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Abstract. Real-world data are often uncertain and incomplete. In prob-
abilistic relational data models uncertainty can be modeled on two levels.
First by representing the uncertain instance of a tuple by a set of possible
instances and second by assigning each tuple with its degree of member-
ship to the considered relation. To overcome incompleteness, data from
multiple sources need to be combined. In order to combine data from au-
tonomous probabilistic databases, an integration of probabilistic data has
to be performed. Until now, however, data integration approaches have
focused on the integration of certain source data (relational or XML).
There has been only less attention on the integration of uncertain (esp.
probabilistic) source data so far. In this paper, we consider probabilistic
tuple merging being an essential step in the integration of probabilistic
data. We present techniques for merging uncertain instance data as well
as for merging different degrees of tuple membership.
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1 Introduction

The increasing need for applications that produce uncertain data (e.g. in the area
of astronomy [24]) has attracted high attention of uncertain data management
in the database research community in recent years. Thus, several probabilistic
data models have been proposed [9, 4, 16, 5, 26] and several probabilistic database
prototypes have been designed [2, 17, 8].

Nevertheless, current approaches for data integration mostly consider a prob-
abilistic handling of uncertainty emerging during the integration of certain source
data (e.g. [13, 25, 26]). Integration of uncertain (esp. probabilistic) source data
has only been rarely addressed so far [1]. However, to combine probabilistic data
from multiple sources, for example for unifying data produced by different space
telescopes, an integration of probabilistic source data is required.

In general, a data integration process consists of two steps: (a) duplicate
detection [15] for identifying multiple representations of same real-world entities
and (b) tuple merging [18, 23, 6] (also known as data fusion [7]) to consolidate
multiple representations to a single one.

In [21] we already adapted existing techniques for duplicate detection to
probabilistic data. From this duplicate detection process a set of tuple cluster



(one cluster for one real-world entity) results. In this paper, we present techniques
for merging the tuples of each cluster to a single probabilistic representation.

The contributions of this paper are: (i) we define requirements for an ideal
tuple merging, (ii) we present an ideal merging of instance data and (iii) we
present strategies for merging tuple memberships.

The paper is structured as follows. First we present the concept of proba-
bilistic tuples (Section 2). Then we formalize the problem of merging multiple
probabilistic tuples in Section 3. In Section 4, we introduce a strategy for tu-
ple merging in probabilistic databases. We present techniques for merging the
possible instances of two probabilistic tuples (Section 4.1) as well as techniques
for merging the tuples’ degrees of membership (Section 4.2). Related work is
presented in Section 5. Section 6 concludes the paper. Finally, in Section 7 open
problems and future challenges are discussed.

2 Probabilistic Tuples

In probabilistic relational models, uncertainty is modeled on two levels: (a) each
tuple t is assigned with a probability p(t)R ∈ (0, 1] denoting the likelihood, also
called membership degree, that t belongs to the corresponding relation R (mem-
bership level), and (b) alternatives for attribute values are given (instance level).

In earlier approaches, alternatives of different attribute values are considered
to be independent (e.g. [4]). In these models, each attribute value can be consid-
ered as a separate random variable with its own probability distribution. Newer
models like ULDB [5] or MayBMS [17] support dependencies by introducing new
concepts like ULDB’s x-tuple and MayBMS’s U-relation.

To get a general representation of the uncertain information captured by
a single tuple, we consider a representation model which is defined within the
possible world semantics. Theoretically, a probabilistic tuple can be considered
as a set of possible instances together with the probability of each instance to
be the true instance (uncertainty on instance level) and the tuple’s degree of
membership to the considered relation (uncertainty on membership level).

Definition 1 (Probabilistic Tuple): Let R be a probabilistic relation and A =
{A1, A2, . . . , An} its finite set of attributes where each attribute Ai ∈ A has a
finite domain Di. A probabilistic tuple t ∈ R is defined as t = ((I, P ), p(t)R)
where I = {I1, . . . , Ik} ⊆ D1 × D2 × . . . × Dn is the set of possible instances
of t, P : I → (0, 1],

∑
I∈I P (I) = 1 is the probability distribution over these

instances, and p(t)R is degree of membership of t to R.

Each possible instance can be considered as a certain tuple. Along with its
probabilities the set of possible instances is in the following denoted as instance
data. Maybe-tuples are tuples for which the membership to the considered rela-
tion is uncertain and hence have a membership degree smaller than 1.

In the following, we present a probabilistic tuple by an own table, where each
row represents a possible instance together with its probability. An extra column
specifies the membership of the whole tuple. An example is depicted in Figure 1.



A1 : D1 A2 : D2 . . . An : Dn P (I) p(t)R
I1 v11 v12 . . . v1n 0.6

0.8
I2 v21 v22 . . . v2n 0.4

Fig. 1. Representation of a probabilistic tuple t = (({I1 = (v11, v12, . . . , v1n), I2 =
(v21, v22, . . . , v2n)}, P : {I1 7→ 0.6, I2 7→ 0.4}), 0.8) ∈ R based on the possible world
semantics

2.1 Tuple Membership

In certain and complete data, to each entity an exact position within the real-
world is assigned (not necessarily the correct one) and hence its membership to
any specific extension can be exactly derived (as an example see the red dot
in Figure 2(i)). In contrast, in uncertain and/or incomplete data, an entity’s
position only can be restricted on a subarea of the real-world (as an example
see the red area in Figure 2(ii)). Consequently, for some extensions, the entity’s
membership cannot be exactly determined.

Definition 2 (Real-World): The real-world, denoted W, is the set of all exist-
ing real-world entities. The mapping ω : R →W maps each tuple of any relation
R on an entity of W.

Definition 3 (Relation’s Extension): The extension of a relation R, de-
noted Ext(R), is the part of the real-world which is actually modeled by R:
Ext(R) =

⋃
t∈R ω(t) ⊆W

The membership of a tuple to a specific relation generally depends on the
relation’s intended universe of discourse.

Definition 4 (Reference Extension): The reference extension of a relation
R, denoted ER, is the part of the real-world which has to be intendedly modeled
by R: ER ⊆W

Note, data can be incorrect and/or uncertain. Thus, the actual set of real-
world entities modeled by a relation’s tuples is not necessarily a subset of the
relation’s reference extension (Ext(R) 6⊆ ER).

E1 E3

E2

E1 E3

E2

Fig. 2. Real-world position of an entity modeled in a certain and complete data source
(left) and modeled in a uncertain and/or incomplete data source (right)



3 Problem Description

In the first data integration step duplicate representations of same real-world
entities have been detected. The result of the duplicate detection step is a clus-
tering of the tuples of all source relations (one cluster for each real-world entity).

Definition 5 (Clustering): Let R be a relation. A clustering C of R is a par-
tition {C1, C2, . . . , Ck} of R (meaning that the Ci are disjoint and their union
equals R), where each Ci is called a cluster, such that for each cluster all its tu-
ples refer to the same real-world entity: (∀Ci ∈ C) : (∀t1, t2 ∈ Ci) : ω(t1) = ω(t2).

The goal of tuple merging is to combine all tuples of one cluster into a single
one. As we will discuss in Section 4.2, tuple merging essentially depends on the
integration context. Let C = {t1, t2, . . . , tk} be the considered cluster, where
each probabilistic tuple ti belongs to a source relation Ri (the source relations
of different tuples can be equal). For simplification, we consider the schema of
all source relations to be identical. Let S = {A1 : D1, . . . , An : Dn}, D =
D1 × . . . ×Dn be the common instance schema and E′ the reference extension
of the integration result. Thus, merging the probabilistic tuples of C can be
formalized as (Please note: P(S) is the power set of the set S):

tC = µ(C,E′), µ : P(P(D × (0, 1])× (0, 1])× E → P(D × (0, 1])× (0, 1] (1)

For reasons of clarity and comprehensibility, in the following examples, the index
of a merged tuple is an ordered concatenation of the indexes of the tuples it is
merged from. For example, µ({t1, t2, t3}, E′) is denoted by t123. Moreover, given
the tuple tC = µ(C,E′), the tuples {t ∈ C} are denoted as the base-tuples of tC .

3.1 Requirements for an Ideal Merging

The tuple resulting from merging multiple base-tuples should properly combine
the information of all these tuples. For that reason, we define a set of require-
ments for an ideal tuple merging. We denote a merging function µ to be ideal,
if the following four conditions hold:

(1) The merging result is independent from the representation of the source data
and hence independent of the used probabilistic data model.

(2) The function µ is associative. Thus, the tuple resulting from merging the
base-tuples t1, t2 and t3 w.r.t. the considered reference extension E′ is in-
dependent of the merging order:

µ({µ({t1, t2}, E′), t3}, E′) = µ({µ({t1, t3}, E′), t2}, E′) = µ({t1, t2, t3}, E′)

This requirement is important if data integration is considered in a pairwise
fashion.

(3) The function is idempotent (µ({t ∈ R}, E′) = t), if it is considered within
the tuple’s original context (E′ = ER). This requirement ensures that the
result from deduplicating a duplicate free relation is the relation itself.



(4) The information of all base-tuples is sufficiently captured in the merged
tuple. In this case, sufficiently means that no information is lost and no
information is incorrectly introduced by the merging function.

The last requirement is based on intuitive perceptions and hence its formulation
is rather vague. A goal of future work is to formalize this requirement (maybe by a
quantification of information loss [10]). In order to satisfy the first requirement,
we generally consider tuple merging within the possible world semantics. The
other requirements are discussed during the following sections.

4 Merging of Probabilistic Tuples

In relational data, each attribute value represents a property of the real-world
entity modeled by the tuple this attribute value belongs to. For simplification,
we consider the properties of a real-world entity to be independent from the
membership of this entity to a specific extension. Thus the instance data of a
tuple is considered to be independent from its membership to a specific relation
(this is actually not always the case, see discussion in Section 7). As a conse-
quence, we consider the merging of possible instance data and the merging of
tuple memberships each as a separate process and divide the probabilistic tuple
merging into two independent steps:

(1) Merging of instance data (see Section 4.1).

(2) Merging of tuple memberships depending on the given source context and
the considered target context (see Section 4.2).

For that purpose, we decompose the merging function µ into a function for
merging instance data (µID) and a function for merging tuple memberships (µTM).
The function µ(C,E′) = (µID(C), µTM(C,E′)) is ideal, if µID and µTM are ideal.

tC = µ(C,E′) = µ(
⋃
ti∈C
{((Ii, Pi), p(ti)Ri

)}, E′) = ((IC , PC), p(tC)RC
)

= (µID(
⋃
ti∈C
{(Ii, Pi)}) , µTM(

⋃
ti∈C
{p(ti)Ri}, E′))

As a running example throughout this paper, we consider the two probabilis-
tic tuples t1 = ((I1, P1), p(t1)student) and t2 = ((I2, P2), p(t2)author) as presented
in Figure 3. Both tuples are maybe-tuples. Moreover, each tuple has three pos-
sible instances. Two of these instances are the same in both tuples.

name surname location P1(I) p(t1)

I1 John Do New York 0.3
0.8I2 John Doe Albany 0.25

I3 Johan Doe New York 0.45

name surname location P2(I) p(t2)

I2 John Doe Albany 0.4
0.5I3 Johan Doe New York 0.35

I4 Jon Ho York 0.25

t1 = ((I1, P1), p(t1)student = 0.8) t2 = ((I2, P2), p(t2)author = 0.5)

Fig. 3. Probabilistic tuples t1 ∈ student, t2 ∈ author



4.1 Merging of Instance Data

In certain data, instance merging is considered on an attribute by attribute basis.
Since in probabilistic data dependencies between attribute values can exist, we
consider merging techniques always for whole instances. In contrast to a merging
of certain tuples [7], conflict resolution by choosing one of the conflicting items
(deciding strategy) or by creating a new representative (mediating strategy) is
generally not required. Instead, each kind of uncertainty can be stored in the
resulting data by taking multiple possible instances into account.

An ideal instance merging results from the union of all possible instances of
all base-tuples. Since the merging is not associative, if a simple average of the
individual probabilities is calculated, we assign a weight qi to each tuple ti and
define that the weight of a merged tuple results from the sum of the weights of
its base-tuples (qij = qi + qj). If tuple merging is considered within the context
of data integration, the reliabilities of the corresponding sources can be used as
tuple weights. In conclusion, an ideal function for merging instance data can be
formalized as:

µID(
⋃

i∈[1,k]

{(Ii, Pi)}) = (
⋃

i∈[1,k]

Ii,
∑

i∈[1,k] qiPi∑
i∈[1,k] qi

) (2)

It is obvious, that µID is idempotent and associative. Moreover, the function
takes each instance into account which is possible for at least one base-tuple
and does not add an instance which is impossible for all base-tuples. Thus, in-
tuitively this function also satisfies the requirement of sufficiently capturing the
information of the given set of base-tuples.

Running Example: The instance data of the tuple t12 = µ({t1, t2}, E′) result-
ing from merging the two base-tuples t1 and t2 of Figure 3 by using the tuple
weights q1 = 0.6 and q2 = 0.4 is presented in Figure 4.

name surname location P12(I)

I1 John Do New York 0.18
I2 John Doe Albany 0.31
I3 Johan Doe New York 0.41
I4 Jon Ho York 0.1

(I12, P12) = µID({(I1, P1), (I2, P2)})

Fig. 4. Instance data (I12, P12) resulting from merging (I1, P1) and (I2, P2)

User-defined Aggregation Functions. To enable the usage of additional
domain knowledge, for each attribute a specific aggregation function can be
defined by the user (resp. a domain expert). This is an important property,
because in some scenarios a simple union of all possible instance values of an
attribute is not adequate (e.g. in merging sales data) or other information for
reducing the set of possible instances is available (e.g. the domain expert knows
that the address field of a specific tuple is the correct one).



As an example, we consider a relation inventory with the three attributes
name, producer and stock (see Figure 5). The two tuples t3 = ((I3, P3), p3)
and t4 = ((I4, P4), p4) represent the same product, but the stock information
of each tuple belongs to different orders. Therefore, in this scenario neither 15,
20 nor 6 items of this product but rather 21 or 26 items are available. As a
consequence, the true stock value of this product results from the sum of stocks
of both base-tuples instead of being the stock of one of them.

In general, the values of each possible combination of instances belonging to
different base-tuples have to be aggregated. If for all attributes an aggregation
function is defined, for each of these combinations a single possible instance of the
merged tuple results by aggregating the values for each attribute. Otherwise, for
each combination two instances result (one for each of the combined instances).

In our example, two aggregation functions are defined. As mentioned above,
the true stock value is specified by the sum-function (mediating strategy). More-
over, the user knows that the producer value of the second instance data (I4)
is correct. For that reason, always the producer of this tuple is chosen (deciding
strategy). For the attribute name, no function is specified. Thus, all possible
values are taken into account (see Figure 5). Note, instance merging is not ideal,
if at least one non-associative aggregation function (e.g. average) is used.

name producer stock P(I)

Twix Maas Inc. 15 0.8

Twux Nestle 20 0.2

(I3, P3)

name producer stock P(I)

Raider Mars Inc. 6 1.0

(I4, P4)

µID({(I3, P3), (I4, P4)})

⇒
name producer stock P(I)

Twix Mars Inc. 21 0.4

Raider Mars Inc. 21 0.4

Twux Mars Inc 26 0.1

Raider Mars Inc. 26 0.1

(I34, P34)

Fig. 5. Example for instance merging with user-defined aggregation functions

4.2 Merging of Tuple Memberships

The degree of membership of a merged tuple to the result relation depends on
two factors: (i) the overlap scenario of the source relations’ reference extensions
(source context) and (ii) the intended scope of the result relation (target context).

Source Context: The reference extensions ER1
and ER2

of two relations R1

and R2 can be in four different overlap situations (see Figure 6(i)-(iv)).

ER1

ER2

(i) Independence

ER1 = ER2

(ii) Equality

ER1 ER2

(iii) Disjointness

ER1

ER2

(iv) Inclusion

Fig. 6. The four different overlap situations of two reference extensions



Both reference extensions can be independent from each other (partially overlap-
ping), equal, disjoint or one extension can be a subset of the other one (quantified
overlap is supposed to be considered in future work). A set of pairwise overlap
situations is called an overlap scenario.

To detect the given overlap scenario of different reference extensions, addi-
tional meta information on the individual sources and general information on
real-world relationships is required. In our research, based on semantic concepts
as ontologies and thesauri, we aim to identify overlap scenarios only by using
the source relations’ names (see example shown in Figure 7).

participant

student regular

author

reviewer
participantauthor student

regularreviewer
contains

contains

contains

contains

disjoint

complete

Fig. 7. Overlap Scenario of reference extensions (left), corresponding ontology (right)

Target Context: The membership of a merged tuple to the result relation
generally depends on the integration’s intended universe of discourse. In the
following, the reference extension of the integration’s result relation is denoted
as target reference extension.

Let R3 be the relation which results from integrating the relations R1 and
R2. In general, each part of the real world (ER3

⊆ W) can be considered as
target reference extension (e.g., ER3

⊃ ER1
∪ ER2

). However, the most cases
are very unusual and there is not enough information available for predicting
an adequate membership degree of the resulting tuples. Moreover, for the most
integration processes an intuitive target reference extension can be implied by
the used merge operators. For example, in [20] the four merge operators merge
join u, left outer merge join <, right outer merge join = and full outer merge
join t are introduced. An intuitive target reference extension ER3

for each of
these operators can be defined as:

R3 = R1 uR2 R1 tR2 R1 < R2 R1 = R2

ER3 = ER1 ∩ ER2 ER1 ∪ ER2 ER1 ER2

Membership Merging in Consistent and Complete Data: Given the
definitions above, the membership merging function µTM can be formalized as:

µTM : P((0, 1])× P(W)→ (0, 1], p(tC)RC
= µTM(

⋃
ti∈C
{p(ti)Ri

}, E′) (3)

where P(W) is the set of all possible parts of the real-world and E′ is the consid-
ered target reference extension. As mentioned above, the quality of membership



merging can be enhanced if the overlap scenario of the source relations’ reference
extensions is given. Otherwise, situations of independence have to be assumed.

Target reference Membership merging function:

extension: p(t12)R3 = µTM({p(t1)R1 , p(t2)R2}, ER3)

ER3 = ER1 ∪ ER2

P (e ∈ ER3) = P (e ∈ ER1) + P (e ∈ ER2)− P (e ∈ ER1 ∧ e ∈ ER2)

⇒ p(t12)R3 = p(t1)R1 + p(t2)R2 − p(t1)R1 · p(t2)R2

ER3 = ER1 ∩ ER2

P (e ∈ ER3) = P (e ∈ ER1 ∧ e ∈ ER2)

⇒ p(t12)R3 = p(t1)R1 · p(t2)R2

ER3 = ER1

P (e ∈ ER3) = P (e ∈ ER1)

⇒ p(t12)R3 = p(t1)R1

ER3 = ER2

P (e ∈ ER3) = P (e ∈ ER2)

⇒ p(t12)R3 = p(t2)R2

Fig. 8. Membership merging in case of two independent reference extensions

As a demonstrating example, we consider all four merge operators (t,u,<
,=) w.r.t. the two independent reference extensions ER1

and ER2
(see Figure 8).

Both base-tuples t1 and t2 represent the same real-world entity e = ω(t1) =
ω(t2). If for example, the full outer join merge is used (ER3 = ER1 ∪ ER2), the
probability that e belongs to the target reference extension is equal to the prob-
ability that one of the two base-tuples t1 and t2 belongs to their corresponding
relation (P (e ∈ ER3

) = P (e ∈ ER1
) + P (e ∈ ER2

)− P (e ∈ ER1
∧ e ∈ ER2

)).
In probability theory, the situation of independence can be specialized to the

situations of equality, inclusion or disjointness by introducing some additional
dependencies:

(Equality) Dep. 1.: ω(t1) ∈ ER1
⇔ ω(t2) ∈ ER2

ER1 = ER2 ⇒ p(t1)R1 = p(t2)R2

(Disjointness)

ER1 ∩ ER2 = ∅

Dep. 1.: ω(t1) ∈ ER1 ⇒ ω(t2) 6∈ ER2

Dep. 2.: ω(t2) ∈ ER2
⇒ ω(t1) 6∈ ER1

⇒ p(t1)R1
+ p(t2)R2

≤ 1

(Inclusion) Dep. 1.: ω(t2) ∈ ER2
⇒ ω(t1) ∈ ER1

ER1 ⊃ ER2 ⇒ p(t1)R1
≥ p(t2)R2

If for the given membership degrees some of these dependencies are not valid,
elementary principles of probability theory can be violated. As for example:

(∃e ∈W) : (∃ER ⊆W) : P (e ∈ ER) + P (e 6∈ ER) 6= 1

In this case, we call the given membership degrees to be inconsistent to each
other. In a single probabilistic database we can assume that all membership
degrees are defined in a consistent way. In data integration, however, we operate
with degrees specified by different independent sources. Thus such an assumption
is not reasonable.



As a consequence, deriving membership merging functions for the situations
of equality, inclusion or disjointness from the functions defined for the situation
of independence (see Figure 8) is not suitable.

Moreover, for queries defined on a single database, the closed world as-
sumption (CWA) [22] applies. Thus, each relation is assumed to be complete
and each real-world entity which is not represented by a relation’s tuple is
assumed to be definitely not belonging to the relation’s reference extension
(p(t)R = 0 ⇒ ω(t) 6∈ ER). Nevertheless, one main purpose of integrating data
is to join multiple incomplete sources to a complete result. Thus, for source re-
lations completeness cannot be assumed and the hypothesis that each missing
tuple definitely does not belong to the considered relation cannot be made. For
dealing with missing membership degrees, we make a generalization of the CWA
and assume that the membership of missing tuples is completely unknown.

In conclusion, the problem of membership merging is to determine an ade-
quate probability that the considered entity belongs to the result relation despite
of inconsistent and missing membership degrees given by the individual sources.

Overlap situation: Membership merging function:

p(t12)R1tR2 = µTM({p(t1)R1 , p(t2)R2}, ER1 ∪ ER2)

Independence

ER1

ER2 p(t12)R1tR2 = p(t1)R1 + p(t2)R2 − p(t1)R1 · p(t2)R2

Equality

ER1 = ER2

p(t12)R1tR2 = (q1 · p(t1)R1 + q2 · p(t2)R2)/(q1 + q2)

Disjointness

ER1 ER2

p(t12)R1tR2 = min(1, p(t1)R1 + p(t2)R2)

Inclusion

ER1

ER2 p(t12)R1tR2 =

{
p(t1)R1 , if p(t1)R1 ≥ 0

(q2 · p(t2)R2)/(q1 + q2) , else

Fig. 9. Four different overlap situations together with possible membership merging
functions defined for the case of inconsistent membership degrees

Inconsistent Membership Degrees: In Figure 9 we present four possible
functions defined for merging tuple memberships in a full outer merge join
adapted to inconsistent membership degrees. Even though we defined these func-
tions to be binary, a definition for more than two base-tuples is also possible. In
the situations of equality and inclusion, we use the two weights q1 and q2 already
defined in Section 4.1.

Note, the merging functions defined for each situation are individually asso-
ciative. From a global point of view (e.g. an overlap scenario of multiple source
extensions as shown in Figure 7(i)), however, the merging is not associative and
hence not ideal. Defining a globally associative merging of inconsistent member-
ship degrees seems very hard and is an interesting challenge of future research



(see Section 7). Nevertheless, in many integration scenarios the reference ex-
tensions of all source relations are equal (e.g. in unifying data resulting from
different observations of same real-world phenomena) , disjoint (e.g. in an in-
tegration of multiple local databases into a global one) , almost independent
(e.g. in integrating data resulting from observations of several independent real-
world phenomena) or pairwise include each other (e.g. in integrating data for
enhancing the quality of a specific database’s part). Since each of the merging
functions defined in Figure 9 is individually associative, for such scenarios an
ideal membership merging can be guaranteed.

ER3 = ER1 ∪ ER2 P (e ∈ ER3) ≥ P (e ∈ ER1) ⇒ p(tC)R3 ∈ [p(t1)R1 , 1]

ER3 = ER1 ∩ ER2 P (e ∈ ER3) ≤ P (e ∈ ER1) ⇒ p(tC)R3 ∈ [0, p(t1)R1 ]

ER3 = ER2 P (e ∈ ER3) = P (e ∈ ER2) ⇒ p(tC)R3 ∈ [0, 1]

ER3 = ER1 P (e ∈ ER3) = P (e ∈ ER1) ⇒ p(tC)R3 = p(t1)R1

Fig. 10. Membership merging w.r.t. two independent source relations R1 and R2 in
case of a missing membership degree of e to ER2 (P (e ∈ ER2) ∈ [0, 1])

Missing Membership Degrees: Independent from the duplicate detection
result, the membership degree of each tuple has to be recalculated, if the target
reference extension deviates from the reference extension of its source relation.
For that reason, in an integration process working on disparate reference exten-
sions, membership merging has to be applied on each duplicate cluster, whether
this cluster contains multiple tuples or not.

If a cluster does not contain a tuple for each of the different source relations’
reference extensions, the membership degree of the considered real-world entity
to this extension is missing. Thus, in some contexts, the membership of the
merged tuple to the target reference extension cannot be exactly determined as
described above and instead of an exact value only a range of possible member-
ship can be specified. Since, in this paper, we restrict ourselves to binary merging
functions, we exemplary consider the case of an integration of two relations R1

and R2 and a cluster C that only contains a single tuple C = {t1 ∈ R1}. De-
pending on the considered target reference extension (ER3), the resulting mem-
bership degree p(tC)R3

is more or less uncertain. As an example, we consider the
situation of independence which is shown in Figure 10. In three of four target
contexts only a range of possible membership results. In the last case, however,
the target reference extension is equal to ER1 . Thus, in this case, none of the
required membership degrees is missing and the resulting degree of membership
can be exactly determined. Note, if in the probabilistic target model, probability
ranges cannot be stored, using the expected probability seems most suitable.

Ideality: Membership merging without inconsistent and missing membership
degrees is based on probability theory and hence seems to be sufficient. In con-
trast, a sufficient capturing of the information represented by the individual
memberships cannot be intuitively defined if inconsistent or missing membership



degrees exist. Nevertheless, in case of inconsistent membership degrees, a pre-
serving of the information represented by all the base-tuples’ memberships is not
reasonable, because the information on memberships is definitely not accurate.

Running Example: With respect to our running example, the reference exten-
sions of both source relations are independent (see Figure 7). Thus, by using the
join merge, the degree of membership of the merged tuple to the result relation
representing all student authors results in:

p(t12)student authors = p(t1)student · p(t2)authors = 0.4

5 Related Work

Tuple merging in certain data is considered in different works [11, 7, 19, 6]. Since
in certain data only single values can be stored, conflicts can only be resolved
by choosing one of the conflicting values (e.g. by using max ) or by creating a
new representative (e.g. by using avg). With respect to the most conflict reso-
lution functions tuple merging is not associative and hence not ideal. Moreover,
our approach is more general, which can be specialized to conflict resolution as
defined for certain data if for each attribute an aggregation function is specified.

Robertson et al [23] consider tuple merging within a transposition of certain
data. Merging of two tuples with contrary instance data is not provided (in such
cases both tuple are denoted to be non mergeable).

DeMichiel [12] and Tseng [25] use partial values (resp. probabilistic values)
to resolve conflicts between certain values by taking multiple possible instances
into account. Consequently, these approaches already produce uncertain data as
result data. This is similar to our ideal instance merging if each base-tuple is
considered to be certain and no aggregation functions are used. Nevertheless,
both approaches consider conflict resolution on an attribute by attribute basis.
Dependencies between possible attribute values are not considered.

Andritsos et al [3] define queries on multiple conflicting duplicates. Thus
instead of merging the tuples of each cluster into a single one, query results are
derived from sets of mutual exclusive base-tuples. Since to each cluster’s tuple
a probability can be assigned, this approach is mostly identical to our ideal
instance merging without the additional offering of attribute specific aggregation
functions.

None of the studies, however, allows uncertain (esp. probabilistic) data as
source data. Membership merging is consequently not handled in these works.

A merging of tuples representing uncertain information (on instance as well
as membership level) is proposed by Lim et al [18]. Nevertheless, instead of prob-
ability theory this approach is based on the Dempster-Shafer theory of evidence.
For membership merging in a union of two relations the authors do not take dif-
ferent target reference extensions or different overlap scenarios of source reference
extensions into account. Moreover, the authors explicitly specify a membership
derivation function only for the relational selection operator.

In the publication of Agrawal et al [1], deduplication is not considered.



6 Conclusion

Many applications naturally produce uncertain data. For that reason, proba-
bilistic databases have become a topic of interest in the database community
in recent years. In order to combine the data from different probabilistic data
sources, an integration process has to be applied. To obtain concise integration
results, merging of duplicate tuples is an essential activity. We consider dupli-
cate detection in probabilistic data in [21]. In this paper, we have investigated
how a set of probabilistic tuples designated as duplicates can be merged to a
single one. We have considered probabilistic tuples representing uncertainty on
instance level and uncertainty on membership level. We have defined a set of re-
quirements for an ideal tuple merging. Moreover, we have divided probabilistic
tuple merging into a merging of instance data as well as a merging of membership
degrees. Without additional domain knowledge, instance merging is realized by
the union of the tuples’ possible instances. Otherwise user-defined aggregation
functions can be used. For defining an adequate membership merging, we take
the overlap scenario of the real-world scopes modeled by all source relations as
well as the intended scope of the integration result into account. Whereas the
instance merging is always ideal if solely associative aggregation functions are
used, an ideal membership merging only results if either the underlying mem-
bership degrees are consistent to each other or a scenario with only a single kind
of overlap situation (independence, equality, disjointness, or inclusion) exists.

In conclusion, this paper gives first ideas in the large area of merging duplicate
tuples in probabilistic databases. Nevertheless, open problems still exist. Thus,
we discuss some future challenges in the following section.

7 Open Problems and Future Challenges

As already mentioned in Section 4.2, the presented membership merging func-
tions are only associative, if a scenario with same situations of overlap is given.
Otherwise associativity only can be guaranteed if the underlying membership
degrees are consistent to each other.

Challenge 1 Definition of an associative merging of inconsistent membership
degrees beyond scenarios with same situations of overlap.

Usually relations to be integrated have heterogeneous schemas and their sets
of attributes only partially overlap. In this case, merging of instance data could
be considered as a kind of full outer union in relational data where missing values
are filled up with uniform distributions on corresponding attribute domains.

Challenge 2 Techniques for merging probabilistic tuples defined on heteroge-
neous schemas.

In contrast to the assumption made in Section 4, membership merging and
instance merging is not always independent from each other. The instance of
an entity and its membership to a specific extension depends on each other, if
(a) only entities of the considered extension have a specific property (e.g. only



students have a study path or a student number) or if (b) the membership to
the considered extension restricts the value of at least one entity’s property on
some special domain elements (e.g. each mathematics student has the study
path ’mathematics’ or each driver is older than 18 years). Given a relation R, an
attribute A defined in the domain D and the symbol ⊥ denoting the situation
of nonexistence, corresponding functional dependencies can be specified as:

existence dependency: e 6∈ Ext(R) → (∀t ∈ ω−1(e)) : t.[A] = ⊥ (4)

value dependency: e ∈ Ext(R) → (∀t ∈ ω−1(e)) : t.[A] ∈ X ⊆ D (5)

Challenge 3 Adaptation of the presented tuple merging to existence dependen-
cies and value dependencies between instance data and membership degrees.

We presented an ideal merging of instance data in Section 4.1. The require-
ments for ideality guarantee that the resulting instance data is as correct as
possible. Nevertheless, by using an ideal merging function the instance data on
a single real-world entity becomes more and more uncertain the more tuples are
merged together. This, however, is most often not the actual purpose of data
integration. Thus, in many applications using an ideal merging function is of-
ten not valuable and other merging strategies are required. Finding a merging
strategy best fitting for a special application is generally a trade off between
correctness and certainty. Most correct and also most uncertain data results, if
all possible instances of all base-tuples are taken into account. In contrast, the
result is most certain but most likely also incorrect, if only one of the possible
instances is chosen. In many applications an adequate merging function has to
be a compromise between these two extremes.

Challenge 4 Definition of some non-ideal functions making a suitable trade-off
between certainty and correctness possible.

We do not address a merging of data lineage in this paper. In many proba-
bilistic data models, e.g., ULDB, however, data lineage is an important concept
which can be used for validating the consistence of given probabilities.

Challenge 5 Techniques for merging the base-tuples’ lineage in a way that the
merged membership degree can be consistently derived from the merged lineage.

A non-consideration of dependencies between individual data sources can im-
pair the quality of the merged tuple. Usually, data sources are not independent
from each other. In contrast, often the data of one source is copied from another
source. Thus false instances can be spread through copying and are considered
in tuple merging with high certainty. Techniques for detecting dependencies be-
tween individual sources are proposed in [14].

Challenge 6 To figure out the role of source dependencies in merging proba-
bilistic tuples.

Finally, one of the most important challenges is to adapt the proposed tuple
merging strategies to more succinct representation models on which probabilistic
databases usually are based.

Challenge 7 Adaptation of the presented merging functions to probabilistic data-
models not storing each possible instance of a tuple separately.
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