
Reusable Interaction Protocols for Workflows

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg{pokahr | braubach}@informatik.uni-hamburg.de

Abstract. With the advent of collaborative business processes that may include different
parties, the interaction means between those processes steadily gains more importance.
Despite this issue the modeling of message-based interactions is very complex and error-
prone due to the inherent properties of asynchronous communication. In order to alleviate
this problem several predefined interaction protocols suchas contract-net or different
auction types have been defined in the context of multi-agentsystems. In this paper it
is shown how these interaction protocols can be described ina reusable way for BPMN
workflows. The underlying idea is to hide the complete message-based complexity of
the underlying protocol specification and allow to employ them in a completely domain
oriented fashion, i.e. the workflow modeler is only concerned with initiating a specific
type of interaction and fetching the results. For this purpose the ideas of agent-based
goal-oriented interactions have been simplified and transferred to the workflow modeling
area. The usefulness of the approach is exemplified by an example that illustrates how
contract-net negotiations can be set-up.

1 Introduction

Business processes typically describe activity sequencesfor bringing about business objec-
tives. When business processes get more complex and severalautonomous partners are re-
quired for producing a desired process outcome, the collaboration perspective between those
participating partners gains importance. This collaboration perspective highlights different as-
pects that are distinct from the internal process description view and include factors like decen-
tralized process management, peer-to-peer interactions and negotiations [LCV09]. A collab-
oration can be seen as an interaction between autonomous entities, whereby the correspond-
ing perspective has to deal with properties and rules guiding this interaction. Because of the
different perspective that collaborative processes emphasize, additional modeling approaches
for describing coordination between processes have been developed (e.g. WS-CDL [W3C04],
UML2 sequence diagrams [OMG05]). Typically, these approaches take an interaction proto-
col stance, which focuses on the allowed sequences of messages between the involved parties.
Automated execution of collaborative business processes requires that interactions can be ade-
quately modeled and also be equipped with sufficient technical details. The mechanism design
itself and thus the modeling of interaction protocols is a very complex and challenging task



[Woo01] so that several general purpose interaction protocols have been developed. These
prebuilt protocols are typically domain independent and target e.g. areas like auctions and ne-
gotiations. Due to the complexity of interaction protocolsit would be beneficial to be able to
make use of such predefined protocols and employ them as reusable modules in the context
of another business process. This requires not only interactions being described in a techni-
cally interpretable manner but also that the interconnection between message flow and domain
behavior is made explicit.

In this paper an approach is presented that facilitates the usage of predefined interaction
protocols and shows how these protocols can be integrated into domain dependent processes.
Despite the advantages of the approach, it has to be noted that not all kinds of interactions
can be modeled using such prebuilt protocols, so that manualdesign still may be necessary
depending on the concrete use case at hand. In Section 2 related work regarding collaborative
business processes is discussed by specifically highlighting approaches that focus on process
interaction modeling and execution. Section 3 introduces the concepts of reusable workflow
protocols and illustrates patterns for mapping interaction protocols to workflows. Thereafter,
Section 4 exemplifies the realization of reusable protocolsand presents the Jadex execution
infrastructure. The paper concludes with a summary and an outlook in Section 5.

2 Related Work

Collaborative workflows (also named inter-organizationalworkflows) have been subject of
intensive research in different areas of computer science.Common ground of most research
work is the usage of interaction protocols for describing the public parts of such processes.
In the following it will be especially discussed how interaction protocols have been exploited
for modeling and execution in multi-agent systems and whichapproaches in the workflow
community exist for integrating such protocol specifications.

In multi-agent systems modeling and execution of interaction protocols has attracted much
attention since the beginnings of the field, as agents communicate solely in a message-oriented
asynchronous way. In the context of the Foundation for Intelligent Physical Agents1 (FIPA),
which is a subdivision of IEEE responsible for standards in the agent area, AUML (Agent
UML) sequence diagrams have been developed for representing message exchanges between
different roles of a protocol including message control flowelements like branches or loops.
These representations have strongly influenced the evolution of UML2 sequence diagrams,
which are a de-facto standard for modeling interaction protocols nowadays. One main idea that
can be found in many agent-based approaches [DN04,Hug02,PTW07] is automatic code gen-
eration starting from interaction protocols. Typically, agent behavior skeletons are produced,
which reflect the message flow via method signatures and need to be refined by a program-
mer, who has to add custom code for the required domain logic.One fundamental problem
inherent to all such approaches is thepost-editing problem[Sze96], which denotes that hand-
crafted code will be lost whenever code generation has to be performed again, e.g. due to a

1 www.fipa.com



changed protocol specification. The most prominent way to address this problem, is by em-
ploying the model driven architecture (MDA) instead of simple code generators. MDA then
takes care that a clear separation of the different model abstraction layers is preserved and
regeneration of code (even targeted at different implementation platforms) is always possible.
An alternative that was e.g. used in [EC04] consists in usingan AUML interpreter, which is
able to process corresponding specifications at runtime. Inthis case the connection of pro-
tocols with domain logic becomes crucial. It can be solved byexplicitly introducing domain
interaction points based on message receival. In order to make such protocol domain interface
minimal in [BP07] it was suggested to base the interface not on received messages but only on
the underlying domain actions required at specific decisionpoints in the protocol.

The workflow community has tackled the modeling and realization of collaborative work-
flows in many cases by using code generation. In contrast to the agent approaches discussed
above mainly the target representation is different, whereby as source representation in many
cases also (modified) UML2 sequence diagrams [vdAW01,VLRC10] or semantically similar
representations like WS-CDL [W3C04] have been used. As target languages especially petri-
nets [vdAW01,FÁBE06] and WS-BPEL [VLRC10] have been utilized. Similarly, also MDA
has been applied in the more advanced solutions for avoidingthe post-editing problem and for
being able to generate different execution languages, e.g.pertri-nets for verification and WS-
BPEL for operation. Besides these generation approaches, also an alternative manual develop-
ment technique has been proposed. It relies on the idea that in a first step the choreography of
business processes should be modeled e.g. in [DB08] via iBPMN (bpmn for interactions) and
in [vdAW01] via sequence diagrams and petri-nets. Based on this description the public inter-
faces for private processes should be defined. Private processes have to implement the defined
communication points in according to the global collaboration view. This technique is reason-
able but does not take into account any automation aspects for rapid system development.

In summary it can be stated that nearly all approaches make use of code generation mecha-
nisms that allow starting with a high-level interaction based choreography description and gen-
erating individual code snippets for all roles of the protocol. Despite that MDA alleviates the
post-editing problem of generator based approaches and is very versatile, the mechanism still
requires individual protocol definition and customizationin each application case. In contrast,
in this paper we aim at an interpreter based solution, which can directly execute choreogra-
phy specifications and allows established and domain independent interaction protocols being
included in workflows as reusable modules. For this purpose especially the clean separation
of protocol and domain logic is of importance to allow users including and invoking prebuilt
interaction protocol workflows.

3 Concepts

In this section the concepts for modeling reusable interaction protocol workflows are described.
First, the general approach will be presented followed by specific patterns for mapping UML-
based protocol specifications to BPMN processes.



3.1 General Approach

Many interesting interaction protocols have been standardized in the area of agent systems, e.g.
contract net negotiation as well as Dutch and English auctions [FIP02a,FIP02b,FIP02c]. The
approach presented in this paper aims at providing reusableimplementations of these estab-
lished protocols. Reusable protocol implementations reduce the complexity of implementing
distributed systems and further increase robustness, due to relying on well-tested solutions.
The approach continues the work from [BP07] and transfers the agent ideas to workflow-based
systems.

The basic idea is to map the interaction protocol to a process, which represents the chore-
ography of possible message exchanges. The choreography isdescribed using the business
process modeling notation (BPMN), which allows to capture all roles of the interaction in a
single process specification. To employ this process as a reusable protocol implementation it
has to be made sure, that each of the roles can be independently executed. Therefore the pure
choreography has to be extended with corresponding decision points, which capture the do-
main logic. The decision logic is modeled as abstract subprocesses. When a protocol is reused
in a specific setting, the developer only needs to state the role to be executed and provide
reference to the concrete processes implementing the domain logic.

Previous work has already started addressing the issue of mapping AUML interaction pro-
tocols to executable process descriptions (e.g. [LCV09]).This paper builds upon existing work
and extends it with a special focus on reusability of processdescriptions. Therefore when map-
ping an interaction protocol to a process description, the process must not contain any domain
specific logic (e.g. concrete branching conditions). Yet, it must provide clear extension points
where domain logic can be seamlessly integrated.

3.2 Patterns

The activity of deriving a process description from an interaction diagram is guided by patterns
that illustrate how to map common message structures into appropriate process structures. Our
work extends patterns that can be found in e.g. [LCV09]. Mainfocus of the patterns is the
reusability aspect, i.e. how to integrate domain logic in a non-invasive fashion.

The first pattern represents a choice point in one of the protocol roles. In the interaction
diagram (see Figure 1, left), the choice manifests in one of two different messages that may
be sent. Yet, the reason for the choice is not apparent in the diagram, because it belongs to the
private behavior of the sender. In order to decide about the subsequent protocol flow, the sender
may need to execute arbitrary complex business logic. Therefore, the BPMN mapping (Figure
1, right) introduces a subprocessPrepare Decision. It is abstract and needs to be mapped
to appropriate domain logic. The concrete process to execute for Prepare Decisioncan be
specified as a configuration option and does not require the BPMN protocol process to be
changed for different application use cases.

The second pattern (Figure 2) is a specialization of the firstpattern and represents a com-
mon use case that can be found in many interaction protocols.In this pattern, the decision



Fig. 1. Alternative pattern in UML (left) and BPMN (right)

Fig. 2. Task execution pattern in UML (left) and BPMN (right)

Fig. 3. Multiple receive pattern in UML (left) and BPMN (right)



is not between arbitrary messages but between afailure and aninform message. This can be
interpreted as a communication of the result of a task execution at the sender side. If the task
succeeds, the receiver is informed about the result. If the task fails, the failure is communicated
to the receiver. Therefore in the BPMN mapping, the prepare decision task and corresponding
gateway from the first pattern are replaced by anExecute Tasksubprocess and an exception
handler. The advantage of using the second pattern instead of the first is that the domain logic
only has to deal with the task itself. While in the first pattern an explicit decision about failure
or success has to be made, the second pattern handles the failure case automatically.

In complex interaction protocols there is usually more thanone process instance playing
a particular role. E.g. in an auction setting, one auctioneer interacts with arbitrary many bid-
ders. Special care has to be taken for mapping this potentialmultiplicity to appropriate process
structures. In the third pattern (see Figure 3) one receiverexpects a message of each of po-
tentially many protocol participants. Therefore, while the sender side only interacts with one
receiver, the receiver side has to deal with many senders. InBPMN this is captured by a paral-
lel subprocess at the receiver side. The content of the subprocess is executed for each expected
sender. The pattern requires that the concrete participants of the interaction are known at this
place in the protocol. One question to be answered in the mapping is the scope of the parallel
activity. In the UML diagram (Figure 3, left) a compartment is used to define the subset of the
protocol where the multiple sending happens. When this compartment ends (i.e. once all mes-
sages are received), the receiver continues to execute sequentially (e.g. looking at all received
bids and selecting one). In BPMN a generic task is introducedto collect the contents of the sin-
gle received messages. The combined result is made available when the parallel process ends.
Because the task only collects data and does not analyze it, no domain specific functionality is
required.

All three patterns introduce timeouts for message receival. For open systems where inter-
acting participants may disappear independently, timeouts are essential for robust execution
and dealing with partial failures. In the first two patterns,the timeouts are modeled using in-
termediate time events that may occur as alternative to a message receival. In the third pattern
there is only one timeout handler for the parallel subprocess receiving multiple messages. The
actual timeout values are not hard-coded into the reusable protocol processes, but can be con-
figured when using the protocol in a specific application context. Therefore the protocols can
be used in human-centered processes (timeouts e.g. severaldays) as well as automated pro-
cesses (timeouts of a few seconds).

4 Realization

To illustrate the presented concepts this section presentsa well-known example interaction
protocol and its corresponding mapping to BPMN. Furthermore, the Jadex Active Components
infrastructure [PBJ10] is introduced as a modeling and runtime environment for executing the
modeled process.



4.1 Example: Contract Net

The contract net protocol is an established interaction protocol for task allocation [Smi80].
The initiator of the protocol seeks to delegate a task to one or more subcontractors. The sub-
contractors can make individual proposals (e.g. concerning the price or quality of the task
execution) and the initiator selects one or more of these proposals to be executed. The proto-
col, as standardized by FIPA, has been used in many differentapplication areas and is therefore
an interesting candidate for a protocol to be available as aneasily reusable implementation.

Figure 4 shows the protocol in UML2 sequence diagram notation. The mapping of the
protocol to BPMN is based on the patterns introduced in the previous section. In the following,
the mapping will be discussed with respect to the different sections of the protocol. The first
section of the protocol comprises the initialcfp (call for proposals) message and the reply
messages of the participants (eitherproposeor refuse). This section combines two patterns.
At the participant side, there is a decision to be made about proposing or refusing (pattern 1).
At the initiator side, the process needs to receive messagesfrom multiple participants (pattern
3). The resulting BPMN (see Figure 5) thus represents a mixture of both patterns. At the
participant side, pattern 1 is applied and the abstractMake Proposalsubprocess is introduced
to be mapped to corresponding domain logic for deciding about participation in the negotiation.
At the initiator side, a parallel subprocess handles the sending of the cfp to each participant and
the receival of the respective reply. The protocol ends at this point, when all participants send a
refuse or no proposal is received before the timeout. This isrepresented by the corresponding
gateway and theproposals.isEmpty()condition in the initiator process. When a participant
does not make proposal, i.e. when the conditionproposal!=null does not hold, this specific
participant process ends, while other participants can continue to negotiate with the initiator.

The second protocol section comprises the decision of the initiator about which proposals
to accept and the communication of the decision to the participants. Therefore a combination
of a decision (pattern 1) and multiple message sending (similar to pattern 3 with send instead
of receive) is included in the process. The decision is performed in the global scope (i.e. not in
parallel for each single participant), to allow the corresponding domain logic to reason about
all proposals at once. The accepted proposals are stored forlater use in the last protocol section.
The participant side of this protocol section is rather simple. When the proposal is rejected or a
timeout occurs, the participant process ends. Otherwise the participant continues with the last
protocol section.

When a participant is informed about the acceptance of its proposal, it starts the execution
of the corresponding domain task (Execute Request). When the execution fails, the failure
reason is communicated, otherwise the result is sent to the initiator (pattern 2). The initiator
waits until is has received the results of all task executions, which are collected in turn (pattern
3).

For easy reuse of the protocol in specific application cases,the extension points for the
required domain logic are clearly defined. Figure 6 summarizes the extensions points along
with important input and output values. The domain logic interfaces are based on the analysis
in [BP07] where further details, such as additional input/output values can be found. The sys-



Fig. 4. The FIPA contract net protocol [FIP02a]

tem that wants to start the protocol instantiates the initiator process (extension pointInitiate)
and supplies a domain object representing the initial call for proposals (cfp) as well as a list of
participants to include in the negotiation. After the protocol has completed the collected results
of the task execution(s) are made available in theresultoutput value. During the course of the
protocol the evaluate proposal process (epp) needs to be executed. The concrete implementa-
tion to be used is already specified when initiating the protocol. When executed, theExecute
Proposalssubprocess receives as input all collectedproposalsand has to provideproposal
evaluationsas a result, stating which of the proposals should be accepted.

To participate in a negotiation, a system has toActivatethe participant process (i.e. load
and configure the process specification) by specifying the concrete subprocesses to be executed
for the make proposal process (mpp) and the execute request process (erp). The process is
instantiated whenever a matching cfp message is received from an initiator. TheMake Proposal
process is passed the initiator and the cfp object and can decide to make aproposal, which has
to be supplied as result. If the participants proposal is selected by the initiator, theExecute
Requestprocess is started at the participant side. It receives the original proposal made and can
supply some value as aresultof the execution.

4.2 Jadex Active Components Infrastructure

The contract-net process has been implemented using the Jadex Active Component frame-
work2. For describing processes in BPMN, the framework provides amodeling tool based

2 http://jadex.informatik.uni-hamburg.de/



Fig. 5.The contract net protocol BPMN mapping



Protocol Role Extension Point Input Output

Initiator Initiate cfp, participants, epp result
Evaluate Proposals proposals proposal evaluations

Activate mpp, erp n/a
Participant Make Proposal cfp, initiator proposal

Execute Request proposal result

Fig. 6. Extension points for domain logic

on existing eclipse tools. In addition a runtime platform and process interpreter allow mod-
eled processes to be executed along with other types of components (e.g. agents) [PBJ10].
Additionally, the framework includes a number of runtime tools that allow debugging run-
ning components such as processes. In the context of protocol implementation, the most use-
ful tool is the ComAnalyzer, which allows to monitor and visualize communication among
processes. Recorded messages can be shown in different views (table, sequence diagram, 2D
graph, bar/pie chart) and filtered according to developer rules.

Figure 7 shows a screenshot of the ComAnalyzer after it has recorded a contract net nego-
tiation. The tree on the left shows the processes that have been executed. The diagram in the
middle shows the sequence of messages exchanged between processes. For the domain logic,
simple processes have been implemented, that perform random choices. It can be seen in the
tree that theMakeProposalsRandomprocess has been started as a subprocess of eachPar-
ticipant process. In the diagram, one can observe that two participants have made a proposal,
while Participant_3has sent a refuse. TheInitiator process, shown at the bottom of the tree has
started theEvaluateProposalsRandomprocess as a subprocess to evaluate the remaining two
proposals. It can be seen in the diagram that the proposal from Participant_1is accepted while
the other proposal is rejected. Therefore only Participant_1 starts theExecuteRequestRandom
subprocess, which leads to an inform message being sent backin case of success.

5 Summary and Outlook

Collaborative business processes require considering a global interaction perspective. This per-
spective highlights the roles of the different partners anddefines their behavior according to the
visible message sequences between them, i.e. a collaboration process is specified by peer-to-
peer interactions of roles. Due to this peer-to-peer characteristics such processes are inherently
decentralized and need to be executed in a cooperative fashion by the interaction participants.

In order to design and execute collaborative processes existing approaches mainly rely
on code generation mechanisms that are versatile but also require customization of processes
for each application case. In contrast, in this paper an interpreter centered approach has been
proposed that is able to directly execute choreography specifications. This is currently achieved
by modeling the choreography via BPMN according to established UML2 sequence diagram
protocol specifications. Several patterns have been proposed in order to show how a systematic
conversion from sequence diagrams to BPMN can be done.



Fig. 7. ComAnalyzer screenshot showing a contract net negotiation

In addition, one major objective of the presented approach is to allow reusing established
interaction protocols like contract-net and different auctions. To achieve this, specific domain
interfaces for protocols have been proposed, which allow for a customization of the domain
behavior. Concretely this is achieved by introducing subprocess placeholders, which will be
filled with domain helper workflows by the user and serve for delivering the required informa-
tion for the protocol layer. Domain helper workflows need to be defined according to specific
interfaces derived from the general domain interface of a protocol process.

It has been further shown that BPMN choreographies can be executed using the open
source Jadex Active Components infrastructure, which supports agents as well as workflows
and other component types. Predefined interaction protocols can be used as subprocesses
within domain workflows and are instantiated and parameterized as subprocesses. One es-
sential configuration aspect is the role that should be played as the whole choreography is
modeled in one BPMN diagram. Future work will address building-up a library of ready-to-
use protocols based on the FIPA interaction protocol specifications.

References

[BP07] L. Braubach and A. Pokahr. Goal-oriented interaction protocols. In5th German conference
on Multi-Agent System Technologies (MATES 2007). Springer, 2007.

[DB08] G. Decker and A. P. Barros. Interaction modeling using bpmn. InBusiness Process Manage-
ment Workshops, pages 208–219. Springer, 2008.



[DN04] M. Dinkloh and J. Nimis. A tool for integrated design and implementation of conversations in
multiagent systems. InProc. of the 1st Int. Workshop on Programming Multi-Agent Systems
(PROMAS 2003), pages 187–200. Springer, 2004.

[EC04] L. Ehrler and S. Cranefield. Executing agent UML diagrams. InProceedings of the Third In-
ternational Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004),
pages 906–913. IEEE Computer Society, 2004.

[FÁBE06] J. Fabra, P. Álvarez, J. A. Bañares, and J. Ezpeleta. A framework for the development and
execution of horizontal protocols in open bpm systems. In4th Int. Conf. Business Process
Management (BPM 2006), pages 209–224. Springer, 2006.

[FIP02a] Foundation for Intelligent Physical Agents (FIPA). FIPA Contract Net Interaction Protocol
Specification, December 2002. Document no. FIPA00029.

[FIP02b] Foundation for Intelligent Physical Agents (FIPA). FIPA Dutch Auction Interaction Protocol
Specification, December 2002. Document no. FIPA00032.

[FIP02c] Foundation for Intelligent Physical Agents (FIPA). FIPA English Auction Interaction Protocol
Specification, December 2002. Document no. FIPA00031.

[Hug02] M.-P. Huget. Generating code for agent uml sequencediagrams. InProceedings of Agent
Technology and Software Engineering (AgeS), Erfurt, Germany, 2002.

[LCV09] I. M. Lazarte, O. Chiotti, and P. D. Villarreal. Transforming collaborative process models into
interface process models by applying an mda approach. In9th Conf. on e-Business, e-Services
and e-Society (I3E 2009). Springer, 2009.

[OMG05] Object Management Group (OMG).UML Superstructure 2.0, 2005.
[PBJ10] A. Pokahr, L. Braubach, and K. Jander. Unifying Agent and Component Concepts - Jadex

Active Components. InProc. of MATES 2010. Springer, 2010.
[PTW07] L. Padgham, J. Thangarajah, and M. Winikoff. Auml protocols and code generation in the

prometheus design tool. InProc of the 6th Int. Conf. on Autonomous agents and multiagent
systems (AAMAS’07), pages 1–2. ACM, 2007.

[Smi80] R. G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver.IEEE Trans. on Comp., 29(12):1104–1113, 1980.

[Sze96] P. Szekely. Retrospective and challenges for model-based interface development. InDesign,
Specification and Verification of Interactive Systems (DSV-IS 1996), pages 1–27. Springer,
1996.

[vdAW01] W. van der Aalst and M. Weske. The p2p approach to interorganizational workflows. In
Proc. of the 13th Int. Conf. on Advanced Information SystemsEngineering (CAiSE’01), pages
140–156, London, UK, 2001. Springer-Verlag.

[VLRC10] P. D. Villarreal, I. Lazarte, J. Roa, and O. Chiotti. A modeling approach for collabora-
tive business processes based on the up-colbpip language. In Business Process Management
Workshops, pages 318–329. Springer-Verlag, 2010.

[W3C04] World Wide Web Consortium (W3C).Web Services Choreography Description Language,
version 1.0 edition, December 2004.

[Woo01] M. Wooldridge.An Introduction to MultiAgent Systems. John Wiley & Sons, 2001.


