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Abstract: Many advanced business applications, collaborations, and virtual organizations are based on
distributed business process management. As, in such scenarios, competition, fluctuation and dynamism
increase continuously, the distribution and execution of individual process instances should become as
flexible as possible in order to allow for an ad-hoc adaptation to changing conditions at runtime.
However, most current approaches address process distribution by a fragmentation of processes already
at design time. Such a static configuration can be assigned to different process engines near runtime,
but can hardly be changed dynamically because distribution logic is weaved into the business process
itself.

A more dynamic segmentation of such distribution can be achieved by process runtime migration even
without modifying the business logic of the original process model. Therefore, this contribution presents a
migration data meta-model for enhancing such existing processes with the ability for runtime migration.
The approach permits the inclusion of intensions and privacy requirements of both process modelers
and initiators and supports execution strategies for sequential and parallel execution of processes. The
contribution concludes with presenting a conceptual evaluation in which runtime migration has been
applied to XPDL and WS-BPEL process instances and, based on these results, a qualitative comparison
of migration and fragmentation.
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1. Introduction

In today’'s networked business environments, cross-organizational collaborations composing
complementary services and thus realizing new, value-added products gain increasing importance. As a
technical representation of such business processes, executable workflows allow for flexible, dynamic
and loosely-coupled collaboration among several business partners. The Business Process Execution
Language for Web Services (WS-BPEL) [16] and the XML Process Definition Language (XPDL) [15] are
currently two of the most relevant practical approaches. They allow for distributing resources such as
employees, machines and services, whereas process control flow logic is typically executed by one
single component at one single site [12].

However, due to the autonomy of participants, a single centralized process management system to
control the execution of cross-organizational processes is often neither technically nor organizationally
desired. As an example, required services and resources often cannot be accessed by a centralized
process engine because of technological differences or due to security policies [21]. Furthermore, in
some cases the location where a process fragment is executed is relevant to perform the required
functionality or is necessary for judicial reasons, e.g. in the context of eGovernment. Related to this,
other non-functional aspects such as execution time, performance, navigation cost and capacity
utilization can be optimized by load balancing and thus improve flexibility and scalability of participating
systems [1]. If e.g. subsequent steps of a process are executed at a remote site, large data transfers can
be avoided [12] and potential errors and resulting side effects can be handled more reliably, e.g. in the
context of transaction management and compensation of interrelated activity blocks.
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Most current research in the area of service oriented architectures is approaching such decentralization
of control flow navigation by a physical fragmentation of processes — splitting the overall executable
process into several subparts which are then distributed to a number of available process engines (cp.
Figure 1(a)). In contrast to that, this paper proposes process instance migration as a means of logical
fragmentation, fragmenting only the responsibilities for the execution of the process into a set of sub-
responsibilities while preserving the original structure of the process description for all of the participating
systems (cp. Figure 1(b)). Such migration is the most “natural” way of executing a distributed process —
as inherited by traditional human-based workflow management: A process is described in subsequent
steps which are passed from one workplace to another, ensuring the specified task dependencies by
sending the tasks to their respective executor when all requisite conditions are satisfied. Logical
fragmentation by process migration has several advantages over physical process fragmentation:

e Process migration allows for fragmenting the responsibility to execute a process at runtime —
depending on the availability of business partners or other contextual incidences. Furthermore,
the granularity of fragmentation and the range of distribution can be selected on the fly by each
executing participant.

e Coordination and merging of multiple process fragments is not necessary in the case of
sequential execution. Global variables, scopes, errors and transactions are easier to handle,
because all these aspects of the process (i.e. data and control flow) are available to all
executing parties. Thus, there is less communication and coordination overhead.

e Process migration is applicable to modern distributed systems including mobile devices
because it does not depend on a single centralized system and allows for dynamic sharing of
restricted resources [13,20].
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Fig. 1. Process decentralization variants

However, process migration has also some drawbacks and still includes some interesting challenges
which this paper is going to address. First, the process description needs to implement a formal or
technical model to communicate the current state of the migrated process instance. To preserve
interoperability, this model should not require modifying the original business process [12]. Second, an
important motivation for physical process fragmentation is given by the resulting separation of process
fragments. If the process is to be fragmented for privacy reasons, process migration lacks proper
security mechanisms in order to protect private information carried within the process. Third, if activities
within the process should be executed in parallel, process migration alone is not sufficient, but rather
process replication is needed in order to split up parallel tasks and allow load-balancing by running them
on different machines.

Based on our work in [20], this paper presents an approach to enhance existing processes with non-
intrusive migration data and an overall system architecture to support runtime process migration among
cooperating process execution systems. Therefore, we identify which information has to be attached to
the process at design time in order to execute the (logical) process fragments as it was originally
intended by the designer or the initiator of the process in whole. Extending previous work, we discuss the
distributed execution of parallel process paths and present an initial privacy mechanism to protect the
migrating process instance against unwanted changes and unauthorized access. Finally, the approach
presented here is realized by a respective prototype implementation which is applied to WS-BPEL and
XPDL processes. Results of the evaluation are compared to the general characteristics of physical
process fragmentation, before the paper concludes with a short summary.
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2. Background and Related Work

Distributed and decentralized process execution becomes increasingly important and, consequently,
many such approaches demonstrate the relevance of this research (cp. [8] for a brief overview). A first
possible solution for distributing the control flow of a process is to change the service granularity. The
activities which should be outsourced are wrapped, encapsulated behind a new service interface and the
remaining process model is changed accordingly. A respective approach for WS-BPEL processes is
presented by Khalaf and Leymann [9] providing sophisticated concepts to split and distribute specific
WS-BPEL elements (e.g. scopes, loops and alternatives). Similarly, the approach of Baresi et al. [2]
proposes a distributed service orchestration in WS-BPEL based on partitioning rules and process
fragmentation by introducing corresponding invoke/receive activity pairs. However, process
fragmentation is carried out at design time and is realized by weaving additional activities into the
resulting fragments in order to realize a standard-compliant communication between them at runtime.

Another similar approach is to split the original process, deploy the resulting parts at the desired system
and induce choreography between the separated processes. A choreography-based process
management system targeted at dynamic environments is, e.g., represented by CiAN [18]. However,
choreography and process fragmentation need a joint preparation phase for the physical distribution of
each (sub-)process where all participating parties have to be available. Therefore, this approach is more
advantageous in case of a similar recurrent execution of the same process than for spontaneous
reactions to (infrequent) ad-hoc changes. As also criticized by Martin et al. [12] both solutions imply
heavy changes in the original process model and additionally require the introduction and maintenance
of new services. Thus, on the one hand, these unnecessary changes to the original process model are
not motivated by the original business process, but by infrastructural constraints [12]. In consequence,
the authors propose a non-intrusive approach for process fragmentation and decentralized execution.
Here, fragmentation is achieved by transforming the orchestration logic represented in WS-BPEL into a
set of individual activities which coordinate themselves by passing tokens over shared distributed tuple-
spaces. Decentralized process execution has also been considered in Mentor [14] by partitioning a
process based on activity and state charts. Addressing more dynamic environments, the approach of
MobiWork [7] realizes mobile workflows for ad-hoc networks and is focused on the allocation of tasks to
mobile participants also using process fragmentation to generate “sub-plans”.

However, all presented approaches support at most dynamic allocation and assignment on the basis of a
static fragmentation. All fragments and responsible parties are determined either at design time or once
after invocation but mostly before executing the first activity of the process instance. Considering long-
running processes, this flexibility may not be enough in order to also allow reactions to spontaneous
contextual changes. In contrast, dynamically continuable runtime segmentation implies that fragments
and responsible parties are determined dynamically according to the current context and with respect to
previous results and requirements of upcoming activities during the actual execution of the process
instance.

A way to address such dynamic behavior is based on runtime migration of entire process descriptions.
Migrating workflows as a basic concept for process automation have been introduced by Cichocki and
Rusinkiewicz [5] in 1997. More recently, the framework OSIRIS [17] relies on passing control flow
between distributed workflow engines in order to execute service compositions. Process data is kept in a
distributed peer-to-peer-database system which can be accessed from each node participating in the
process execution. In Adept Distribution [3] a similar approach to process fragmentation and
decentralized execution is presented which supports dynamic assignment of process parts to so-called
execution servers. The control of a particular process instance migrates from one execution server to
another, and the next participant is dependent on previous activities which are able to change the
participant to execute the next partition. Related to this, Atluri et al. [1] present a process partitioning
algorithm which creates self-describing subprocesses allowing dynamic routing and assignment.

Process migration has also particularly been applied to the area of mobile process execution, e.g. by
Montagut and Molva [13]. Their approach relies on passing control flow between distributed WS-BPEL
engines and addresses security on an application level by integrating a public/private process model in
order to access applications internal to mobile devices. However, such a solution represents a
choreography-like approach which only uses process migration in order to hand-over control flow — and
thus also has some of the aforementioned disadvantages. The last example is the DEMAC middleware
[21] which is able to delegate process execution (in whole or in part) to other stationary or mobile
process engines. Its restriction to a proprietary process description language is, however, an obstacle to
migrate existing business processes and to integrate standard process engines of external parties.
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Complementing existing migration approaches, we propose to avoid modifications of the original
business process in order to allow for distribution of process instance anywhere during runtime and
thereby enable a higher level of flexibility. Furthermore, most migration approaches give scope for rather
too much flexibility, i.e. the process instance is migrated without control or the decision about the next
participant is determined by one of the execution systems — but often cannot be influenced by the
process modeler or initiator. The following section therefore introduces a more independent migration
model which can be applied to existing processes while considering the above-mentioned user-defined
requirements for logical process fragmentation.

3. Process Instance Migration and Decentralized Execution

There are at least two ways for enabling a process instance to migrate to other systems at runtime: One
is to weave migration data into the existing process model (intrusive migration data). This can e.g. be
realized by inserting migration activities or migration scopes which determine to invoke other process
engines using the remaining process description as an input parameter. Alternative paths or loops can
optionally specify the distribution to potential migration partners and handle situations where migration
fails. Although such an approach could be realized by using the standard elements of process
description languages and is thus compatible to existing systems, it only provides low flexibility as
migration activities have to be planned in advance (i.e. at design time). Furthermore, this approach
requires the original business process instance to be changed which often results in an unwanted mix of
business logic and technical execution logic [12]. Compared to physical process fragmentation, there are
thus only few advantages.

The alternative is to apply non-intrusive migration data. Technically this can be realized by an additional
document holding the migration data or as a non-modifying annotation of the process description. Apart
from the advantage that business logic does not have to be modified, non-intrusive process instance
migration is possible after each activity and the decision about follow-up process engines can be made
dynamically at runtime. The general methodology of such non-intrusive migration is depicted in Figure 2.
The development starts with the original modeling of the underlying business process which produces a
process model, specified in an executable process description language such as WS-BPEL or XPDL
(step 1). Optionally in step 2, this process model can now be enhanced by a migration data model which
holds all information required for migration. In the following, process model and migration data model are
deployed (step 3) and can be instantiated by an application or a user (step 4). If required, parameters are
passed to customize the process (i.e. normal invocation parameters) or the migration data. The latter is
advantageous if the initiator is allowed to influence non-functional aspects about the way a process is
executed (e.g. if the user pays for a higher service quality, the selection of migration partners is
influenced accordingly). After that, the resulting process instance is executed following the guidelines of
the associated migration data. However, if migration data is omitted or migration is not supported, the
unaffected process can still be deployed and executed the usual (centralized) way.
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Fig. 2: Process instance migration: methodology

The remainder of this section focuses on the second step of this methodology, i.e. the identification and
description of the migration data meta-model (cp. section 3.1) and the necessary enhancements to allow
for parallel execution of process parts (cp. section 3.2) and to integrate basic privacy mechanisms (cp.
section 3.3). An architecture to deploy and execute the migratable process is outlined in section 3.4.
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3.1 Migration Data Meta-Model

The proposed migration data meta-model and its relationship to general process elements are depicted
in Figure 3. As a starting point, we assume a common minimal process meta-model consisting of a finite
number of activities representing the tasks to be fulfilled during process execution, and a finite number of
variables holding the data which is used by these activities. Activities can represent a specific task
(atomic activities) or a control flow structure as a container for other activities (structured activities).
Furthermore, variables can be specified on process level (global variables) or at activity level (local
variables). Optionally, variables can contain an initial value which is assigned at design time.

A process description complying with these properties (e.g. XPDL or WS-BPEL) can be enhanced by
migration data documenting the execution state of the process (process state) and of each activity
(activity state), such that the progress in processing the activities is well-defined and visible for every
participating device at any time during execution. The process state can take a value from the migratable
process lifecycle model [21] as depicted in the upper right corner of Figure 3. As long as an activity can
be executed at the local process engine, there is no need to search for another execution partner to
accomplish this task. Consequently, the process is not transferred before all of the currently executed
atomic activities are completed which preserves the process’s consistency and integrity of its data.
Avoiding splitting up such atomic tasks, the safe state Option defines a stable point to transfer
a process during its execution. In contrast, the process is regarded to be in the state Running if atomic
activities are in the state executing. Other states are used for the administration of the process, e.g. to
keep it for logging purposes or to denote an error. The state of each activity is represented by an
element of the activity life cycle state model based on the established lifecycle model presented by
Leymann and Roller [10].

In addition to that, a set of activities can be referenced as startactivities to mark the first activity to be
executed after process migration. The model allows for multiple startactivities in case the order in which
the activities have to be executed is irrelevant or the activities should be processed in parallel. The
indication of a start activity requires each activity to have a unique identifier (ID) in order to describe a
pointer to this activity. Besides the state of the process and its activities, also the states of the variables
have to be documented. As process migration is unable to cope with applications which keep part of
their state externally, e.g. data stored in an external database, the current value has to be copied and
attached to the migration data.

Up to this point, basic migration data can be generated automatically, i.e. by setting the process to the
state created and all activities to inactive (cp. first part of step 2 in figure 2). If variables have been
specified with an initial value, the given value is set as the current value of the variable. However, the
process modeler or the actual initiator often wants to influence the way the distributed process is
executed. If the process is going to be migrated, one of the most important questions is where the
execution of the upcoming activity should be performed. Furthermore, additional data has to be
transported to enable security and traceability of the process. As this could be determined by various
(application-dependent) aspects, the following extensible migration model elements can be specified by
the process initiator (cp. Figure 3):

The selection type determines which strategy is used to assign an activity to a specific process engine. If
the selection type is undefined (default) the process engine which is currently working on the process
instance decides about further migrations. Thereby, it is able to shift processes to other engines which
e.g. have access to required resources or which operate at a better performance. In contrast, the type
fixed participant or role determines that a specific executing entity (e.g. a human or a concrete process
engine) or a subject of a defined group of such entities (e.g. a process engine belonging to the role
“cooperation partner”) has to execute the process or a specified set of activities. More dynamically, as
proposed by [3], the next participant can also be picked from a variable within the process description
itself. If no such entities should be specified, but the participant should be selected as a result of a
computation (e.g. picking the process engine which can execute as much of the process as possible),
the respective algorithm is referenced. Finally, the selection can be based on specific quality of service
or context requirements such as current workload or geographical location. Associated information about
entities, algorithms or non-functional criteria can be included as an additional entry in the migration data
or can be referenced (e.g. a URL). Attributes which are attached to process-level apply to all included
elements, i.e. activities and variables. However, such attributes can be overwritten by local attributes on
activity-level. This allows for specifications such as “all participants should be selected according to the
quality-of-service aspect X, but the performer of activity n must be the fixed participant P”. Finally, the
process modeler can specify which kind of additional data should be collected during process execution,
e.g. which participant has actually executed which subset of the process. These requirements and
respective collected data can be described in the activity-related log.
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Since procedures to allocate and select suitable participants depending on a given set of tasks in
decentralized environments have already been established (e.g. [18,20]), the specification of selection
algorithms is not part of this paper. Instead, the next subsections focus on the prerequisites for
a distributed execution of parallel process paths and the required privacy of critical process parts to
establish a basic model for the security policy of the presented migration model.

3.2 Distribution of Parallel Process Paths

In case of a sequential execution of the process, the efforts of coordination can often be reduced to
a (relatively simple) delegation resp. migration protocol (cp. [21]). As long as the process is transferred to
exactly one participant, also the execution of parallel sections of the process is uncritical as the states of
each included activity are well defined and data dependencies can be handled locally. However, since
the execution of parallel paths on a single machine cannot be considered as “real parallelism”, a copy of
the (entire) process can optionally be distributed to different participants which are each responsible for
the execution of one of the parallel paths. In this work, this strategy is referred to as process replication.

To distribute a parallel section of the process, the responsible process engine decides to execute an
arbitrary or predefined parallel path of the section and thereby sets its first activity to the state executing.
While in this state, it produces a shapshot of the process description as a copy of its own process and
forwards this copy to exactly one other system. Because the path chosen by the first device is already in
the state executing, upcoming devices can only select one of the remaining parallel paths. Using this
strategy, there is always one device responsible for a specific path of the process description and it is
therefore also responsible for error handling along this path. In order to synchronize parallel paths,
however, there has to be a defined meeting point (e.g. a fixed participant) which nevertheless can be
chosen at runtime. The participating process engines then pass their copies of the process description to
the given participant. A service at the meeting point collects all incoming parallel paths belonging to
a shared identifier and merges the copies to a single process description. If required, this one can be
forwarded again to continue execution.
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However, if shared data objects are used in more than one of these parallel sections, a separate
execution could lead to undesired or even wrong results. In consequence, distributed parallel execution
of migrating process instances needs advanced coordination mechanisms for synchronization. If the
effort for synchronizing variables on parallel paths is considered to be critical (e.g. in mobile
environments where communication networks have a low bandwidth) the process designer can try to
reduce synchronization overhead already at design time. The according procedure is shown in Figure 4:
The process model is checked for process variables which are read and/or written in more than one
parallel path. In case a data conflict is detected (i.e. coordination and/or synchronization of process
variables may be necessary in order to ensure a correct execution), the process modeler can solve
unintended data dependencies or assign so-called data classes which specify under which
circumstances the variables have to be synchronized. Inspired from Yu and Vahdat [19], data classes
specify application-specific guarantees concerning the consistence of the used data and differ in the
method to deal with dependency conflicts. In consequence, the process designer can select the most
suitable data class for potentially conflicting process variables in order to further reduce the need for
runtime coordination.

As an example, in order to lead to serializability as the correctness criterion for process data flow, the
data class serialized is applied. Accordingly, every dependency conflict which results from variables of
this data class has to be resolved by concurrency control, i.e. the affected variables have to be
synchronized. Serialized is also the default value for ensuring correct process execution if data class
selection is omitted. In contrast, the data class unsynchronized does not take care of any dependency
conflict derived by variables of this class. As a tribute to such a loss of serializability, lost updates can
appear. Therefore, the use of this data class is only acceptable under certain application-specific
circumstances.

In general, also many other data classes are possible. In some cases, e.g., serializability can be omitted
but the accessed data must not exceed a certain age. If, for example, a weather service continuously
updates the forecast for tomorrow, the particular updates do not essentially differ. The process execution
system can realize this by checking the respective variables for changes on other replicas if necessary,
i.e. if the process contains a parallel write on this variable and a given period of time has passed until the
last check.

Considering runtime, the process is executed the usual way until process execution reaches a branch
which results in parallel execution (i.e. an AND Split). In this case, the process instance description
including all migration data is replicated and distributed to suitable process engines which are now each
responsible for the execution of one of the paths (cp. Figure 5). Together with the information extracted
from the data classes, an algorithm for optimistic runtime conflict resolution is applied in order to reduce
coordination overhead among replicates. Final synchronization and merging of replicates can be induced
by specifying a fixed participant for the execution of the respective AND Join activity or by a distributed
incremental procedure which allows for determining the synchronization point at runtime. However, this
increased flexibility for synchronization also implies a slightly increased coordination overhead.
Alternatively, the parallel section of the process can still be executed on a single centralized system.
Using general migration data and data class descriptions, this decision can be made at runtime flexibly.
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Fig. 5: Execution and synchronization of replicated parallel process paths

3.3 Privacy and Security Considerations

During decentralized execution of a process, its entire information is generally public to subjects which
potentially belong to foreign organizations. This may not be acceptable, because the process description
often contains private data (e.g. credit card information), private control flow information (e.g. existence
of customer complaints), or identities of persons and companies which must not be revealed to or
modified by other (external) parties. As another security risk, malicious participants could try to modify
parts of the process or the migration data. To prevent such privacy and security threats, the access to
process data can be restricted to specified subjects or roles, as e.g. determined in the above mentioned
selection types fixed participant or role.

Figure 6 shows the general idea of “masking” critical parts of a process description in order to ensure
that only dedicated participants can execute sensitive activities and access corresponding data. The
approach assumes that potential business partners can communicate with each other without being
eavesdropped. Thus, a basic cryptographic key infrastructure is required, such as PKI (Public Key
Infrastructure) or subject-related shared keys. However, encryption of the actual process is more
complex, primarily because most process description languages (such as also WS-BPEL or XPDL) allow
for the definition of global variables which can be referenced in several activities — and thus might belong
to more than one participant. In consequence, these parts cannot be directly encrypted with the personal
key of the authorized subjects. Alternatively, the encryption of the different parts of the process (i.e.
activities, variables or even the whole process) uses different session keys which are only used once. A
corresponding security policy of such an element therefore contains a number of symmetric keys (e.g.
pk; and pk, in Figure 6). The procedure of key distribution is based on a concept which is derived from
broadcast encryption [11] where the same encrypted content is sent to all receiving parties without the
need for two-way authentication or authorization. In the approach presented here, the keys necessary for
decryption are sent together with the protected content. These keys prevent unauthorized access to the
content, but are also themselves protected by cryptography. In case of an existing PKI the entries are
encrypted with the public key pub; of the appropriate subject (cp. Figure 6) and can be unlocked with the
private key prv;. Accordingly, an entry for each authorized subject is created and added to the migration
data of the protected process element (cp. Figure 3). As the result of this step, only the legitimate
receiver is able to obtain the keys and decrypt the content and even encrypted global variables can be
accessed by different authorized subjects using the same session key [4]. Neither an additionally
interaction between the process initiator and the subjects nor an authentication is needed. As a positive
side-effect, the use of unique session keys also increases the resistance of the cryptographic approach
to attacks.

To additionally ensure the integrity of the process description, the process initiator is optionally able to
generate a MAC (Message Authentication Code) for each security-related process part. Each process
engine owning the appropriate process key pk; is thus also able to verify the integrity of this part.
However, after a participant has modified a part of the process it has to generate a new MAC which
confirms the integrity of this part. This possibility is indispensable because variables have to be changed
by the subjects during process execution. In addition to the MACs, the process initiator can secure both
the existence and the correct sequence of the process parts by a digital signature. In case of an existing
PKI each subject can verify the correctness of the signature on the basis of the initiator's certificate,
preventing e.g. a later modification of the process sequence. To also prevent replay attacks, an
additional timestamp can be added to the signature. The integrity of the process description can be
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ensured by storing the digital signatures and the MACs within the migration document which finally has
to be secured in a similar way as the process itself.

P, I e M, e @ Llock 2 " Process |
o S 7 unlock il’PI’OCESS\i
pe ) | L o engine 2|

Fig. 6: Process encryption and key distribution
3.4 Execution

The architecture of a corresponding prototype execution support is depicted in Figure 7. Considering the
first layer, all potential participants have to provide a compliant interface in order to receive process
descriptions from preceding process engines, e.g. represented by a WSDL description. By encapsulating
the existing platform and exposing its functionality of cooperative process execution “as a service”, the
concept of process migration can be embedded into existing system infrastructures. Thus, the interface
can be realized by using e.g. a standard web service which receives the process description (P))
optionally supplemented with migration data (M;) as an input parameter and returns the identifier of the
process and the performer’s signature in order to acknowledge its receipt. This service can furthermore
be published at a public registry, so it can be discovered and invoked dynamically whenever
a migratable process is initiated.

If security mechanisms have been applied, a simple privacy manager is responsible for decrypting and
encrypting the process and relevant parts of the migration data (layer 2). Encryption of protected process
parts can be realized by common procedures such as AES (Advanced Encryption Standard). In the case
of WS-BPEL which is described in XML syntax, the specifications Xml Encryption and Xml Signature by
the W3C can be utilized to tag encrypted parts and ensure integrity of the migrating process description.
However, concerning the “masking” of processes, it has been found that encrypted parts are often
causing errors during process execution because the process engine tries to interpret encrypted
variables and activities but does not find expected content, e.g. encrypted variables do not match the
expected data type. Thus, the privacy manager is also responsible for exchanging non-assigned
encrypted parts by temporary dummy variables or activities. As encrypted process parts are not required
to actually execute the assigned parts as defined by the security policy, this does not influence process
execution at the local site.

The migration manager interprets the migration data as specified in section 3.1. It is responsible for
passing the given process to the process engine, to update process states, activity states and log files
subsequent to execution, and, if necessary, to determine the next process participant according to the
given selection type specified for the upcoming activity — potentially making use of existing selection
algorithms (layer 3). Considering the integration of the prototype system, it is desirable to completely
avoid modifications on existing process execution systems. However, it shows that the underlying
process engine has to implement an additional interface for receiving management instructions from the
migration manager and for generating events in case of state changes. As most modern process
engines already implement a general management interface (such as e.g. the ActiveBPEL" or Apache
ODE? Management API), migration manager and process engine can be sufficiently decoupled and the
modification effort can be limited to a respective adapter component.

! http://www.activevos.com/community-open-source.php
2 http://ode.apache.org/
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Fig. 7: Runtime migration support

4. Evaluation

So far, a prototype implementation as sketched above has been applied to two existing process
management systems: first to the DEMAC [21] process engine which executes XPDL 1.0 processes
and, second, to the Sliver [6] process engine which executes a subset of WS-BPEL 2.0 processes. Both
process engines can be applied also for mobile process management and had to be modified in order to
implement the proposed management API. The following discussion shows the most important
observations and results also in comparison to physical process fragmentation.

4.1 Runtime Migration of XPDL Process Instances

The XML Process Definition Language (XPDL) is a meta-model language developed by the Workflow
Management Coalition (WfMC) [15] in order to provide an abstract interchange format for different
workflow engines. The language is graph-based and allows for the invocation of arbitrary software
applications, machines and human resources as atomic activities. In order to build more complex control
flow structures, activities can be connected by transitions and composed to reusable activity sets.
Branches and parallel execution can be specified by transition restrictions using an AND, OR or XOR
split activity and control flow synchronization using a join activity respectively. Data fields, data types and
participants are specified as global parameters of a so called package which can hold several workflows.
However, in order to apply to the common minimal process meta-model and thus to migrate an individual
XPDL process instance, it is advantageous if the package contains only one single process description.
Thus, the process to be migrated can optionally be cut out of its container and required global
parameters are replicated. This does not modify the original description of the relevant process and is
uncritical as long there are no inter-process data dependencies. The remaining XPDL constructs have
been assigned to the elements of the general model in figure 3. Table 1 summarizes the result of the
analysis and shows a conceptual comparison to the general concept of physical process fragmentation.

Atomic XPDL 1.0 activities imply a one-way or an atomic request-response invocation of resources.
Therefore, the activities are, in general, independent from each other and migration can be initiated
before or after the execution of an activity, but not within the activity itself. The same is true for the
activity set as it only replaces an atomic activity with a complex control flow. Thus the atomic activity can
simply be set to the state executing and the activity set can be executed as a regular part of the process.

Composite sequential control flow structures, such as branches or loops, are no explicit elements in
XPDL 1.0, but are determined by the developed overall graph structure. Associated conditions are
dependent on variable values which are transported with the process. For example, a condition can hold
an expression which states that a loop of activities should be executed as long as variable x=true, where
X is a data field of the process and its value is included in the migration data and is thus available to each
processing party at every time. Consequently, migration is even possible within iterations — representing
another advantage over physical process fragmentation where e.g. loops often have to be distributed as
a whole. If the condition has to be evaluated only once (such as in the case of a branch condition) the
selected branch is determined by the process’s startactivity. In case of process fragmentation, however,
fragments and responsible parties are often determined at design-time or at invocation-time. If
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a process’s transition condition restricting access to parallel or exclusive paths is evaluated at runtime,
some of the (physical) process fragments and their respective assignments of executors may never be
used. Thus, process migration is often more efficient because it allows integrating the current state of
variables at runtime in order to make its assignments. Related to this, the execution of a necessary dead
path elimination [10] requires further coordination if process fragments are distributed physically. In case
of process migration, the dead path can be processed automatically by setting all upcoming activities
(until the next join condition) to the skipped state. As this information is hold in the migration document,
this does generally not involve an extra communication with other participants.

As long as there is only one process path to be executed (XOR split), no synchronizations of control flow
are necessary and both the split activity and also the execution of following join activities can be
assigned in a flexible way. Nevertheless, to also support the execution of parallel process paths on
different systems, there has to be a defined meeting point for control and data flow synchronization (cp.
Section 3.2). Therefore, the performer of the join activity must be specified either by the selection type
fixed participant or must be result of a deterministic algorithm. However, such restriction of flexibility is
also required for physical process fragmentation. In addition, distributed parallel execution needs
advanced coordination mechanisms for both migration and fragmentation. However, using replication
instead of fragmentation allows for a local detection of shared variables and thus avoids unnecessary
synchronizations.

As an additional remark, there is no explicit transaction or exception semantics in XPDL 1.0. If activities
are, however, part of a transaction (as e.g. possible in XPDL 2.0) migration can optionally be inhibited for
the transactional part, so changes are only propagated to other devices after the transaction has
committed, or, if activities are compensable (which is the default in XPDL 2.0), compensation activities
can be executed by other process engines as well, or the process description can be returned to a
previous system in case compensation is only possible there.

Tested XPDL Process migration Process fragmentation

elements
Atomic activities activity possible possible
Structured activities activity set possible possible
branches (XOR) possible possible (transfer of
loops possible decision)

coordination required

coordination and
synchronization required

branches (AND) replication and

synchronization required

for undo: to be avoided

for compensation:
possible

Other elements transaction (XPDL 2.0) coordination required

Dead path elimination -

automatically

coordination required

Privacy of process parts

artificial

automatically

Splitting atomic activities

forbidden

no known approach

Data replication

only for parallel execution
(entire process)

always: data fields, data
types, applications,
participants

Design time distribution

possible (assign all
activities in advance)

possible

Runtime distribution

during execution

once after invocation

Tab. 1: Migratable XPDL processes and comparison to process fragmentation
4.2 Runtime Migration of WS-BPEL Process Instances

WS-BPEL is a block-structured XML-based process description language which allows composing web
services. According to the WS-BPEL 2.0 specification by OASIS [16] it is essentially comprised of two
kinds of activities: Basic activities for web service interaction (invoke, receive, reply), basic control flow
activities (empty, wait, exit, throw, rethrow) and activities for data manipulation (assign). Structured
activities are used to compose the basic activities and define control flow dependencies between them
(sequence, if then else, pick, flow, while, repeat until, for each). Based on this characterization, the
activities have been assigned to the elements of the general model in figure 3. Table 2 shows the result
of the analysis which was performed in order to evaluate to which extent WS-BPEL processes can be
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migrated at runtime. Furthermore, the table shows a comparison to physical process fragmentation and
summarizes the following discussion on advantages and disadvantages of both approaches.

Considering atomic activities, it shows that WS-BPEL has a very interactive character which makes the
distribution of the control flow logic (both for migration and for fragmentation) more difficult. The invoke
activity initiates the invocation of a web service which is specified within the process description (or
references associated parts such as WSDL files) in either an abstract or a specific way. Thus, migration
of a process containing an unprocessed invoke activity is not only possible, but even advantageous if the
required service is not reachable from the current system. In case of a synchronous service call (request-
response pattern) the receipt of the response message is part of the atomic activity. In case of
asynchronous messaging, sending an associated reply subsequent to a migration is also not critical as
the required information about the receiver (e.g. its physical address) can be logged. Nevertheless,
receiving a reply (receive) requires the specification of a specific participant because the sender of the
reply has to know where to send the message. Thus, flexibility of arbitrary distribution is — in this case —
limited both for migration and for physical process fragmentation.

The assignment of a variable (assign) is not a problem as the current value is stored within the migration
data. The same is true for wait, empty and exit activities as these have a rather simple behavior.
Notifications about faults are also uncritical as in case of process migration all the relevant information
for fault handling (i.e. scopes, fault handler, compensation handler) are available to each executing party.
If required, the occurrence of faults can also be documented in the log, e.g. if the control flow logic has to
return to the failed activity after fault handling is finished. Considering process fragmentation, other
process fragments may have to be notified in case of a fault, resulting in an increased coordination
overhead.

As indicated above, migration must not happen while an atomic activity is currently executed. However
this does not apply for structured activities which only act as a container for other activities. As a
consequence, structured activities such as sequence, if then else or while do not have to be finished in
order to allow the migration of the process instance (cp. explanation for branches and loops of XPDL in
Section 4.1).

Tested WS-BPEL

Process migration

Process fragmentation

elements
Atomic activities invoke possible possible
reply possible (log) coordination required
receive i . ) .
) fixed participant fixed participant
assign . .
i ) possible possible
wait, empty, exit . .
throw. rethrow possible possible
possible (log) coordination required
Structured activities sequence possible possible
if then else possible unnecessary fragments
while, repeat until, for possible coordination required

each

possible, but small risk

potential replication of

pick of missing events events and/or additional
coordination required | coordination
flow coordination required
Other elements scope generally available coordination required

fault handler
compensation handler

generally available
generally available

coordination required
coordination required

Dead path elimination

automatically

coordination required

Privacy of process parts

artificial

automatically

Splitting atomic activities

forbidden

no known approach

Data replication

only for parallel
execution (entire
process)

always: variables, scopes,
optionally: events

Design time distribution

possible (assign all
activities in advance)

possible (equivalent to
service choreography)

Runtime distribution

during execution

once after invocation

Tab. 2: Migratable WS-BPEL processes and comparison to process fragmentation
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The pick activity waits for the occurrence of an event from a set of events and then executes the activity
associated with that event. If the process is fragmented physically, this is a problematic issue. Either all
the necessary data has to be replicated (i.e. all event/reaction pairs) or the events have to be fragmented
as well. If the reaction to an event affects other fragments, additional coordination is necessary. In case
of process migration, this is not a problem as the whole spectrum of possible events and reactions is
available to the responsible participant. If, furthermore, other activities are temporarily suspended
because of the event, the activity states indicate where the execution must be continued. However, the
source which is emitting the event has to know where to send the respective messages. Thus, each
process participant has to subscribe to each required event as long as it is responsible for the execution
of the process instance. During migration time, there is, consequently, a remaining risk that some events
may not be noticed.

The flow activity contains activities which should be processed in parallel. As long as the process is
migrated to exactly one participant, migration within the execution of a flow is uncritical as the states of
each included activity are well-defined. Nevertheless, the process cannot be transferred until all atomic
activities have reached a stable state and thus may have to wait for long-running activities to be finished.
If copies of the process are distributed to other participants to be responsible for the execution of one of
the parallel paths, there also has to be a defined meeting point in order to synchronize parallel paths (cp.
explanation for XPDL in Section 4.1).

Other interesting aspects discussed in Tables 1 and 2 include privacy of process parts, specification of
fixed participants and distribution flexibility. As a drawback for process migration, privacy can only be
realized by artificially masking private process parts as proposed in section 3.2, whereas physical
fragmentation of the process makes such mechanisms unnecessary. In consequence, the effort for
developing migratable processes containing private parts is a little higher. Nevertheless, process
migration allows for more flexibility in selecting the most suitable process engine at runtime while still
allowing for respecting the interests of the process designer by determining specific participants or
selection algorithms. Thus, especially long-running distributed process instances benefit from the
possibility to adapt the execution of control flow to changing conditions.

5. Conclusion and Future Work

This paper focuses on distributed process execution involving multiple engines in order to increase
flexibility and to improve reactions to ad-hoc context changes. As an alternative to physical process
fragmentation, a concept for realizing logical process fragmentation on the basis of process migration
has been presented. Compared to physical fragmentation, process migration provides more flexibility by
allowing for the distribution of running process instances at runtime while respecting the guidelines of the
process modeler. On the other hand, privacy and security-related issues have to be considered explicitly
as also addressed in this paper.

Future work includes the evaluation of other practically-relevant process description languages and the
implementation of respective migration managers. A prototype system covering the proposed system
architecture for XPDL and WS-BPEL processes has already been developed and shows basic
applicability of the proposed concepts. Considering privacy support, WS-BPEL process designers must
still be careful not to mask multi-level scopes when these are also relevant for public process parts.
Based on such requirements, a tool to support process modelers when applying security mechanisms
would be useful to facilitate the development of migration data and help process modelers to avoid
unnecessary errors.
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