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Zusammenfassung

Die Durchführung von Methoden zur Duplikaterkennung und Datenfusion sind
zwei wesentliche Schritte des Datenintegrationsprozesses um konsistente Ergebnisse
zu gewährleisten. Aufgrund von Fehlern und Ungenauigkeiten während der Datener-
hebung, der Datenmodellierung oder der Datenverwaltung sind Daten in praktischen
Anwendungsbereichen oft inkorrekt und/oder unvollständig. Dies wiederum erschwert
die Identifizierung und Zusammenführung mehrfacher Darstellungen des gleichen Re-
alweltobjektes. Im momentan vorherrschenden relationalen Datenmodell lassen sich
unvollständige Informationen nur durch einen Nullwert abbilden. Demzufolge fokussie-
ren aktuelle Techniken der Duplikaterkennung und der Datenfusion zumeist auch nur
auf die Behandlung widersprüchlicher Informationen, welche aus Tippfehlern, veralte-
ten Daten oder falschen Schreibweisen resultieren. Für gewöhnlich sind Informationen
über Phänomene der realen Welt jedoch selten vollständig, sondern eher ungewiss,
unpräzise und vage. Aus diesem Grund wurden verschiedene Datenmodelle zur Hand-
habung ungenauer und unvollständiger Informationen entwickelt. Ein beträchtlicher
Anteil dieser Modelle basiert auf der Wahrscheinlichkeitstheorie oder der Fuzzy-Set-
Theorie. Aktuelle Techniken zum Abgleich und Zusammenfügen von Datensätzen sind
allerdings nicht für den Umgang mit solchen Theorien konzipiert. Um dennoch eine
Integration von verschiedenen Fuzzy-Datenbanken zu ermöglichen, präsentieren wir
in dieser Arbeit einen Ansatz zur Duplikaterkennung und Fusion von unvollständigen
Informationen, welche durch so genannte Möglichkeitsverteilungen (Possibility Distri-

butions) modelliert sind.

Abstract

Duplicate detection and data fusion are two essential prerequisites for obtaining
concise results from data integration processes. Caused by many deficiencies in data
collection, data modeling or data management, real-life data is often incorrect and/or
incomplete. Thus, identifying and unifying multiple representations of the same real-
world object is not trivial. Since in the relational data model incomplete information
can be represented only by null values, current techniques of duplicate detection and
data fusion primarily focus on the handling of dissimilarities resulting from typos, data
obsolescence or misspellings. Usually, information on real-world phenomena is rarely
complete but rather uncertain, imprecise or vague. Therefore, different data models
based on fuzzy set theory or probabilistic theory for modeling incomplete information
have been proposed. Unfortunately, current techniques for tuple matching and tuple
merging are not designed to deal with such concepts. To enable an integration of data
originating from different fuzzy databases, we present a first analysis in duplicate
detection and data fusion w.r.t. incomplete information represented by possibility
distributions.
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Abstract— Duplicate detection and data fusion are two essential
prerequisites for obtaining concise results from data integration
processes. Caused by many deficiencies in data collection, data
modeling or data management, real-life data is often incorrect
and/or incomplete. Thus, identifying and unifying multiple repre-
sentations of the same real-world object is not trivial. Since in the
relational data model incomplete information can be represented
only by null values, current techniques of duplicate detection
and data fusion primarily focus on the handling of dissimilarities
resulting from typos, data obsolescence or misspellings. Usually,
information on real-world phenomena is rarely complete but
rather uncertain, imprecise or vague. Therefore, different data
models based on fuzzy set theory or probabilistic theory for mod-
eling incomplete information have been proposed. Unfortunately,
current techniques for tuple matching and tuple merging are not
designed to deal with such concepts. To enable an integration of
data originating from different fuzzy databases, we present a first
analysis in duplicate detection and data fusion w.r.t. incomplete
information represented by possibility distributions.

I. INTRODUCTION

The relational data model is principally designed for mod-

eling accurate information, but a lossless collection of all the

actual facts of a modeled world is an optimistic and mostly

unrealistic assumption. In contrast, a large amount of collected

information is uncertain, imprecise or vague (e.g. information

resulting from human observations). Therefore, in order to

model such imperfectness several kinds of data models (e.g.

probabilistic data models [1], [2], [3], [4], [5] and fuzzy data

models [6], [7], [8]) have been developed and become more

and more important in current database research.

Furthermore, today data is often distributed among multiple

sources which, in turn, are distributed all over the world.

Information processing moves from monolithic systems to

federated systems and hence to the integration of data from

multiple heterogeneous sources [9]. For a long time, in data

integration research only source and target schemas defined

within a relational ([10] et al.) or semi-structured ([11] et

al.) data model have been regarded. However, since both

concepts, data integration as well as the modeling of imperfect

information, have moved into the spotlight of the database

community, a consideration of an integration of data by using

uncertain data models has been just a logical consequence.

Using probabilistic target schemas (schemas defined in a

probabilistic data model) in order to handle uncertainties in

the integration of multiple relational data sources has been

investigated in several works [12], [13], [14]. In general, an

integration of certain source data to an uncertain target schema

is already discussed to a large extent. In contrast, an integration

process of data originating from probabilistic databases or

fuzzy databases (uncertain source data) is still an unexplored

area of research. Nevertheless, an integration of uncertain data

from multiple sources is an essential property in order to

enable valuable analyses of inter-relations between different

sets of uncertain data.

Data integration can be roughly divided into two phases

each in turn consisting of two steps. In the first phase, semantic

correspondences between the individual schemas have to be

identified and mappings from the source schemas to the target

schema need to be specified [15], [16]. Therefore, in the first

phase primarily metadata is processed. In the second phase,

the operational data of the individual sources have to be

consolidated to a common integration result. In general, such a

consolidation only increases the completeness of the resulting

data, but in order to enable an effective usage of this data

the integration result also has to be concise [17]. This re-

quires the identification [18] and unification [19] of duplicate

representations of same real-world objects.

The main contribution of this paper is that it constitutes

a first approach to considering the integration of uncertain

source data. Since the whole process of data integration w.r.t.

all kinds of uncertain data models exceeds by far the extent of

this paper, we focus on fuzzy data models and especially on

the second integration phase composed of duplicate detection

and data fusion. We consider different methods and concepts

of both activities w.r.t. imperfect information represented by

possibility distributions. In general, this paper has not the goal

of completely handling such an extensive field of research,

but it gives first insights into this area and introduces some

theoretical fundamentals.

The remainder of the paper is structured as follows: Section

1 gives an overview of fuzzy data models and Section 2 shortly

presents the activities of data integration, duplicate detection

and data fusion. In Section 3 we introduce different types

of equivalence and propose techniques of matching tuples in

fuzzy databases. Current data fusion techniques are adapted to

fuzzy data in Section 4. Section 5 examines related work and

Section 6 summarizes the paper and gives a conclusion.
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Age
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πYOUNG
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• • •

Fig. 1. Label YOUNG

Age

1.0

πADULT

15 20 25

• • •

Fig. 2. Label ADULT

II. FUZZY RELATIONAL DATA MODELS

Similarity-based models and possibility-based models are

the two major approaches which result from former research

for introducing fuzzy set theory into databases. Similarity-

based models (e.g. [6]) use similarity or proximity relationship

functions to measure the nearness among different domain

elements. Possibility-based models (e.g. [7], [8]) gather fuzzy

information by using possibility distributions for attribute

values. In this paper, as a representative we consider a mixed

model which uses possibility distributions as well as similarity

relationships and is hence one of the most powerful variants of

fuzzy data models [20], [21]. Since a possibility distribution

is based on the concept of fuzzy sets, we shortly present

both the fuzzy set theory as well as the theory of possibility

distributions, which are introduced by Zadeh [22], in more

detail.

A. Fuzzy Sets and Possibility Distributions

In order to represent imprecise, uncertain and especially

vague (”fuzzy”) information, elements of fuzzy sets have a

”degree of membership”. Thus, instead of a bivalent mapping

saying that an element either belongs to a set or not, a more

gradual differentiation is possible. A fuzzy set F is defined as a

pair (A, µ) where A is the reference set (or discourse) and µ is

the membership function µ : A → [0, 1] of F , which expresses

the degree of membership of the individual elements. A finite

and discrete fuzzy set F = (A, µ) can be also expressed as:

F = {µ(a1)/a1, . . . , µ(an)/an}, ai ∈ A, µ(ai) 6= 0

If a membership value µ(a) of a fuzzy set F = (A, µ) is

explained to be a measure of the possibility that an attribute

value X (which is defined in the domain A) is equal to the

element a ∈ A, X is described by a possibility distribution

ΠX(A) with the possibility distribution function πX = µ [23].

In this context, πX(ai ∈ A) denotes the possibility that ai
is the true value of X . Since X takes only one value (its

actual but unknown true value), all possible elements of A
are mutually exclusive. If we assume that every attribute value

is applicable, one of the elements of A has to be the actual

true value of X . Thus, the possibility of at least one element

a ∈ A has to be πX(a) = 1 and hence possibility distributions

are always normalized. In general, if πX(a1) > πX(a2) then

a1 is considered a more plausible value for X than a2.

For simplification purposes, possibility distributions are

often represented by linguistic labels (e.g. the labels YOUNG

and ADULT shown in Figure 1 and 2). Since the concepts

of fuzzy sets and their membership functions are interpreted

as possibility distributions or labels and their corresponding

possibility distribution functions all the properties of fuzzy sets

are also applicable to possibility distributions. For example, the

cardinality of a possibility distribution ΠX(A) over a finite set

A1 is defined as:

Card(ΠX(A)) =
∑

a∈A

πX(a)

Since fuzzy sets are an extension of classical sets (every

classical set is a special kind of fuzzy set) standard set

operations as union and intersection can be defined. The most

common definitions based on the s-norm max() and the t-norm

min():

- Union: The possibility distribution ΠX∪Y (A) resulting

from the union of the two fuzzy sets X and Y has the

distribution function:

πX∪Y (a) = max(πX(a), πY (a))

- Intersection: The possibility distribution ΠX∩Y (A) re-

sulting from the intersection of the two fuzzy sets X and

Y has the distribution function:

πX∩Y (a) = min(πX(a), πY (a))

- Inclusion: ΠX(A) is said to be included in ΠY (A), if the

possibility of each domain element to be the true value

of X is lower or equal than the possibility of this element

to be the true value of Y :

ΠX(A) ⊆ ΠY (A) ⇔ (∀a ∈ A) : πX(a) ≤ πY (a)

Considering the theory of fuzzy numbers, arithmetic func-

tions as addition or multiplication can be defined for possi-

bility distributions. For example, the possibility distribution

ΠX+Y (A) resulting from the sum of two fuzzy values X
and Y with the respective possibility distributions ΠX(A) and

ΠY (A) can be defined [20] by the function:

πX+Y (z) = supa{min(πX(a), πY (z − a))}

For further details on fuzzy sets and possibility distributions

we refer the interested reader to [23], [24] and [25].

1Since the handling of continuous and/or infinite possibility distributions is
more complex and in the context of databases is more unusual, in this paper
only discrete and finite ones are considered.
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Age

1.0

π
≃X

X-5 X X+5

Fig. 3. approximately X (ca.X)

Similarity dark- light-

Haircolor black brown brown brown blond

black 1.0 0.8 0.5 0.2 0.0

dark-brown 0.8 1.0 0.9 0.6 0.2

brown 0.5 0.9 1.0 0.9 0.6

light-brown 0.2 0.6 0.9 1.0 0.8

blond 0.0 0.2 0.6 0.8 1.0

Fig. 4. Similarity relation of the haircolor domain

B. Fuzzy Attributes and Fuzzy Values

In order to represent fuzzy information in fuzzy relations

classical attributes are extended to fuzzy attributes. Thus, for

each attribute its domain D is extended to the domain P (D),
where P (D) is the collection of all possibility distributions on

D. The values of fuzzy attributes (fuzzy values) can represent

different kinds of information:

- crisp value: These values are precise data as known from

classical databases (e.g. age=25). A crisp value X = c
can be represented by the possibility distribution function

πX = {1/c}.

- interval value: An interval [l, u] is a range in an ordered

domain. This kind of imprecision can be represented by

the possibility distribution function:

πX(a) =

{

1, (∀a ∈ [l, u])

0, else

- vague value: These values represent vague information

by using possibility distributions over ordered or non-

ordered domains. As an example, we consider the vague

information ”the person is approximately X years old”. A

corresponding possibility distribution function is shown

in Figure 3. In general, non-ordered and discrete domains

are sets of labels (e.g. the possible colors of hair). A

definition of a similarity relation (see Figure 4), which

indicates to what extent two labels are similar, enables

semantic comparisons between individual labels of non-

ordered domains.

- linguistic labels: Linguistic labels are words in natural

language which are linked with predefined possibility

distributions (e.g. age=YOUNG). The corresponding do-

mains can be ordered as well as non-ordered.

C. Fuzzy Database Relations

Besides incorporating fuzzy information into operational

data by using possibility distributions for attribute values,

fuzzy information can be also used in metadata in terms

of fuzzy degrees. Fuzzy degrees can be used at different

levels of granularity, but for simplification we only consider

relations with a single fuzzy degree. Altogether other meanings

(importance, possibility) are possible [20], we consider this

degree as an uncertainty degree which specify the membership

grade (the certainty to which a tuple belongs to a relation) of

the individual tuples to the dedicated relation. Furthermore,

we always consider fuzzy degrees as crisp values.

A fuzzy database is a collection of fuzzy database relations.

Each fuzzy database relation is a set of n fuzzy attributes

and hence is defined on several collections of possibility

distributions over corresponding attribute domains (Di):

R = (P (D1)× P (D2)× ...× P (Dn)× [0, 1])

The last attribute is the fuzzy degree for representing the

tuples’ memberships and is therefore not a usual attribute. The

tuple membership function of a relation R is defined as:

µR(t) = P (D1)× P (D2)× ...× P (Dn) → [0, 1]

= {µR(t1)/t1, µR(t2)/t2, ..., µR(tn)/tn}

Two examples of a fuzzy database relation are shown in Figure

6. More information on fuzzy databases can be found in [20]

and [26].

III. DATA INTEGRATION

Although other operational areas are possible, we regard

duplicate detection and data fusion as two phases of a data

integration process. In general, the integration of multiple data

sources (relational- (RDB) or in our case fuzzy relational

databases (FRDB)) is composed of four steps (see Figure

5). In order to overcome schematic as well as semantic

heterogeneities in the first two steps the source schemas are

matched and mapped to the target schema. These activities

bridge heterogeneity by identifying semantic relations between

source and target schemas (schema matching) and determine

how data conforming to the individual local schemas can be

transformed to be conform to the global target schema (schema

mapping). Altogether, the goal of the first two steps is that all

objects of a certain type are represented in a homogeneous

way.

After mapping data from the different sources to the target

schema in order to obtain a concise result multiple represen-

tations of the same real-world object have to be discovered

(duplicate detection) and unified (data fusion). If one of the

sources is a fuzzy database or the target schema is a fuzzy

database schema (e.g. to represent vagueness resulting from an

imprecise schema matching, duplicate detection or data fusion)

current techniques of all four steps have to be adapted to fuzzy

information modeled in operational data (fuzzy values) as well

as in metadata (fuzzy degrees).

3



Schema

Mapping

Schema

Matching

Duplicate

Detection
Data Fusion

Step 1 Step 2 Step 3 Step 4
RDB

(FRDB)

RDB

(FRDB)

Phase 1 Phase 2

RDB

(FRDB)

Fig. 5. Data integration process

While schema matching and schema mapping principally

concern fuzzy metadata, duplicate detection and data fusion

primarily affect fuzzy values. In general, both handling fuzzy

metadata as well as fuzzy operational data play an important

role for the integration of data originating from mutliple

heterogenous fuzzy databases. However, we think that schema

matching and schema mapping w.r.t. fuzzy databases is a topic

of its own and is consequentially out of the scope of this paper.

In the following we refer to an integration process that

incorporates the data of two fuzzy database relations R1 and

R2 describing the first name, the age and the hair color

of persons (see Figure 6) from two different sources into a

single fuzzy schema. The linguistic labels YOUNG, ADULT

and APPROXIMATELY (’ca.’) are shown in Figure 1-3. The

two labels DARK and LIGHT are the possibility distribu-

tions DARK={1/black, 0.8/dark-brown, 0.4/brown} and

LIGHT={1/blond, 0.7/light-brown, 0.4/brown}.

We assume that after schema mapping the data from both

sources is defined within a common fuzzy schema. Thus, we

focus on the last two steps of data integration and present a

global view of duplicate detection as well as data fusion before

we consider both areas w.r.t. fuzzy values in the next sections

in more detail.

A. Duplicate Detection

Duplicate Detection is an important data quality activity

which is also known as record linkage, record matching, object

identification, object resolution and many others. In the context

of relational databases duplicate detection is mostly used in

order to discover tuples that refer to the same object of the

real world. Since tuples describing the same object often differ

from each other, for example resulting from typos, subjective

and/or erroneous data collections, or different times of data

updates, duplicate detection is usually not trivial. In general,

techniques for duplicate detection have a common structure

[27] that can be described by five steps:

• Data Preparation: Data preparation (see [27]) is a

preprocessing activity in order to minimize different

representations of the same information resulting from

different standards, measuring units or abbreviations.

• Search Space Reduction: In order to minimize the

complexity of duplicate detection, first a reduction of

the search space can be applied. Common techniques for

search space reduction are sorted neighborhood, pruning

or blocking [18], [27].

• Comparison Functions: After reducing the number of

tuples that have to be compared to each other, functions

for expressing the distances between attribute values of

different tuples have to be chosen. Well-known functions

for measuring the distance between two attribute values

are the edit-distance, n-grams or the Jaro distance (for

more details see [18]).

• Decision Model: A decision model [27], [28] is a method

for assigning compared tuples to the set of matching

tuples, the set of unmatching tuples or the set of possibly

matching tuples, on the basis of the measured distances

between the attribute values of both tuples. In general,

such a decision has two contrary goals (precision-recall

dilemma). First, to avoid clerical reviews as often as

possible the set of possible matches has to be minimized.

Second, to avoid incorrect decisions, the number of false

positives and false negatives has to be reduced to a

minimum.

• Verification: A closing verification (see [27]) checks the

effectiveness of the applying methods in terms of recall,

precision, false negative percentage, false positive per-

centage and F1-measure. If the obtained effectiveness is

not as expected, other comparison functions and decision

models have to be chosen.

For comparing two fuzzy values, comparison functions cannot

be directly used. Thus, functions for the matching of attribute

values (step 3) in fuzzy databases is considered in Section 4

in more detail.

B. Data Fusion

After duplicate detection each tuple is assigned with an

object identifier (object-ID) qualifying this tuple as a rep-

resentation of the corresponding object. Thus by forming

duplicate clusters all representations of an object are related

to each other by the same object-ID. The goal of data fusion

is to melt these multiple representations into a single one.

Therefore, after an ideal data fusion no object has to be

represented by more than one tuple. Two tuples of the same

duplicate cluster can be in relation with each other in four

different ways: Equality, subsumption, complementation and

conflict. The most severe situation is given, if they are in

conflict, meaning that they represent contrary information. In

4



name age haircolor µR1

t11 0.8/John,1/Johan YOUNG DARK 0.9

t12 Johan ≤ 15 1/black,0.7/dark-brown,0.2/brown 1.0

t13 1/Tim,1/Tom ADULT blond 0.4

t14 0.7/Mia,1/Mira 33 1/brown,0.8/light-brown 0.5

name age haircolor µR2

t21 0.8/John,1/Johan YOUNG DARK 1.0

t22 1/Johan,1/Johna ca. 10 1/black,0.5/dark-brown 0.7

t23 1/Tim,1/Jim,0.3/Kim [24,25] LIGHT 0.8

t24 Kira [32,34] LIGHT 1.0

Fig. 6. Motivating example - fuzzy database relations R1 (Source 1) and R2 (Source 2)

general, there exists no major approach for resolving data

conflicts. Several approaches may work extremely well in one

application domain and fail in another. As a consequence, data

fusion is a highly domain dependent task and has to be adapted

to individual needs [19].

The most intuitive and most native approaches to unify data

from different sources are relational combination techniques

as union or join operators. However, the standard operators

as Union, Equi-Join or Outer Join as well as the advanced

operators as Outer-Union, Minimum Union or the Merge Oper-

ator are extremely limited w.r.t. handling conflicting data [19].

In Join approaches intrasource duplicates cannot be merged

and data conflicts are generally ignored. In Union approaches

only identical (Union or Outer-Union) or subsumed duplicates

(Minimum Union) are removed. As with Join operators data

conflicts are generally ignored. Nevertheless, better results for

Join as well as Union operators can be achieved, if grouping

(on the object-ID) and aggregation functions (for conflict

resolving) are applied. Unfortunately, due to the small number

of aggregation functions provided by the SQL standard, in

most existing databases conflict resolution is very limited.

As a consequence, to meet the requirements of different

application domains additional adequate aggregation functions

are required. In the context of the relational data model, such

additional aggregation functions are considered in different

works (e.g. [17]). In Section 5 we analyze data conflicts

concerning fuzzy data and reflect on aggregation functions

which can be used to resolve such conflicts between two non-

crisp fuzzy values.

IV. DUPLICATE DETECTION IN FUZZY DATABASES

In general, two tuples are called duplicates, if they are

equivalent. However, the interpretation of equivalence depends

on the intended goal of the duplicate detection activity. For

example, erasing double entries in relational operations such

as Union or detecting multiple representations of the same

real-world object generally imply two different types of equiv-

alence. Usually for each type of equivalence different detection

techniques are required.

A. Types of Equivalence

We define three types of equivalence: data equivalence (D-

EQ), information equivalence (I-EQ) and real-world equiva-

lence (RW-EQ):

- Data and Information Equivalence: Two tuples are data

equivalent, if they are syntactically equal (e.g. the tuples

t11 and t21 from the example in Figure 6 are data

equivalent). Two tuples are information equivalent, if all

the corresponding values of both tuples represent the

same information and hence these tuples are semanti-

cally equal. With respect to crisp data, the two values

(”06.07.2009”) and (”July 06. 2009”) are information

equivalent (but not data equivalent). Two fuzzy values are

information equivalent if they have the same possibility

distribution. For example, two different linguistic labels

representing the same possibility distribution (synonyms)

are information equivalent, but not data equivalent. In

contrast, in information integration, two sources can link

the same linguistic label (homonyms) with different se-

mantics (different possibility distributions). Two homony-

mous data values are data equivalent but not information

equivalent.

Generally, in data preparation (see [27]) representation

conflicts as synonyms or homonyms are resolved by

standardization (e.g. renaming) and transformation (e.g.

data type conversion). Thus, data preparation ensures that

equivalent information is mostly represented by equiva-

lent data. As a consequence, w.r.t. prepared data, data-

and information equivalence are most often identical.

With respect to fuzzy values, data preparation has to

include activities to resolve synonyms and homonyms of

linguistic labels.

Often data is marginally inconsistent, for example result-

ing from typos, subjective observations or measurement

errors. Thus, to measure the syntactic as well as the

semantic resemblance of two values, data equivalence and

information equivalence can be considered as similarity

measures within the range [0, 1]. As a consequence, data

(information) equivalence can be interpreted as the extent

to which two data values are syntactically (semantically)

equivalent. The equality between data equivalence and

information equivalence w.r.t. prepared data is limited

for the case of absolute equality. Otherwise, both equiv-

alences can extensively differ from each other. For ex-

ample, the two colors dark-brown and black are

semantically similar to a large extent, but the syntactic

equivalence is low. For a counter-example, we consider

the three labels small, middle and tall. From the

syntactic point of view, small and tall are more

similiar than small and middle, but the semantics of

small and tall are more contrary to each other and

hence more dissimilar than the semantics of small and

middle.

- Real-World Equivalence: The generally most considered

and in the context of data integration most important type

of equivalence is real-world equivalence. Two tuples are
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real-world equivalent, if they represent the same real-

world object. For example, the two tuples t13 and t23
(see Figure 6) are real-world equivalent. Usually, identi-

fying two tuples representing the same real-world object

is more complex and hence more approximately than

identifying two tuples representing the same information.

In relational databases, real-world equivalence is reduced

to data- and information equivalence by using syntactic

(e.g. edit distance) and semantic (e.g. glossaries or ontolo-

gies) similarity measures. Two values are assumed to be

real-world equivalent, if they are either data equivalent

or information equivalent to a large extent. Thus, for

the purpose of deriving real-world equivalence from data

equivalence and information equivalence, the maximum

function can be used:

RW-EQ(A,B) = max(D-EQ(A,B), I-EQ(A,B)) (1)

In relational databases, a value is either totally known

(a crisp value) or totally unknown (a null value). In

contrast, in fuzzy databases, data can represent incom-

plete information in different kinds of degree. Thus, a

reduction of real-world equivalence on data equivalence

and information equivalence is far from being satisfactory

if at least one of the considered fuzzy values is not

crisp. For example, two fuzzy values each representing

the linguistic label YOUNG are syntactically and seman-

tically equal, but the true value of both fuzzy values can

be different (e.g. 15 years and 5 years). Thus, in order

to measure the real-world equivalence of two non-crisp

fuzzy values the degree of incompleteness (e.g. vagueness

or imprecision) has to be taken into account.

In general, the equivalence of two tuples follows from the

equivalence of their attribute values. Thus, at first we consider

the matching of two values before we examine tuple matching

techniques.

B. Matching of Fuzzy Values

Since data equivalence is only of syntactic nature, data

equivalence of fuzzy values is likely defined as for relational

data values. If similarity relationships are defined, in fuzzy

databases a more exact measuring of information equivalence

of two crisp values is possible. In contrast to relational

data, for matching non-crisp fuzzy values w.r.t. information

similarity a comparison of different possibility distributions

is required. As mentioned above, current methods for value

matching w.r.t. real-world equivalence are also not adequate

for non-crisp fuzzy values and need further investigation. In

the following, we shortly present measuring techniques w.r.t.

information equivalence before focusing on techniques for

real-world equivalence.

1) Information Equivalence: If for two crisp fuzzy values

a similarity score is defined (e.g. in the domain of the attribute

haircolor, the similarity between dark-brown and black is

defined as 0.8), this similarity can be used as the information

equivalence of these two values. Thus, in such cases no further

techniques for measuring the semantic equality are required.

To measure the information equivalence of two non-crisp

fuzzy values is by far more difficult. In the literature (e.g.

[24],[25]), there are multiple concepts to compare two pos-

sibility distributions (see comparison operations on fuzzy

sets in [25]). In order to demonstrate the large spectrum of

comparison methods, now we briefly present two of the most

simple and most representative of them:

- An intuitive measure of information equivalence between

two possibility distributions ΠX(A) and ΠY (A) is the

fraction of domain elements that are possible in both

distributions (see equality index REC(X,Y ) in [24]):

I-EQ(X,Y) =
Card(ΠX(A) ∩ΠY (A))

Card(ΠX(A) ∪ΠY (A))
(2)

This measure is based on the idea that the more domain

elements are possible (or impossible) in both fuzzy val-

ues, the more similar both values are.

- Another approach [20] is to use the distance between

two possibility distributions as their degree of equality.

The larger the distance, the smaller is their similarity. For

measuring the distance between the possibility distribu-

tions of two comparable fuzzy values X and Y common

distance functions (e.g. the Minkowski distance [20]) can

be used:

d(ΠX(A),ΠY (A)) = [
∑

A

|πX(a)− πY (a)|
p]1/p, p > 0

Common specific cases of the Minkowski distance are

the Hamming distance (p=1) or the Euclidean distance

(p=2). The information equivalence can be derived as the

additive inverse of the normalized distance (dN ).

I-EQ(X,Y) = 1− dN (ΠX(A),ΠY (A)) (3)

Unfortunately, with these measures no similarities of dif-

ferent domain elements are considered. Thus, only the in-

formation equivalence of error-free and standardized data

can be correctly measured. For example, the similarity be-

tween two possibility distributions {1/black,1/blond} and

{1/dark-brown,1/light-brown} is measured as 0, even

though the real information similarity between both distribu-

tions is high. As a consequence, these approaches have to be

extended in order to consider similarities of individual domain

elements in future work.

2) Real-World Equivalence: In matching fuzzy values w.r.t.

real-world equivalence, we do not want to know the similarity

of two possibility distributions, but we are interested whether

both values represent the same real-world phenomenon. Since

crisp fuzzy values do not represent incomplete information,

real-world equivalence can be measured as for relational

data by reducing it to data equivalence and information

equivalence. Regarding error-free non-crisp fuzzy values, we

consider the real-world equivalence of two values as the

probability that both fuzzy values have the same true value.

Thus, to quantify the equivalence of both values, we transform

the possibility distribution into a probabilistic statement as-

suming a uniform probability distribution on the corresponding
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PX(Y | ΠX(A)) =
P ({1/y} ∩ΠX(A))

P (ΠX(A))
=

P ({πX(y)/y})

P (ΠX(A))
=

πX(y)ρ(y)
∑

a∈A πX(a)ρ(a)
(4)

PX(Y | ΠX(A),ΠY (A)) =
∑

a∈A

PX(a | ΠX(A)) · PY (a | ΠY (A)) =
∑

a∈A

πX(a)

Card(ΠX(A))
·

πY (a)

Card(ΠY (A))
(5)

RW-EQ(X,Y) =
∑

a∈A

∑

b∈A

PX(a | ΠX(A)) · PY (b | ΠY (A)) · θ(a, b) (6)

attribute domain. Given a probability function ρ(a) over the

domain A, PX(ΠY (A)) is defined as the probability2 that X
is one of the possible values of Y (see probability of fuzzy

events in [25]).

PX(ΠY (A)) =
∑

a∈A

πY (a)ρ(a) (7)

Since the true value of X has to be one of its possible values,

for a fuzzy value X , the possibility distribution ΠX(A) is

given as a true event. Therefore, the probability that the true

values of a non-crisp fuzzy value X and a crisp fuzzy value

Y are equal is the conditional probability P (X = Y |ΠX(A))
(short PX(Y |ΠX)) which is defined as follows (the derivation

is shown in Equation 4):

PX(Y | ΠX) =
πX(y)ρ(y)

∑

a∈A πX(a)ρ(a)
(8)

If a uniform distributed domain is assumed (ρ(a1) =
ρ(a2), ∀a1, a2 ∈ A), this probability and hence the real-world

equivalence RW-EQ(X,Y) result in:

PX(Y |ΠX) =
πX(y)

∑

a∈A πX(a)
=

πX(y)

Card(ΠX(a))
(9)

For example, the probability that the person represented by

tuple t11 is 25 years old is calculated as:

P (t11.age = 25) =
πYOUNG(25)

Card(ΠYOUNG(Age))
=

0.5

25
= 0.02

The probability PX(Y |ΠX(A),ΠY (A)) (short

PX(Y |ΠX ,ΠY )) that two real-world phenomena each

represented by a non-crisp fuzzy value (X and Y each

defined in A which is uniform distributed) are equal is

defined as (the derivation is shown in Equation 5):

PX(Y |ΠX ,ΠY ) =
∑

a∈A

πX(a)

Card(ΠX(A))
·

πY (a)

Card(ΠY (A))
(10)

For example, the probability that the persons which are rep-

resented by the tuples t12 and t22 have the same haircolor

results in:

P (t12.haircolor = t22.haircolor) =
1

1.9
·
1

1.5
+
0.7

1.9
·
0.5

1.5
= 0.47

In order to consider mismatches resulting from incomplete

data as well as incorrect data, for calculating the real-world

2This is the probability that the true value of X is an element of the fuzzy
set F = (A,µ), µ(a) = πY (a).

equivalence of two fuzzy values X and Y , syntactic as well

as semantic irregularities in real-life data have to be taken into

account:

θ(X,Y ) = max(D-EQ(X ,Y ), I-EQ(X ,Y ))

In this case, the real-world equivalence of a non-crisp fuzzy

value X and a crisp value Y is defined as:

RW-EQ(X,Y) =
∑

a∈A

PX(a|ΠX) · θ(a, Y ) (11)

The real-world equivalence of two non-crisp fuzzy values re-

garding erroneous data is defined accordingly (see Equation 6).

Note, we assume a uniform probability distribution on the

attribute domains. Sometimes, however, other distributions are

more suitable (e.g. it is more probable that a person is 20 years

than 100 years old). In such cases, the probability ρ(a) cannot

be canceled as done in Equation 9.

C. Tuple Matching

From matching the n values of a tuple pair (tX , tY ) a

comparison vector ~c = [c1, ..., cn] results, where each ci
represents the similarity score of the i’th attribute value of

these two tuples. As in techniques for the relational model, the

comparison vector ~c is the input of a tuple matching method

which decides, if the tuples represent the same real-world

object or not. In the literature, various tuple matching methods,

for instance probabilistic matching models (e.g. Fellegi and

Sunter Theory [28]) or distance-based techniques (for more

detail see [27]), can be found.

We think, the membership of a tuple to a relation depends on

the application context. For example, information on a person

can be stored in two different relations (R1 and R2): one

storing adults, the other storing people having a job. If we

assume that the considered person is certainly 34 years old

and jobless with a confidence of 90%, then the certainty that

a tuple t1 representing this person belongs to the first relation

is µR1
(t1) = 1, but the certainty that a corresponding tuple

t2 belongs to the the second relation is only µR2
(t2) = 0.1.

Note that both tuples represent the same person despite the

significant difference in certainties. This illustrates that not

tuple membership but only uncertainty on attribute value level

should influence the duplicate detection process. Thus, for

duplicate detection membership degrees are neglected and

existing tuple matching methods can also be used in fuzzy

relational databases.

7



name age haircolor µR1
/µR2

o-ID

t11 0.8/John,1/Johan YOUNG DARK 0.9 1

t12 Johan ≤ 15 1/black,0.7/dark-brown,0.2/brown 1.0 1

t21 0.8/John,1/Johan YOUNG DARK 1.0 1

t22 1/Johan,1/Johna ca. 10 1/black,0.5/dark-brown 0.7 1

t13 1/Tim,1/Tom ADULT blond 0.4 2

t23 1/Tim,1/Jim,0.3/Kim [24,25] LIGHT 0.8 2

t14 0.7/Mia,1/Mira 33 1/brown,0.8/light-brown 0.5 3

t24 Kira [32,34] LIGHT 1.0 3

Fig. 7. Duplicate cluster

V. DATA FUSION IN FUZZY DATABASES

We assume that after duplicate detection all tuples are

clustered w.r.t. their corresponding object-IDs (see Figure 7).

In order to achieve a concise integration result all the tuples

of one cluster have to be fused to a single representation. If

duplicate detection was applied w.r.t. real-world equivalence,

the tuples of one cluster do not have to be data- or information

equivalent. Accordingly, different data conflicts can occur and

have to be handled during data fusion.

A. Data Conflicts

Two representations of the same real-world object can be

in relation to each other in four different cases [29]: Equality,

subsumption, complementation and conflict (the definitions

below are formalized in Figure 8):

1) Equality: In both, in relational as well as fuzzy rela-

tional databases, two tuples tX and tY , specified on the

attributes Ai ∈ A (each defined in Di), are said to be

equal (EQ(tX , tY )), if all their corresponding attribute

values are data equivalent. For example, the tuples t11
and t21 (Figure 7) are equal.

2) Subsumption: In relational databases, a tuple tX is said

to subsume a tuple tY (SUB(tX , tY )), if for every

attribute the value of both tuples are equal or tY is a

null value. If we abstract from the limited representation

capabilities of the relational model, a tuple tX subsumes

a tuple tY , if each attribute value of tX represents the

same or more exact information than the associated

attribute value of tY without any contradictions. Thus,

w.r.t. fuzzy databases, a tuple tX subsumes a tuple tY ,

if for every attribute A each possible domain element of

tX .A is also possible for the fuzzy value tY .A with a

possibility equal or higher than for tX .A (the possibility

distribution of tY .A includes the possibility distribution

of tX .A). For example, the tuple t12 subsumes the tuple

t11 (see Figure 7).

3) Complementation: In fuzzy databases, two tuples tX and

tY are said to be complementary (CMP(tX , tY )), if no

subsumption exists, but for every attribute the possibility

distribution of one value is included in the possibility

distribution of the other value. For example, the tuples

t12 and t22 are complementary.

4) Conflict: Two tuples tX and tY are said to be in conflict

(CF(tX , tY )), if at least one pair of attribute values

represent contrary information. For example, since the

possibility distributions of the attribute name of the

tuples t13 and t23 are disjoint both tuples are in conflict.

In order to handle situations of equality, subsumption and

complementation quite simple concepts can be used: If two

tuples are equal, one of them can be omitted. If a tuple

subsumes another one, the subsumed tuple can be dropped. In

the situation that two tuples are complementary, a new tuple

tN can be created by using the more exact value of both tuples

for each attribute. For example, the complementary tuples t12
and t22 can be fused to:

tN = (Johan, ca.10, {1/black, 0.5/dark-brown})

Since t12 subsumes t11 and t21, all tuples of cluster 1 can

be fused to the single tuple tN . If two tuples are in conflict,

fusion is more complex and the handling of such situations has

to be traced back to handling the conflicts of the individual

attribute values. On attribute value level, two types of data

conflicts exist [17]:

1) Uncertainties: Two attribute values are in an uncertainty

conflict, if it is uncertain whether both true values are

equal or not. In the relational model, an uncertainty

conflict between two values exists, if at least one of

them is a null value. With respect to fuzzy databases,

an uncertainty conflict between two fuzzy values exists,

if at least one of the fuzzy values is not crisp and there

is at least one value which is possible for both of them

(e.g. the two fuzzy values t13.haircolor and t23.haircolor

or the two fuzzy values t13.name and t23.name have an

uncertainty conflict).

2) Contradictions: In contrast, two attribute values are con-

tradictory, if they are certainly inconsistent descriptions

of the same real-world property and it can be excluded

that both fuzzy values have the same true value. In the

relational model, two or more values are contradictory

if they are distinct and not null values. With respect

to fuzzy databases, a contradiction conflict between

two fuzzy values exists if there is no value which is

possible for both fuzzy values and hence the intersection

of the corresponding possibility distributions is empty

(e.g. the two fuzzy values t14.name and t24.name are

contradictory).

In order to manage uncertainties as well as contradictions

conflict handling strategies are used during data fusion.
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EQ(tX , tY ) = (∀Ai ∈ A) : ΠtX .Ai
(Di) = ΠtY .Ai

(Di)

SUB(tX , tY ) = (∀Ai ∈ A) : ΠtX .Ai
(Di) ⊆ ΠtY .Ai

(Di)

CMP(tX , tY ) = (∀Ai ∈ A) : ¬(SUB(tX , tY ) ∨ SUB(tY , tX)) ∧ (ΠtX .Ai
(Di) ⊆ ΠtY .Ai

(Di) ∨ΠtY .Ai
(Di) ⊆ ΠtX .Ai

(Di))

CF(tX , tY ) = (∃Ai ∈ A) : ΠtX .Ai
(Di) 6⊆ ΠtY .Ai

(Di) ∧ΠtY .Ai
(Di) 6⊆ ΠtX .Ai

(Di)

Fig. 8. The four different cases of conflict situations

B. Conflict Handling Strategies

Bleiholder and Naumann classify conflict handling strate-

gies into three main classes [17]: conflict ignorance, con-

flict avoiding and conflict resolution (see Figure 9). Conflict

ignorance strategies are mostly not aware of data conflicts

and if so, they do not make a decision as to what to do

with such conflicts. A representative of this class is the

strategy PASS IT ON which passes conflicts to the user and

lets the user decide how to handle possible conflicts. Conflict

avoiding strategies acknowledge but do not resolve existing

data conflicts. Representatives are TRUST YOUR FRIENDS

(takes the data from the most trusted source) or TAKE THE

INFORMATION (takes the non-null value). While from conflict

ignoring strategies at most complete but not concise data

results, conflict avoiding strategies supply at most a concise but

not complete result. In contrast, conflict resolution strategies

are more adequate to supply complete as well as concise

data. These strategies are able to acknowledge and resolve

existing data conflicts by regarding instance data as well as

metadata. With respect to fuzzy databases, conflict ignoring

and conflict avoiding strategies only marginally differ from

strategies for relational databases. Thus, in the following, we

focus on conflict resolving strategies and how they can resolve

conflicts between two or more fuzzy values by applying

conflict resolution functions.

C. Conflict Resolution Strategies

Conflict resolution strategies are further classified into de-

ciding and mediating strategies. Both classes either depend

on operational data values (instance based) or take additional

metadata (metadata based) into account (see Figure 9).

1) Deciding Strategies: Deciding strategies choose one of

the present attribute values. Examples for instance based

deciding strategies defined for relational databases which can

be used also for fuzzy databases are CRY WITH THE WOLVES

(takes the most frequent attribute value among the conflicting

ones) or ROLL THE DICE (chosen randomly). Furthermore,

w.r.t. fuzzy databases additional strategies are possible, e.g.,

a strategy which takes the most precise fuzzy value (e.g.

the fuzzy value whose possibility distribution has the lowest

cardinality). In metadata based deciding strategies metadata,

e.g., quality values, are used to decide which of the conflicting

values is most suitable. An example for a metadata based

deciding strategy is KEEP UP TO DATE which chooses the most

recent value. In fuzzy databases, additional metadata as fuzzy

degrees (e.g. the membership degree of the corresponding

tuples) can be additionally taken into account.

2) Mediating Strategies: In contrast to deciding strategies,

mediating strategies resolve conflicts by creating a new at-

tribute value (e.g. the average or the median) which is suitable

to represent all the conflicting ones. A representative for

instance based mediating strategies is MEET IN THE MIDDLE

(take an attribute value which is as close as possible to all

present ones). Additional instance based mediating strategies

for fuzzy databases are possible by using a fuzzy set-based

resolution function, as for example one of the three functions

UNION, INTERSECTION or WEIGHTED UNION which are

presented in the following section. In order to invent a repre-

senting attribute value, in metadata based mediating strategies,

suitable metadata (e.g. up-to-dateness or other quality values

as reliability) is taken into account by weighting the individual

attribute values with their corresponding quality.

D. Conflict Resolution Functions

Usually, in order to resolve conflicts on the attribute value

level all representations of one real-world object are grouped

and fused by applying a conflict resolution function. Since

a conflict resolution function aggregates multiple values to a

single one, these functions can be seen as a more general case

of aggregation as known from the SQL-standard [19]. Every

resolution function can be formalized as a function with the

conflicting values as input and the resolved value as output.

In relational databases, each resolution function defined over

a domain D is a mapping of n crisp values on a single crisp

value. With respect to fuzzy databases resolution functions can

be classified into four classes:

1) Crisp-to-Crisp: Resolution functions of this class are of

the form

f : Dn → D

⇒ f(c1, ..., cn) = s, c1, ..., cn, s ∈ D

if only instance data is used and of the form

f : Dn ×A → D

⇒ f(c1, ..., cn, a) = s, a ∈ A, c1, ..., cn, s ∈ D

if additional meta information (represented by the in-

put parameter A) is regarded [17]. Since non-crisp

fuzzy values can be reduced to crisp values by de-

fuzzification (e.g. center-of-gravity or the center-of-area
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conflict handling

strategies

metadata 

based

conflict avoidance conflict resolution

instance 

based

conflict ignorance

mediatingdeciding

metadata 

based

instance 

based

mediatingdeciding

Fig. 9. A classification of strategies for handling inconsistent data [17].

method [24]), resolution functions defined for relational

databases can be also used in fuzzy databases.

2) Fuzzy-to-Fuzzy: Resolution functions which map n non-

crisp values on a single non-crisp value are of the form

f : P (D)n → P (D)

⇒ f(Πc1(D), ...,Πcn(D)) = Πs(D)

if only operational data is used and of the form

f : P (D)n ×A → P (D)

⇒ f(Πc1(D), ...,Πcn(D), a) = Πs(D), a ∈ A

if metadata is taken into account. Since arithmetic func-

tions (e.g. addition and division) are also defined for

fuzzy sets (see the theory of fuzzy numbers [25]), the

common resolution functions min, max, avg, median and

sum can be defined and hence applied for all kinds of

fuzzy values, too. Altogether, an enormous number of

conflict resolution functions of the form f : P (D)n →
P (D) is possible (see aggregation operations on fuzzy

sets in [25]). In the following, we will take a closer

look at two intuitive and suitable mediating conflict

resolution functions which are already known from other

application domains: INTERSECTION and UNION.

- INTERSECTION (∩) is a function which can be

used for resolving uncertainty-conflicts. In rela-

tional databases, INTERSECTION corresponds to

the strategy of using the single non-null value. In

fuzzy databases, INTERSECTION takes the ele-

ments which are possible for all conflicting fuzzy

values and excludes those elements which are only

possible for a few of them. Let X0, X1, . . . , Xn

be n fuzzy values defined in the domain D which

have to be fused to a single one. From applying

INTERSECTION (∩(X0, X1, ..., Xn)) the possibil-

ity distribution ΠX0∩X1∩...∩Xn
(D) result. Its corre-

sponding distribution function is presented in Fig-

ure 10. Since INTERSECTION requires at least one

element which is possible for all fuzzy values the

function can only be used for resolving uncertainty-

conflicts.

For example, by using INTERSECTION t13.name

and t23.name can be fused to:

tN .name = {1/T im}

- UNION (∪) a function which can be used for

resolving uncertainty-conflicts as well as contra-

dictions. Let X0, X1, . . . , Xn be n fuzzy val-

ues which have to be combined. From applying

UNION (∪(X0, X1, ..., Xn)) the possibility distri-

bution ΠX0∪X1∪...∪Xn
(D) result. Its correspodning

distribution function is presented in Figure 10.

For example, from applying the UNION function,

the two fuzzy values t14.name and t24.name can be

fused to:

tN .name = {0.7/Mia, 1/Mira, 1/Kira}

INTERSECTION as well as UNION can be chosen

for resolving uncertainty conflicts. Since by using

INTERSECTION only the elements which are possible

for all fuzzy values are respected, the resulting fuzzy

value is more precise than the value resulting from

UNION. Nevertheless, by omitting some elements, it

could be the case, that the actual true value of the

corresponding object property is dropped. Thus, by

using INTERSECTION the result is certainly more

precise, but likely also more unsound (incorrect) than

by resolving the uncertainty-conflict by UNION.

Intuitively, an element which is possible for the fuzzy

values of multiple duplicates is more plausible to be the

true value of the corresponding object property than an

element which is only possible for the fuzzy value of

just a few of these tuples. Thus, in order to combine the

benefits of UNION and INTERSECTION, we introduce

the WEIGHTED UNION function which is based on a

special compensatory operator for fuzzy sets [25].

- WEIGHTED UNION (∪W ) is a family of functions

which consider all elements which are possible for

at least one fuzzy value (as UNION), but enhance the

possibility of these elements which are possible for

multiple fuzzy values (similar to INTERSECTION).
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INTERSECTION : πX0∩X1∩...∩Xn
(d) = πX0

(d) ∩ πX1
(d) ∩ ... ∩ πXn

(d) = min(πX0
(d), ..., πXn

(d))

UNION : πX0∪X1∪...∪Xn
(d) = πX0

(d) ∪ πX1
(d) ∪ ... ∪ πXn

(d) = max(πX0
(d), ..., πXn

(d))

WEIGHTED UNION : πX1∪W X2∪W ...∪W Xn
(d) =

n
∑

i=1

wi · πXi
(d), with

n
∑

i=1

wi = 1

Fig. 10. Fuzzy set-based resolution functions

Thus, a compromise between precision and sound-

ness can be achieved. First we consider each

WEIGHTED UNION as a binary operator which

merges the possibility distributions of two fuzzy

values. The result of applying a binary WEIGHTED

UNION (∪W (X,Y )) has the possibility distribution

ΠX∪W Y (D) with the distribution function:

πX∪W Y (d) =
1

2
πX(d) +

1

2
πY (d)

=
1

2
πX∪Y (d) +

1

2
πX∩Y (d)

If we consider each WEIGHTED UNION as an n-ary

operator, an element is the more plausible to be the

true value, the more fuzzy values exist for which

this element is possible. Thus the result of an n-ary

WEIGHTED UNION (∪W (X1, X2, . . . , Xn)) has the

possibility distribution ΠX1∪W X2∪W ...∪W Xn
(D). Since

the reliability of each input value can be different,

we introduce a weight for each of the considered

fuzzy values. The resulting family of corresponding

distribution functions is presented in Figure 10. For

example, in strategies only based on instance data,

an appropriate weighting of the individual sources

is the uniform weighting (∀i ∈ [1, n], wi =
1
n ):

πX1∪W X2∪W ...∪W Xn
(d) =

n
∑

i=1

1

n
πXi

(d)

In contrast, in metadata-based strategies quality val-

ues as the reliabilities of the corresponding sources

or the up-to-dateness of the conflicting values can

be used for determining an adequate weighting

function.

Since a possibility distribution has to be normalized, the

result of ∩, ∪ or ∪W have to be divided by their highest

possibility if necessary.

3) Crisp-to-Fuzzy: Using the capabilities of possibility dis-

tributions, instead of deriving a crisp value from multiple

crisp values additional concepts for conflict resolution

are possible (e.g. the union of all conflicting values

as it is proposed in [30]). Sometimes, e.g., in order

to integrate contradictory crisp data into a target fuzzy

schema, it is suitable to aggregate several conflicting

crisp values to a non-crisp value. Since every crisp

value can be described by a possibility distribution, the

resolution functions of this class are special cases of the

last class’s functions and can be used to integrate data

from relational source schemas in a fuzzy target schema.

4) Fuzzy-to-Crisp: By concatenating a fuzzy-to-fuzzy res-

olution function f1 : P (D)n → P (D) with a function

for defuzzification f2 : P (D) → D, multiple non-crisp

fuzzy values can be mapped on a single crisp value

(f2 ◦ f1 = f3 : P (D)n → D). Such functions are

required, if data from several fuzzy databases has to be

integrated into a relational schema.

E. Fusing Fuzzy Degrees

In order to resolve conflicts between metadata (e.g. fuzzy

degrees) similar strategies as for operational data can be used.

For example, two suitable strategies for resolving conflicts

between two or multiple degrees of membership is to take the

average of all memberships degrees (mediating strategy) or to

take the degree representing the most certain information on

membership (deciding strategy). A tuple certainly belongs to

a relation, if its membership degree is 1 and does certainly

not belong to a relation, if its membership degree is 0.

As a consequence, the highest uncertainty of membership is

modeled by a degree of 0.5. The certainty of the membership

of a tuple t to a relation R can be calculated as:

Certainty(µR(t)) = |2(µR(t)− 0.5)|

If data is integrated by unifying data of multiple sources (see

the Union-Merge operator ⊔ defined in [31]), a tuple belongs

to the integration result, if it belong to one of the source

relations. In this case, the maximal tuple membership has to

be used. Thus, by using the Union-Merge for an integration

of the two relations R1 and R2, the tuple membership of the

integration result R1 ⊔R2 is defined as:

µR1⊔R2
(t) = max(µR1

(t), µR2
(t))

Furthermore, as for conflict resolution in operational data,

additional metadata as quality values (e.g. the reliabilities of

the corresponding sources) can be taken into account.

F. Tuple Fusion

Two or multiple tuples are fused by merging their attribute

values and membership degrees. For instance, if in our exam-

ple the WEIGHTED UNION is used for resolving all existing

conflicts, the resulting data is shown in Figure 11. In contrast,

the integration result by using INTERSECTION for resolving
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name age haircolor µR1

t′1 Johan ca.10 1/black,0.5/dark-brown 0.9

t′2 1/Tim,0.5/Tom,0.5/Jim,0.15/Kim 0.95/24,1/25 1/blond,0.35/light-brown,0.2/brown 0.6

t′3 0.7/Mia,1/Mira,1/Kira 0.5/32,1/33,0.5/34 0.67/blond,1/light-brown,0.93/brown 0.75

Fig. 11. Integrated relation resulting from using WEIGHTED UNION with the weights w1 = w2 = 0.5

name age haircolor µR1

t′1 Johan ca.10 1/black,0.5/dark-brown 0.9

t′2 Tim 0.95/24,1/25 blond 0.6

t′3 0.7/Mia,1/Mira,1/Kira 33 1/light-brown,0.57/brown 0.75

Fig. 12. Integrated relation resulting from using INTERSECTION (uncertainties) and UNION (contradictions)

uncertainties and UNION for resolving contradictions is shown

in Figure 12. The result of the second strategy is certainly

more precise than the result of the first one, but it is also more

unsound, if for example the true age of the person represented

by the tuple t′3 is 34, not 33. Furthermore, the first approach is

associative, meaning that the integration result is independent

from the fusion order. In conclusion, this example clarifies,

choosing an adequate resolution function is generally a trade-

off between precision and soundness.

VI. RELATED WORK

Duplicate detection and data fusion are two extensively

investigated fields of research. In current approaches duplicate

detection is mostly considered w.r.t. the relational data model

[32], [28], [33], [18] or any semi-structured data model (e.g.

for XML [34]) where approximate duplicates are often denoted

as fuzzy duplicates [35], [36]. Nevertheless, uncertain source

data, as for example fuzzy data, is not considered in these

works. On the other hand, many proposals which focus on

data preparation (e.g. [37]), search space reduction (e.g. [33]),

decision models (e.g. [28]) or verification (e.g. [27]) can be

adopted for duplicate detection in fuzzy databases. Further-

more, existing similarity functions for comparing two attribute

values (e.g. [18]) can also be incorporate into techniques for

comparing two fuzzy values.

Shahri et al. [36] use the theory of fuzzy logic in order to

enhance the detection of approximate duplicates in relational

databases. Their fuzzy inference engine enables an handling of

uncertainty in deduplication by using matching rules specified

in natural language instead of defining certain thresholds.

As a consequence, domain experts are unburdened from the

requirement of making certain decisions.

The fusion of relational data is considered in [19], [17].

Since a fuzzy relational data model is a generalization of the

relational data model, the feasibility of these fusion methods is

limited to crisp fuzzy values. In general, for the fusion of non-

crisp fuzzy values these methods have to be also considered

in a more general way.

Some former proposals handle the uncertainty arising in

schema integration [12], duplicate detection [14] and data

fusion [30], [13], [14] by using uncertain data models.

DeMichiel [30] and Tseng [13] introduce concepts of mod-

eling uncertainty in order to resolve conflicts between two or

more relational values. Thus, in these approaches relational

data is fused into a model capable to represent uncertain and

incomplete information by using functions for fusing multiple

crisp values to a partial value [30] or a probabilistic partial

value [13] respectively. Since we additionally focus on the

fusion of multiple non-crisp values to a single non-crisp value,

if the target schema is a fuzzy schema or on the fusion of

multiple non-crisp fuzzy values to a single crisp value, if

the target schema is only relational, we consider fusion of

imperfect data from a more general point of view.

In [12], the authors propose probabilistic schema mappings

for handling the uncertainty which occur during the integration

of two or more relational schemas. Mappings of probabilistic

schemas or melting uncertain source data are not considered

by them so far.

Van Keulen and de Keijzer [38], [39], [14] define a proba-

bilistic XML model in order to manage uncertainties resulting

from entity resolution (duplicate detection) and conflict reso-

lution (data fusion) in certain data. However, deduplication of

probabilistic source data or fuzzy source data is not covered

in their works.

VII. CONCLUSION

We started from the observation that current techniques

of duplicate detection and data fusion are not designed to

deal with source data representing fuzzy information. As a

consequence, for achieving a concise result from the integra-

tion of data originating from different fuzzy databases, we

have adapted existing approaches for deduplication to handling

imperfect information modelled by possibility distributions.

We have considered duplicate detection w.r.t. different types

of equivalence and have presented techniques for measuring

information equivalence and real-world equivalence of two

non-crisp fuzzy values. In this process, we primarily have

focused on real-world equivalence, meaning that two tuples

are equivalent, if they represent the same real-world object.

If tuples only contain crisp data, an identification of multiple

representations of the same real-world object can be traced

back to the syntactic and semantic resemblance of the con-

cerned tuples. However, for tuples containing non-crisp fuzzy

values such an approach is not adequate. Therefore, we have

defined the real-world equivalence of two fuzzy values as the

probability that the true value of both attribute values are

semantically or syntactically similar to a large extent.
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Existing definitions and concepts of data fusion, as for

example conflict situations between duplicate tuples, data con-

flicts on attribute value level and conflict handling strategies,

are redefined w.r.t. fuzzy values. Furthermore, we have pre-

sented four classes of resolution functions which are suitable

for an integration of fuzzy source data into a fuzzy target

schema or a relational target schema, or for an integration

of relational source data into a fuzzy target schema. In this

context, we have taken a closer look at three conflict resolution

functions, namely intersection, union and priority union, which

can be used to fuse multiple conflicting non-crisp fuzzy values

to a single one.

In conclusion, this paper gives first ideas for identifying

and unifying duplicates in fuzzy databases. Individual subareas

have to be investigated in more detail and will be topic of

future reflections. For example the proposed functions for

measuring information equivalence do not respect syntactic as

well semantic similarities between individual domain elements

and hence are not suitable for regarding irregularities in

real-life data. In addition, a closer examination will reveal

the suitability and existing limitations of possible resolution

functions w.r.t. different application domains. Furthermore, in

order to design deduplication techniques for complex data,

fuzzy functional dependencies have to be taken into account.

Last but not least schema matching and schema mapping w.r.t.

fuzzy databases are also two unexplored fields of research

which have to be investigated in future work.
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