
1

Validation of Agile Workflows using Simulation
Kai Jander Lars Braubach Alexander Pokahr Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{jander | braubach | pokahr | lamersd}@informatik.uni-hamburg.de

Abstract—Increasing automation of business processes and
industrial demand for complex workflow features have led to the
development of more flexible and agile workflow concepts. One of
those concepts is the use of goal-oriented workflows, which rely on
ideas derived from agent technology like describing the workflows
based on a goal hierarchy. While this reduces the gap between
business view and IT view and allows for easy implementation of
contengencies, the concepts have greater conceptual abstraction
obscuring the control flow and reducing the ability of workflow
engineers to identify specification flaws in the workflow. This
paper shows an approach to address this problem by presenting
a system for testing and validating workflows within a specified
parameter space. The system allows the definition of test cases
(scenarios), each of which contains parameter states applied
during workflow execution. The workflow engineer can define
a set of scenarios for a workflow testing specific situation that
are likely to occur during operation or are otherwise interesting
corner cases, allowing automated tests and correction of faults
before deployment of the workflow in production environments.

I. INTRODUCTION

Business process management (BPM) is considered a very
promising strategy that helps in aligning companies towards
effective and efficient business operation [1]. This is mainly
achieved by completely thinking in terms of processes, which
means that even the structure of organizations has to follow the
processes and cannot be kept in a functional orientation. The
vision of BPM assumes that processes can at least partially be
automated, monitored according to key performance indicators
(KPI) and continually improved or even renewed according to
the measurement and defined KPI targets. It becomes clear
that this vision heavily depends on adequate IT means sup-
porting these tasks, which e.g. manifests in the development
of workflow notations and management solutions.

One fundamental problem with existing solutions that has
been experienced in practice is that modelling notations like
event process chains (EPCs) or the business process modelling
notation (BPMN) are activity oriented and thus focus heavily
on the ordering and conditions of activity execution. This leads
to a particular neglect of the underlying process motivations,
which are only implicitly existing during workflow elicita-
tion. Without this so called workflow context perspective [2]
it becomes e.g. difficult to optimize the processes because
it cannot be easily afforded why specific activities in the
workflow exist and if they e.g. could be completely cut out.
These observations led to the development of more abstract,
flexible and agile workflow concepts. While these concepts
contribute to closing the gap between business view and IT
view, the greater conceptual abstraction also partially hides the
complexities of all possibilities of the exact runtime control

flow and reduces the ability of workflow engineers to easily
identify specification flaws in the workflow.

In order to equip a workflow modeller with a toolset to
better understand the possible runtime behaviour of more
abstract workflows, simulation and validation gain importance.
In this paper a new concept and implementation for a simu-
lation based validation approach of workflows is presented.
It allows to specifiy execution scenarios and automatically
evaluate them with respect to expected process outcomes.
The approach does not depend on the concrete workflow
notation in which processes are described but only assumes
that specific workflow management facilities are available.
Thus, the approach is viable for validating traditional e.g.
BPMN based workflows as well.

The rest of the paper is structured as follows. In Section
II related work with respect to verification and validation
approaches of workflows is discussed. Thereafter, in Section
III the concept of the new simulation based validation ap-
proach is presented. Its implementation and usage is explained
in Section IV and the usefulness of the approach is further
illustrated by an example application taken from our industry
cooperation partner Daimler AG. The paper concludes with a
summary and a short outlook on possible future enhancements.

II. RELATED WORK

Literature and practical application contains a large variety
of validation and verification approaches for workflows. They
can roughly be divided into two categories. The first category
consists of formal static analysis of the workflow model to
identify conceptual or implementation flaws. The second cate-
gory comprises of validation using simulation-based execution
of the workflows.

Formal verification approaches of workflows apply a num-
ber of techniques, such as propositional logic [3], model
verification [4] and graph reduction [5]. The approaches are
usually either based on a formally well-defined representation
like petri nets [6] or attempt to translate workflows imple-
mented in different representation like EPCs or BPMN into a
more approachable form from a formal perspective [7]. While
formal verification has the distinct advantage of guaranteeing
correctness within the given constraints of the verification
approach, translation of workflow models weakens this guar-
antee unless the translation itself is formally proven correct.
Verification also requires a well-defined language with well-
known properties, however, some languages used in practices
lack these criteria. For example, many parts of BPMN in
its current form are left ambiguous and underspecified. The

2

reason for this usually is not negligence but an attempt to
bridge the gap between the technical side and the business side
of workflows. Parts of the specification are deliberately left
fuzzy with ambiguous semantics which enables the use of the
specification in informal and non-technical settings. However,
some of the issues of ambiguity are currently addressed in the
upcoming version 2.0 of the BPMN specification.

Furthermore, verification approaches are often quite limited
on what they can guarantee. For example, while there are
excellent approaches to guarantee correctness of the workflow
diagram like ensuring that branches in the workflow are ter-
minated with a correct join element, they are generally unable
to verify non-trivial semantics like task instructions written in
a programming language or complex runtime behavior.

This problem can be approached by the validation tech-
niques in the second category. Instead of statically analyzing
the workflow models, the workflow is executed in a simulated
environment which attempts to imitate the environment in
which the workflow is planned to be deployed. Examples of
this approach include a variety of tools like LSIM [8], iGrafx
Process [9], the Corporate Modeler Suite [10] and the ARIS
Toolset [11]. The tools generally target specific workflow
notations such as BPMN to combine static analysis described
above with simulation. Furthermore, the focus of the tools
tend to be performance measurement and optimization. For
example, the ARIS Toolset offers a large number of features
used to measure operating and performance figures of the
workflow during simulation.

In contrast, the focus of our approach has primarily been
the validation of the workflow using predefined test cases
centering around expected real world scenarios. The disad-
vantage of this approach compared to verification is that the
correctness can only be ensured within the given conditions
of the test. Since the number of configurations in any non-
trivial workflow is very large, exhaustive search becomes
infeasible. This means the approach can only validate the
workflow to a certain degree and may not detect all errors
present. The advantage of the approach is that the com-
plexity of the workflow language is irrelevant to the test
as long as there is a workflow engine capable of executing
the workflow. Furthermore, the current approach uses few
assumptions about the workflow itself allowing the system
to be useful for different kinds of workflow notations. While
the focus has been on validation of workflows, the approach
can be extended to include simulation of the environment
in which the workflow is running but which is, by itself,
not part of the workflow. This includes logistic operations,
production machinery, behavior of workflow participants and
market influences. This allows additional applications beyond
workflow validation like workflow optimization similar to the
tools mentioned above.

In the following we will present this simulation-based test-
ing approach which uses simulation of workflow participants
to validate the correctness of workflows. The focus will be on
goal-oriented and agile workflows, however, as mentioned, the
approach itself can at least partially be applied to any workflow
which relies on interaction with participants.

III. VALIDATION APPROACH

Due to its application in industry and business automation
and intense research interest, a great variety of workflow
approaches and notations are available. While our validation
approach is designed to be generic, two kinds of notations
in particular were the focus of the project. The first is the
well-known Business Process Modeling Notation (BPMN, see
[12]), which has been extended with task and edge annotations,
allowing it to be directly executed by an interpreter. In
addition, an additional notation called Goal-oriented Process
Modeling Notation (GPMN, see [13]) has been developed,
which allows the description of goal-oriented workflows using
goal hierarchies. Workflows implemented using GPMN are
converted into BDI agents at runtime. BDI agents are based
on the Belief-Desire-Intention model where beliefs represents
the agent’s current knowledge about the world, goals represent
its abstract desires of what should be accomplished and plans
represent concrete intents of the agent with explicit actions the
agent follows (see [14]). The goals used in GPMN workflows
are directly converted to goals of the resulting agents while
the plans that are on the leaf nodes of the goal hierarchy
are represented by small workflow fragments implementing
the concrete steps in BPMN. During execution, the GPMN-
derived BDI agent employs a BPMN interpreter to execute the
fragments as plans of the agent.

In addition, GPMN workflows contain a context which
represents the current workflow state. This context is used as
the belief base of the converted BDI agent at runtime. This
context may be changed during execution of the workflow,
either directly by the workflow itself or by effects outside
the workflow. Changes in the context can directly affect the
workflow and thus the agent behavior by influencing adoption,
persuit and rejection of goals.

A. Requirements for Automated Testing

Both GPMN and BPMN offer language features which
allow the workflow engineer to implement different execution
paths or branches. In the case of BPMN workflows, this is
accomplished using the gateway element, which can split the
control flow into either multiple paths executed concurrently
or diverts the flow towards one of multiple possible control
flow edges. The implementation of execution paths in GPMN
workflows is more subtle and indirect. Depending on the
state of the workflow context, different goals may become
active resulting in the execution of different BPMN plans. This
control flow subtlety of implicit control flow paths in GPMN
workflows increases the difficulties of a workflow engineer to
accurately predict possible runtime execution paths and is the
primary motivation for our validation approach.

The core idea of our approach towards validating such
workflows is the use of automated tests. This implies that
the system should be able to execute such workflows without
user intervention once the test has started. Since only the
most trivial workflows can be automatically executed merely
using a workflow engine and since most workflows require
interaction with workflow participants or automated systems
while running, additional system components are necessary

3

Figure 1. Structure of the proposed test system

beyond the workflow engine itself. Moreover, while most
workflows specify a range of possible responses by workflow
participants, they generally do not specify which responses
will influence workflow behavior, thus necessitating the spec-
ification of additional information by the workflow engineer
before the test.

Consequently from a simulation perspective, a workflow
engine executing a workflow is not a viable simulation model
for validation workflows since it lacks sufficient detail even
for simple automated execution, much less being a realistic
representation of a production environment using workflows.
Therefore it is necessary to add additional components to the
system which are equivalent or at least sufficiently similar to
their production counterparts to represent an adequate model
of a workflow in production use (see Figure 1).

B. Workflow Management System

One component which is routinely part of workflow systems
in businesses is a workflow management system (WfMS). The
task of a WfMS among other things is to facilitate interaction
between workflows and workflow participants. This is gener-
ally done by providing work items, which are packages gener-
ated by the WfMS on behalf of the workflow containing all the
information needed by the workflow participant to accomplish
their part of the workflow. The WfMS then distributes the
work items among the workflow participants using a variety
of approaches such as roles. As a result, the simulation model
of a realistic test system needs to include a WfMS which
accurately represents a WfMS used in production.

Work items generated by the WfMS not only include
information for the workflow participant but often ask the
participant to gather and provide external information like
customer data or processed documents for the workflow.
This is defined in the workflow with the specification of
typed parameters in tasks which generate work items. This
information often influence further behavior of the workflow
at critical junctions like BPMN gateways or goal deliberation.
Since real workflow participants are not available during test
runs, it is necessary to simulate their actions, including the
supply of external information.

Work items are generally retrieved and processed by the
workflow participant using a workflow application client inter-
acting with the WfMS. The work items are retrieved, processed
by the workflow participant and finally comitted back to the
workflow management system, thus allowing the workflow
to continue executing. In order to simulate this behavior, the
workflow client application used by the workflow participant
needs to be replaced with an automated workflow client

application which simulates its behavior and the behavior of
the workflow participant.

C. Client Application

The simulated workflow application client is required to
provide the information which is normally provided by the
workflow participant. As a first step, the client identifies the
workflow tasks which generate work items and require the
workflow participant to provide information in the form of
work item parameters by examining the workflow model and
the models of possible subprocess, such as BPMN workflow
fragments in case of GPMN workflows. Parameters are typed
and thus already have a limited parameter space. However,
this parameter space in cases such as string types is extremely
large, precluding an exhaustive test of the full parameter
space. Since a complete verification of the process using this
approach would also require to test the cartesian product of the
parameter space of all parameters provided by the workflow
participant, the complexity of such a verification exceeds the
limits for a practical test and cannot be considered a useful
approach.

As a result, it is necessary to restrict the scope of the test
to only include the part of the parameter space which includes
the most promising cases, such as corner cases of branching
decisions and validating the workflow only for those cases.
Since the test cases cannot be identified automatically, the
workflow engineer has to define the parameter space that needs
to be tested. This is accomplished by the system by allowing
the workflow engineer to define test scenarios. Scenarios
represent a subset of the full parameter space of the workflow
participant interaction with the workflow. For each parameter
in the process the workflow engineer can define a set of
parameter values which are used to process work items while
the workflow is executing. If the workflow engineer defines
multiple values for each parameter within the same scenario,
the cartesian product of those values is tested at runtime.

The workflow engineer can define multiple scenarios for
each workflow. When the test is started, the first scenario is
selected and the workflow is started repeatedly, once for every
element of the cartesian product of the parameter values in
that scenario. Once the scenario finishes, the next scenario
is selected until all scenarios have been tested. An event
log is kept during each execution, recording notable events
occuring at runtime for later analysis. The workflow engineer
can use this log to identify errors in the workflow and correct
them before the workflow is used in a production system. In
addition, a test report is generated and can be reviewed.

4

Errors in the workflow can be unrecoverable states of the
workflow like a raised exception during execution or unin-
tended behavior of the workflow such as performing a faulty
execution order of tasks. In additions, it is also considered
to be an error if the workflow returns the wrong results or
reaches the wrong internal state. Since the workflow engineer
has to be informed about such errors occuring, monitoring
of the workflow is required. On raised exceptions, executed
steps of the workflow and state changes the workflow engine
can generate a workflow event which is passed through the
WfMS to the client application for review by the workflow
engineer. It would also be desirable to allow the workflow
engineer to define a validation function which receives the
information provided to the workflow and the final state and
result of the workflow allowing the system to automatically
evaluate whether a test was successful.

The following section will elaborate on the individual parts
of the testing system. It will include an overview of the
workflow management system and provide details about the
simulated workflow client application and how the workflow
engineer can define the parameter space subset for each
scenario.

IV. SIMULATION SYSTEM COMPONENTS

As mentioned in the previous section, the testing system
requires a minimum of three components. In order to execute
the workflows themselves, a workflow engine is needed,
a workflow management system is needed for work item
management and user interaction and finally there needs to
be a special workflow application client which simulates user
behavior.

Since GPMN workflows are translated into BDI agents with
BPMN plans and thus require a workflow engine which can
execute both, the Jadex Active Components Platform [15] has
been chosen as the execution environment for the workflows.
The platform is not only capable of executing GPMN-derived
BDI agents but also includes a BPMN interpreter which
allows the execution of BPMN processes alongside agents.
While the platform is able to execute standalone BPMN
processes as active components, BPMN workflow fragments
which represent GPMN plans are executed with a special
BPMN plan interpreter, which allows the BPMN workflow
fragments to access the GPMN context in the form of the
agent belief base.

A. Workflow Management System Architecture
The second required component is the workflow manage-

ment system. This system component is implement largely
based on the reference model of the Workflow Management
Coalition [16]. It uses the Jadex platform with Jadex platform
services implementing the services required for the system
which will be explained in further detail in this section. In
addition, the system includes three interface agents which
realize a message-based interface with workflow application
clients.

The services of the WfMS are divided into internal and
external services, the former implementing the actual function-
ality of the WfMS while the latter, represented by the agents,

Figure 2. The workflow tree model used on the client side of the testing
system

act as an interface which can be used by workflow client
applications to connect with the WfMS. The Jadex platform
itself represents the workflow engine and enactment service of
the WfMS by providing the necessary support for instantiation
of workflow models.

Workflow models are managed by the WfMS using a
process model repository service. This service supports the
addition and removal of process models by employing the
Jadex library service which allows Jadex to dynamically
load new models, resources and executable code by linking
directories or jar-archives. In addition, it offers access to
workflow models for workflow client software, which is a
necessity for the testing system since the simulated workflow
client application requires the workflow model in order to
identify tasks in the workflow which require interaction with
a workflow participant.

The Authentication, Access Control and Accounting
(AAA) Service of the WfMS provides additional workflow
participant-centric services. This includes access control to
workflow services and a role management system which
allows the WfMS to associate work items with workflow
participants. Each task which generates work items can assign
a role to the work item, restricting this work item to workflow
participants who represent that role. Work items without a
designated role become available to any workflow participant
connected to the system.

The external services of the WfMS consist of three parts.
The first service is the workflow client interface, which
manages the work item queue and distributes work items to
connected clients. The second service is the process defini-
tion interface, which provides access to the process model
repository by allowing clients to add and remove workflow
models and accepting requests for workflow models. Finally,
the administration and monitoring service offers access to
administrative and monitoring functions. The monitoring func-
tions are especially critical for the testing system since they
provide feedback regarding events happening during workflow
execution.

This system provides a similar functionality to a workflow
system in production use. In addition to this basic system,
a workflow application client which simulates the behavior of
workflow participants is needed to create an automated testing
system which can execute tests of workflows without user

5

Figure 3. Procedure for testing workflows

intervention. This client is implemented as a BDI agent which
connects to the three external service agents to the WfMS.
The agent provides a user interface to the workflow engineer,
which allows them to open the desired workflow model which
is retrieved from the WfMS.

B. Client-side Workflow Model

Since it is desirable for the workflow engineer to gain an
overview of the parts of the workflow which are relevant to
interaction with workflow participants, the client agent uses
the workflow model to generate a tree representation of the
workflow model which can be seen in Figure 2. The tree
consists of a workflow node as the root node, which represents
the workflow originally opened by the workflow engineer.
If a workflow contains sub-workflows like BPMN plans, the
children of its workflow node can include further workflow
nodes representing those sub-workflows. The sub-workflow
graph of a workflow can contain cycles, for example, when a
sub-workflow uses its parent as a sub-workflow. This would
suggest a graph representation to be the natural form for
representing the workflow structure. However, cycles in the
workflow graph are rare in practice and a workflow engineer
would expect a tree form rather than a graph. Therefore the
tree representation is more desireable, nevertheless the special
case of a cyclic workflow structure should be supported. This
problem is solved with the use of link nodes. If a particular
sub-workflow is found again after having been found before,
it is represented as a link node in the tree. This link node is
a simple reference to the first occurance of the sub-workflow
in the structure and no further expansion of the tree is done
beyond this reference to avoid endless expansion.

If a workflow node is a BPMN workflow or workflow
fragment its child nodes can, in addition to sub-workflow
nodes, contain task nodes which represent tasks containing
interaction with workflow participants. Lastly, the children
of task nodes are parameter nodes, which represent typed
parameters which would ordinarily be provided by a workflow
participant.

C. Scenarios

The tree structure of a modelled workflow is presented to
the workflow engineer in graphical form in the user interface.
This allows them to define scenarios. Scenarios consist of sets
of input values for each parameter of the workflow, definition

of data collected from the workflow during the simulation and
a validation function which is used to evaluate the success of
the test and generate a report for the workflow engineer. Figure
3 demonstrates the use of scenarios in the full test procedure.

For each of the input parameters, the workflow engineer can
add multiple values depending on the type of the parameter.
The cartesian product of the input values in the scenario is used
to create tests for the workflow which means that a minimum
of a single value for each parameter is required for the scenario
to generate at least a single viable test.

The workflow engineer can also select what is monitored
during execution. This can include output values of the
workflow, its final internal state, exceptions and the task
executed. These values are passed to the validation function
after execution to determine whether the test was a success
and to generate a useful report. The validation function is also
defined by the workflow engineer and included in the scenario.

Multiple scenarios can be defined for each workflow which
can be automatically executed in succession. The total number
of required test runs of the workflow are reported to the
workflow engineer while assembling the scenarios. Since the
cartesian product of multiple parameter values in a scenario
quickly increases the complexity of the whole test, the work-
flow engineer has to carefully chose the tests and carefully
balance between adding additional scenarios for the test run
or adding additional parameter values to a single scenario.

The results of a test run can be reviewed in the report
generated by the validation functions of the scenarios and is
displayed to the workflow engineer in the client application.
In addition, several tools provided by the Jadex platform can
be used during the simulation as well. This includes and
introspector tool for investigated the state of the workflow
and a message center tool for monitoring messages between
workflows and their support systems like the WfMS and the
client application.

The next section will present an example use case for an
industrial workflow used for change management as envi-
sioned by Daimler AG and will demonstrate how the test
system can be used to find implementation errors in advance
of deployment.

V. EXAMPLE USE CASE

This section will present how the system can be used to
validate a workflow. The workflow was developed by Daimler
Group Research and represents an industrial workflow used

6

Figure 4. The goal hierarchy of the Active Change Management workflow

for change management (see [17]). Change management work-
flow coordinate the process of developing and implementing
changes for an existing product and ensures that production
line changes and adaptions of the physical geometry of the
product are performed in order to allow a smooth introduction
of the changed product.

Since the workflow is very large and complex, this section
will focus on a smaller subset of this workflow (cf. Figure 4).
This subset involves the gathering of information about the
planned change to the product, designating key personnel and
assigning required resources. The final result of this part of the
process is a description of the change request and requirements
which will be used in the later part of the workflow to perform
the change.

The process fragment contains a single goal for defining
the change request. This goal is decomposed into subgoals,
some of which contain context conditions which suspend their
execution until the context has the required state for the goal to
be adopted. Goals without further subgoals are associated with
plans which are implmented by BPMN workflow fragments.

After implementation, one of the BPMN workflow frag-
ments contained an error. The BPMN fragment containing the
error was the fragment determining the parts affected by the
change in the product. During the execution of the fragment,
the leading developer responsible for the change request is
required to enter the parts of the product which are affected
by the change. The developer has the choice to do this using
three different ways of providing this list of parts. The first
way is to provide a list of serial numbers of the affected parts.
The second way is to provide a drawing which is processed for
part information and finally, the developer can give a structured

description of the components affected by the change.
The first task lets the developer choose between those three

ways of providing the part list (cf. Figure 5). The first task
in this fragment generates a work item containing a list of
three strings which represent the choices of the developer. The
developer can select one of the strings and commits the work
item. The string is then passed to the gateway, and compared
to strings provided by the edges behind the gateway branch. If
the string matches, the process continues executing using that
path and provides the developer with a new work item which
contains the information for the chosen method of entry.

The implementation error in this part of the process was that
one of the strings provided by the edges did not match with the
corresponding string generated by the entry type selection task.
Since none of the edges on the gateway branch are marked as
default edge which would be taken if no other edge matches,
the workflow will terminate with an exception if the developer
selects the faulty choice.

This error was found using the test system. A scenario had
been created test each of the branches leaving the gateway in
this workflow fragment. For every parameter in the workflow
except the entry method choice of the developer a single
value was added to the scenario. All three possible strings
were then added to the parameter concerning the entry choice
resulting in a scenario which specifically target this branch
in the workflow (cf. Figure 6). In addition, example entries
for the part specification had been added in order to verify
the correct function of the workflow in identifying the parts
affected by the change, test corner case entry such as empty
strings for parts and test another branch in the workflow where
the developer has to confirm the list of parts or otherwise cause

7

Figure 5. The leading developer of the change has three ways of providing
a list of affected parts

a restart of the workflow fragment. The test complexity of the
scenario required 972 test runs which were executed on an
Intel i5 CPU clocked at 2.67GHz in less than a minute.

During the test run, the faulty string was selected. This
resulted in an exception and the termination of the workflow.
This event was logged during the simulation, including the
parameter configuration used which caused the error. This
result allowed the workflow engineer to find the fault in the
workflow and correct the problem.

VI. SUMMARY AND FUTURE ENHANCEMENTS

This paper has presented a simulation-based validation
approach for workflows. The approach allows specifying exe-
cution scenarios in form of test cases, which include ranges of
input values to be tested and defined output states to be reached
for a successful execution. The approach is especially well-
suited for agile process descriptions with abstract specification
means, such that possible process execution paths cannot
easily be predicted. Nevertheless, the approach also works well
with traditional process specification languages like BPMN.
The implementation of the validation approach is based on
the process execution facilities of the Jadex active component
platform and provides additional tools for the specification,
execution and validation of scenarios. The applicability of
the approach has been exemplified by a case study from
our project partner Daimler AG. It has been shown how the
validation approach allows testing a modeled process to find
and resolve existing problems in the process description.

Two interesting areas for future work are envisaged. First,
the approach can be extended towards being used not only
for process validation, but also for process analysis and
optimization. Extending the simulation engine with elaborated
analysis tools would allow measuring the quality of processes
and benchmarking alternative processes against each other.
Second, instead of using pre-specified test cases as scenarios,
complex simulation models could be used to dynamically
produce realistic test data. E.g. for logistics management
processes, a simulation model of a supply chain could be
connected to the process engine and provide input data for
the workflow application to be tested.

Figure 6. The scenario for testing the entry choice branch contains all three
possible parameter values used

REFERENCES

[1] W. S. H. J. Schmelzer, Geschäftsprozessmanagement in der Praxis.
Hanser Fachbuchverlag, 2008.

[2] B. List and B. Korherr, “An evaluation of conceptual business process
modelling languages,” in SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing. New York, NY, USA: ACM, 2006,
pp. 1532–1539.

[3] H. H. Bi and J. L. Zhao, “Applying propositional logic to workflow
verification,” Information & Software Technology, vol. 5, pp. 293–318,
July 2004.

[4] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification
of web service compositions,” in 18th IEEE international conference on
automated software engineering, Montreal, Canada, 2003, 2003.

[5] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Information Systems, vol. 25, no. 2, pp. 117 –
134, 2000, the 11th International Conference on Advanced Information
System Engineering.

[6] W. M. P. v. d. Aalst, “Workflow verification: Finding control-flow errors
using petri-net-based techniques,” in Business Process Management,
Models, Techniques, and Empirical Studies. London, UK: Springer-
Verlag, 2000, pp. 161–183.

[7] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in bpmn,” Information & Software Technology,
vol. 50, no. 12, pp. 1281–1294, 2008.

[8] L. J. Enstone and M. F. Clark, “BPMN and
Simulation,” Lanner Group Limited, 2006. [Online]. Available:
http://www.dynamic.co.kr/Witness_Training_Center/Articles/Bpmn%20-
%20simulation.pdf

[9] “iGrafx Process,” Corel Inc., 2009. [Online]. Available:
http://www.igrafx.de/products/process/index.html

[10] “Corporate Modeler Suite,” Casewise Ltd, 2009. [Online]. Available:
http://www.casewise.com/Products/CorporateModelerSuite/

[11] A.-W. Scheer and M. Nüttgens, “Aris architecture and reference models
for business process management,” in Business Process Management,
W. van der Aalst, J. Desel, and A. Oberweis, Eds. Springer, 2000, pp.
376–389.

[12] Business Process Modeling Notation (BPMN) Specification,
Version 1.1 ed., Object Management Group (OMG), Feb.
2008. [Online]. Available: http://www.bpmn.org/Documents/BPMN_1-
1_Specification.pdf

[13] L. Braubach, A. Pokahr, K. Jander, and W. Lamersdorf, “Go4flex: Goal-
oriented process modelling,” in In Proceedings of the 4th International
Symposium on Intelligent Distributed Computing (IDC 2009). Springer,
2010.

[14] M. Bratman, Intention, Plans, and Practical Reason. Harvard Univer-
sity Press, 1987.

[15] A. Pokahr, L. Braubach, and K. Jander, “Unifying agent and component
concepts - jadex active components,” in Proceedings of the 8th German
conference on Multi-Agent System TEchnologieS (MATES-2005), J. Dix
and C. Witteveen, Eds. Springer, 2010.

[16] Workflow Reference Model, Workflow Management Coalition (WfMC),
Jan. 1995. [Online]. Available: http://www.wfmc.org/reference-
model.html

[17] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa, “Bdi-agents for
agile goal-oriented business processes,” in AAMAS ’08: Proceedings of
the 7th international joint conference on Autonomous agents and multi-
agent systems. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 37–44.

