaches was proposed
by paper [62] that introduces AB3D28 � a rule-based scripting language for ex-
pressing auction mechanisms. AB3D allows initialization of auction parameters,

28 http://ai.eecs.umich.edu/AB3D/



de�nition of rules for triggering auction events, declaration of user variables and
de�nition of rules for controlling bid admissibility.

[7] introduces a conceptual framework for the development of agent-based au-
tomated negotiations focused on auctions that consists of: (1) negotiation infras-
tructure, (2) generic negotiation protocol, and (3) taxonomy of declarative rules,
is presented. The negotiation infrastructure de�nes roles of negotiation partici-
pants and of a host. Participants exchange proposals within a �negotiation locale�
managed by the host. The generic negotiation protocol de�nes three phases of a
negotiation: admission, exchange of proposals and formation of an agreement, in
terms of how, when and what types of messages should be exchanged between
the host and negotiation participants. Negotiation rules are used for enforcing
the negotiation protocol. Rules are organized into a taxonomy: rules for partici-
pants admission to negotiations, rules for checking validity of proposals, rules for
protocol enforcement, rules for updating the negotiation status and informing
participants, rules for agreement formation and rules for controlling the negotia-
tion termination. [25] presents an implementation of the conceptual negotiation
framework introduced in [7] in an agent-based e-commerce system. Furthermore,
paper [26] presents a representation of negotiation rules using R2ML29 markup
language for English auctions.

[89] proposes a formalization of negotiations that goes beyond the framework
of [7]. Its authors suggest usage of an ontology-based approach to expressing
negotiation protocols. Speci�cally, whenever an agent is admitted to negotiation
it is to obtain a speci�cation of the negotiation rules in terms of a shared ontology.
This approach has been exempli�ed with a sample scenario by investigating how
the ontology can be used to tune the negotiation strategy of participating agents.

Negotiation Strategies In [87] an implementation of a system of Jade agents that
negotiate using strategies expressed in defeasible logic was described. The imple-
mentation is demonstrated with a bargaining scenario involving one buyer and
one seller agent. The buyer strategy was de�ned by a defeasible logic program.

Rule-Based Veri�cation of Agent Systems and Work�ows Rules rep-
resented in temporal logics can be used to express patterns of properties ver-
i�cation of concurrent and distributed systems [35], including agent systems
and work�ows. The pattern approach was taken further in [55] to de�ne a set
of veri�cation patterns for checking business process models translated into la-
beled transition systems, using model checking tools. The pattern approach can
considerably simplify the veri�cation process by enabling the reuse of software
engineering expertise. This technique was applied for checking an agent-based
English auction service [23], as well as di�erent types of middle-agents including
frontagents, matchmakers, and brokers [24].

29 https://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML



4 Conclusion

In this paper we have surveyed several major approaches using rules in (multi)
agent systems and distributed agent architectures which run rule engines at their
core. The approaches di�er, e.g., in their supported rule types, state represen-
tation, rule evaluation mechanism, con�ict resolution and truth maintenance
mechanisms. Depending on their expressiveness and semantics the used rule
engines might be capable of implementing agents in the strong sense of cogni-
tive architectures for intelligent agents with goal/task-based, utility-based and
learning-based functionalities, or in the weak sense of agent services with simple
re�exive functionalities for, e.g., deductive query-answering or simple reactive
capabilities. Following the general consensus de�ned by the strong notion of
agency in [97], the use of declarative rules for representing the agents' decision
and behavioral reaction logics makes them capable of reactive, proactive, and
communicative behavior and supports (semi-)autonomous (intelligent) decisions.
Additionally, mentalistic notions can be used in the rule language for describ-
ing the agent behavior in an abstract and intuitive way, e.g. in the interactions
between agents to communicate the pragmatics of the interchanged information.
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