Reusable Interaction Protocols for Workflows

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach}@informatik.uni-hamburg.de

Abstract. With the advent of collaborative business processes thaimehude different
parties, the interaction means between those processahilptgains more importance.
Despite this issue the modeling of message-based intenads very complex and error-
prone due to the inherent properties of asynchronous coreation. In order to alleviate
this problem several predefined interaction protocols @agltontract-net or different
auction types have been defined in the context of multi-aggstems. In this paper it
is shown how these interaction protocols can be describedé@usable way for BPMN
workflows. The underlying idea is to hide the complete mesdamgsed complexity of
the underlying protocol specification and allow to emplogrthin a completely domain
oriented fashion, i.e. the workflow modeler is only concdrméth initiating a specific
type of interaction and fetching the results. For this pegpthe ideas of agent-based
goal-oriented interactions have been simplified and teared to the workflow modeling
area. The usefulness of the approach is exemplified by anpeaimt illustrates how
contract-net negotiations can be set-up.

1 Introduction

Business processes typically describe activity sequeincdsringing about business objec-
tives. When business processes get more complex and sewtoalomous partners are re-
quired for producing a desired process outcome, the calidiom perspective between those
participating partners gains importance. This collaborgperspective highlights different as-
pects that are distinct from the internal process desonptiew and include factors like decen-
tralized process management, peer-to-peer interactimhs@gotiations [LCV09]. A collab-
oration can be seen as an interaction between autonomatienthereby the correspond-
ing perspective has to deal with properties and rules ggithis interaction. Because of the
different perspective that collaborative processes esipbaadditional modeling approaches
for describing coordination between processes have beataged (e.g. WS-CDL [W3CO04],
UML2 sequence diagrams [OMGO05]). Typically, these apphheadake an interaction proto-
col stance, which focuses on the allowed sequences of mesbatyveen the involved parties.
Automated execution of collaborative business processpsnes that interactions can be ade-
guately modeled and also be equipped with sufficient teelhdietails. The mechanism design
itself and thus the modeling of interaction protocols is ayvemplex and challenging task

[Woo01] so that several general purpose interaction pod¢olcave been developed. These
prebuilt protocols are typically domain independent amgete.g. areas like auctions and ne-
gotiations. Due to the complexity of interaction protociblould be beneficial to be able to
make use of such predefined protocols and employ them asbteusadules in the context
of another business process. This requires not only irtterecbeing described in a techni-
cally interpretable manner but also that the interconnadietween message flow and domain
behavior is made explicit.

In this paper an approach is presented that facilitates $hgeiof predefined interaction
protocols and shows how these protocols can be integratediamain dependent processes.
Despite the advantages of the approach, it has to be noteddhall kinds of interactions
can be modeled using such prebuilt protocols, so that matesagin still may be necessary
depending on the concrete use case at hand. In Section @dglatk regarding collaborative
business processes is discussed by specifically highliglafpproaches that focus on process
interaction modeling and execution. Section 3 introdubesconcepts of reusable workflow
protocols and illustrates patterns for mapping interacpiootocols to workflows. Thereafter,
Section 4 exemplifies the realization of reusable protoaal$ presents the Jadex execution
infrastructure. The paper concludes with a summary and doakin Section 5.

2 Related Work

Collaborative workflows (also named inter-organizatiowatkflows) have been subject of
intensive research in different areas of computer scie@oeamon ground of most research
work is the usage of interaction protocols for describing plublic parts of such processes.
In the following it will be especially discussed how intetiaa protocols have been exploited
for modeling and execution in multi-agent systems and whipproaches in the workflow
community exist for integrating such protocol specificatio

In multi-agent systems modeling and execution of intecagtirotocols has attracted much
attention since the beginnings of the field, as agents coruatansolely in a message-oriented
asynchronous way. In the context of the Foundation for ligeht Physical Agents(FIPA),
which is a subdivision of IEEE responsible for standardshiem agent area, AUML (Agent
UML) sequence diagrams have been developed for repregangssage exchanges between
different roles of a protocol including message control flelements like branches or loops.
These representations have strongly influenced the ewnlati UML2 sequence diagrams,
which are a de-facto standard for modeling interactionquols nowadays. One main idea that
can be found in many agent-based approaches [DN04,Hug@&P[lis automatic code gen-
eration starting from interaction protocols. Typicallgemt behavior skeletons are produced,
which reflect the message flow via method signatures and ekd tefined by a program-
mer, who has to add custom code for the required domain I@yie fundamental problem
inherent to all such approaches is fiwst-editing probleniSze96], which denotes that hand-
crafted code will be lost whenever code generation has toebmned again, e.g. due to a

1 www.fipa.com

changed protocol specification. The most prominent way tiress$ this problem, is by em-
ploying the model driven architecture (MDA) instead of slempode generators. MDA then
takes care that a clear separation of the different modefadtion layers is preserved and
regeneration of code (even targeted at different impleat&mt platforms) is always possible.
An alternative that was e.g. used in [EC04] consists in uam@UML interpreter, which is
able to process corresponding specifications at runtiméitncase the connection of pro-
tocols with domain logic becomes crucial. It can be solveahplicitly introducing domain
interaction points based on message receival. In order ke s1zch protocol domain interface
minimal in [BPQ7] it was suggested to base the interface natoeived messages but only on
the underlying domain actions required at specific decipmints in the protocol.

The workflow community has tackled the modeling and reatiraof collaborative work-
flows in many cases by using code generation. In contrasetaglent approaches discussed
above mainly the target representation is different, wineges source representation in many
cases also (modified) UML2 sequence diagrams [vdAWO01,VLB@t semantically similar
representations like WS-CDL [W3CO04] have been used. Astdammguages especially petri-
nets [vdAWO01,FABE06] and WS-BPEL [VLRC10] have been uéliz Similarly, also MDA
has been applied in the more advanced solutions for avoilingost-editing problem and for
being able to generate different execution languagespertyi-nets for verification and WS-
BPEL for operation. Besides these generation approaclsesaa alternative manual develop-
ment technique has been proposed. It relies on the ideantldirist step the choreography of
business processes should be modeled e.g. in [DB08] via BRMmMn for interactions) and
in [vdAWO01] via sequence diagrams and petri-nets. Basethisrdescription the public inter-
faces for private processes should be defined. Private ggesdave to implement the defined
communication points in according to the global collabioraview. This technique is reason-
able but does not take into account any automation aspeatsdinl system development.

In summary it can be stated that nearly all approaches makefuede generation mecha-
nisms that allow starting with a high-level interaction dashoreography description and gen-
erating individual code snippets for all roles of the prafo©espite that MDA alleviates the
post-editing problem of generator based approaches arahissersatile, the mechanism still
requires individual protocol definition and customizatioeach application case. In contrast,
in this paper we aim at an interpreter based solution, whashdirectly execute choreogra-
phy specifications and allows established and domain intp# interaction protocols being
included in workflows as reusable modules. For this purpepe@ally the clean separation
of protocol and domain logic is of importance to allow userduding and invoking prebuilt
interaction protocol workflows.

3 Concepts

In this section the concepts for modeling reusable interagrotocol workflows are described.
First, the general approach will be presented followed tecHje patterns for mapping UML-
based protocol specifications to BPMN processes.

3.1 General Approach

Many interesting interaction protocols have been starideddn the area of agent systems, e.g.
contract net negotiation as well as Dutch and English anstj6IP02a,FIP02b,FIP02c]. The
approach presented in this paper aims at providing reusaiplementations of these estab-
lished protocols. Reusable protocol implementationscedbe complexity of implementing
distributed systems and further increase robustness,adteying on well-tested solutions.
The approach continues the work from [BP07] and transfersifent ideas to workflow-based
systems.

The basic idea is to map the interaction protocol to a proeesieh represents the chore-
ography of possible message exchanges. The choreograplegdsibed using the business
process modeling notation (BPMN), which allows to captutedes of the interaction in a
single process specification. To employ this process assabéeiprotocol implementation it
has to be made sure, that each of the roles can be indepgnelemtuted. Therefore the pure
choreography has to be extended with corresponding dagimts, which capture the do-
main logic. The decision logic is modeled as abstract sutgmses. When a protocol is reused
in a specific setting, the developer only needs to state tleetoobe executed and provide
reference to the concrete processes implementing the ddotac.

Previous work has already started addressing the issuepgdinggAUML interaction pro-
tocols to executable process descriptions (e.g. [LCVA%)s paper builds upon existing work
and extends it with a special focus on reusability of prodesgriptions. Therefore when map-
ping an interaction protocol to a process description, toegss must not contain any domain
specific logic (e.g. concrete branching conditions). anust provide clear extension points
where domain logic can be seamlessly integrated.

3.2 Patterns

The activity of deriving a process description from an iattion diagram is guided by patterns
that illustrate how to map common message structures imtmapate process structures. Our
work extends patterns that can be found in e.g. [LCV09]. Mattus of the patterns is the
reusability aspect, i.e. how to integrate domain logic iroa-invasive fashion.

The first pattern represents a choice point in one of the pobtmles. In the interaction
diagram (see Figure 1, left), the choice manifests in onevofdifferent messages that may
be sent. Yet, the reason for the choice is not apparent initlygain, because it belongs to the
private behavior of the sender. In order to decide aboutitheeqjuent protocol flow, the sender
may need to execute arbitrary complex business logic. Ttwer,ghe BPMN mapping (Figure
1, right) introduces a subproceBsepare Decisionlt is abstract and needs to be mapped
to appropriate domain logic. The concrete process to egdoutPrepare Decisioncan be
specified as a configuration option and does not require tHdNBProtocol process to be
changed for different application use cases.

The second pattern (Figure 2) is a specialization of thediaiiern and represents a com-
mon use case that can be found in many interaction protolcothis pattern, the decision

Receiver Sender

<protocol messages>

Sender

alt

Receivar

<protocol messages>

Fig. 1. Alternative pattern in UML (left) and BPMN (right)

Receiver Sender [T ,

Execute Task

Sender

<protocol messages>

inform

_ failure @ E >

O~

<protocol messages>

Fig. 2. Task execution pattern in UML (left) and BPMN (right)

Receiver Sender* §

) [}
<protocol messages> T
N |
1
IFar all Senders

@ Collect
Data

=

Sender

Feceiver

<protocol messages>

Fig. 3. Multiple receive pattern in UML (left) and BPMN (right)

is not between arbitrary messages but betwetilare and aninform message. This can be
interpreted as a communication of the result of a task ei@tat the sender side. If the task
succeeds, the receiver is informed about the result. Islefails, the failure is communicated
to the receiver. Therefore in the BPMN mapping, the prepanisibn task and corresponding
gateway from the first pattern are replaced byExecute Taslsubprocess and an exception
handler. The advantage of using the second pattern insfehd first is that the domain logic
only has to deal with the task itself. While in the first pattan explicit decision about failure
or success has to be made, the second pattern handles tine aite automatically.

In complex interaction protocols there is usually more thae process instance playing
a particular role. E.g. in an auction setting, one auctiofrgeracts with arbitrary many bid-
ders. Special care has to be taken for mapping this potentitiplicity to appropriate process
structures. In the third pattern (see Figure 3) one recaxpects a message of each of po-
tentially many protocol participants. Therefore, while tender side only interacts with one
receiver, the receiver side has to deal with many sendeBPMN this is captured by a paral-
lel subprocess at the receiver side. The content of the subps is executed for each expected
sender. The pattern requires that the concrete particmdrihe interaction are known at this
place in the protocol. One question to be answered in the mmgjigpthe scope of the parallel
activity. In the UML diagram (Figure 3, left) a compartmentised to define the subset of the
protocol where the multiple sending happens. When this estment ends (i.e. once all mes-
sages are received), the receiver continues to executersigjly (e.g. looking at all received
bids and selecting one). In BPMN a generic task is introdtieedllect the contents of the sin-
gle received messages. The combined result is made aeaildian the parallel process ends.
Because the task only collects data and does not analyzedymain specific functionality is
required.

All three patterns introduce timeouts for message recdi@l open systems where inter-
acting participants may disappear independently, tineeatg essential for robust execution
and dealing with partial failures. In the first two patterti® timeouts are modeled using in-
termediate time events that may occur as alternative to aageseceival. In the third pattern
there is only one timeout handler for the parallel subpreceseiving multiple messages. The
actual timeout values are not hard-coded into the reusabteqol processes, but can be con-
figured when using the protocol in a specific application eghiTherefore the protocols can
be used in human-centered processes (timeouts e.g. sdagsjlas well as automated pro-
cesses (timeouts of a few seconds).

4 Realization

To illustrate the presented concepts this section presentsll-known example interaction

protocol and its corresponding mapping to BPMN. Furtheamtire Jadex Active Components
infrastructure [PBJ10] is introduced as a modeling andimmenvironment for executing the

modeled process.

4.1 Example: Contract Net

The contract net protocol is an established interactiotogad for task allocation [Smi80].
The initiator of the protocol seeks to delegate a task to amaare subcontractors. The sub-
contractors can make individual proposals (e.g. concgrtiie price or quality of the task
execution) and the initiator selects one or more of thespgwals to be executed. The proto-
col, as standardized by FIPA, has been used in many diffapgtication areas and is therefore
an interesting candidate for a protocol to be available asaaily reusable implementation.

Figure 4 shows the protocol in UML2 sequence diagram natafidle mapping of the
protocol to BPMN is based on the patterns introduced in theipus section. In the following,
the mapping will be discussed with respect to the differectiens of the protocol. The first
section of the protocol comprises the initiEfp (call for proposals) message and the reply
messages of the participants (eitipeoposeor refusg. This section combines two patterns.
At the participant side, there is a decision to be made abmytgsing or refusing (pattern 1).
At the initiator side, the process needs to receive mesdegaanultiple participants (pattern
3). The resulting BPMN (see Figure 5) thus represents a mextd both patterns. At the
participant side, pattern 1 is applied and the abstviadte Proposakubprocess is introduced
to be mapped to corresponding domain logic for deciding tparticipation in the negotiation.
At the initiator side, a parallel subprocess handles thdisgrof the cfp to each participant and
the receival of the respective reply. The protocol endsiafbint, when all participants send a
refuse or no proposal is received before the timeout. Thisgsesented by the corresponding
gateway and theroposals.isEmpty(¢ondition in the initiator process. When a participant
does not make proposal, i.e. when the condifiooposal!=null does not hold, this specific
participant process ends, while other participants catirmoato negotiate with the initiator.

The second protocol section comprises the decision of iliator about which proposals
to accept and the communication of the decision to the paatits. Therefore a combination
of a decision (pattern 1) and multiple message sendinglginai pattern 3 with send instead
of receive) is included in the process. The decision is peréal in the global scope (i.e. notin
parallel for each single participant), to allow the cormsging domain logic to reason about
all proposals at once. The accepted proposals are storkddouse in the last protocol section.
The participant side of this protocol section is rather deny/hen the proposal is rejected or a
timeout occurs, the participant process ends. Otherwesedinticipant continues with the last
protocol section.

When a participant is informed about the acceptance of dpgmsal, it starts the execution
of the corresponding domain taskxecute RequéstWhen the execution fails, the failure
reason is communicated, otherwise the result is sent tanttiator (pattern 2). The initiator
waits until is has received the results of all task executiorhich are collected in turn (pattern
3).

For easy reuse of the protocol in specific application cabesextension points for the
required domain logic are clearly defined. Figure 6 summaarthe extensions points along
with important input and output values. The domain logieifdces are based on the analysis
in [BPO7] where further details, such as additional inputpait values can be found. The sys-

Initiator Participant

y cfp ;
a,lt refuse E
D SO
E propose '
alt

reject-proposal ;

accept-proposal

;

]

]

.)
failure :
4

)

)

)

; inform

Fig. 4. The FIPA contract net protocol [FIP02a]

tem that wants to start the protocol instantiates the ioitiprocess (extension poihtitiate)
and supplies a domain object representing the initial calpfoposals (cfp) as well as a list of
participants to include in the negotiation. After the piamthas completed the collected results
of the task execution(s) are made available inrdsailt output value. During the course of the
protocol the evaluate proposal procesgp needs to be executed. The concrete implementa-
tion to be used is already specified when initiating the protto/Vhen executed, thexecute
Proposalssubprocess receives as input all collecpedposalsand has to providgroposal
evaluationsas a result, stating which of the proposals should be actepte

To participate in a negotiation, a system hag\ttivatethe participant process (i.e. load
and configure the process specification) by specifying themate subprocesses to be executed
for the make proposal process (mpp) and the execute requeestgs (erp). The process is
instantiated whenever a matching cfp message is receiwatdn initiator. Thévlake Proposal
process is passed the initiator and the cfp object and cadadecmake groposal which has
to be supplied as result. If the participants proposal isctetl by the initiator, th&xecute
Requesprocess is started at the participant side. It receivesrigamal proposal made and can
supply some value asrasultof the execution.

4.2 Jadex Active Components Infrastructure

The contract-net process has been implemented using tles 2audive Component frame-
work?. For describing processes in BPMN, the framework providesoaeling tool based

2http://jadex.informatik.uni-hamburg.de/

Sjuediaped (g Jod

Call for Proposals

jlesodold

(ILUE

Propose

=
Opaydaoaysiiesodod
Esodoud (e 104

(fduigsrsiesodord

Accept Proposal

Reject Proposal

Inform

Participant

|esodold ayep

Fig. 5. The contract net protocol BPMN mapping

®

|Protocol Role| Extension Point | Input | Output |

Initiator Initiate cfp, participants, epp result
Evaluate Proposdls proposals proposal evaluations
Activate mpp, erp n/a
Participant | Make Proposal cfp, initiator proposal
Execute Request proposal result

Fig. 6. Extension points for domain logic

on existing eclipse tools. In addition a runtime platfornd gwocess interpreter allow mod-
eled processes to be executed along with other types of coenp® (e.g. agents) [PBJ10].
Additionally, the framework includes a number of runtimeltthat allow debugging run-
ning components such as processes. In the context of ptatoplementation, the most use-
ful tool is the ComAnalyzer, which allows to monitor and \adide communication among
processes. Recorded messages can be shown in differest (tédve, sequence diagram, 2D
graph, bar/pie chart) and filtered according to developestu

Figure 7 shows a screenshot of the ComAnalyzer after it lmsded a contract net nego-
tiation. The tree on the left shows the processes that hase éseecuted. The diagram in the
middle shows the sequence of messages exchanged betweesga® For the domain logic,
simple processes have been implemented, that performmanloices. It can be seen in the
tree that theMakeProposalsRandoprocess has been started as a subprocess ofReaech
ticipantprocess. In the diagram, one can observe that two partiGpeve made a proposal,
while Participant_3has sent a refuse. Tlhatiator process, shown at the bottom of the tree has
started theEvaluateProposalsRandopnocess as a subprocess to evaluate the remaining two
proposals. It can be seen in the diagram that the proposaesticipant_1lis accepted while
the other proposal is rejected. Therefore only Participhstarts th&xecuteRequestRandom
subprocess, which leads to an inform message being sentrbaake of success.

5 Summary and Outlook

Collaborative business processes require considerirgoalghteraction perspective. This per-
spective highlights the roles of the different partnersaefithes their behavior according to the
visible message sequences between them, i.e. a collabopticess is specified by peer-to-
peer interactions of roles. Due to this peer-to-peer ctiaratics such processes are inherently
decentralized and need to be executed in a cooperativefabijithe interaction participants.

In order to design and execute collaborative processesirexiapproaches mainly rely
on code generation mechanisms that are versatile but ajsireecustomization of processes
for each application case. In contrast, in this paper ampné¢er centered approach has been
proposed that is able to directly execute choreographyifsgaons. This is currently achieved
by modeling the choreography via BPMN according to esthblisUML2 sequence diagram
protocol specifications. Several patterns have been peofin®rder to show how a systematic
conversion from sequence diagrams to BPMN can be done.

B8 Jadex Control Center 2.0-rcZ (6. April 2010): Project bpmn g 1ol x|

File. Agenis Messages Panels Auto Refresh Help

e 2 B oig Lyl Jadex
5 Narng :\’Tahle | Diagram | Graph | chart
§ b fars . T
.ljm:@\ara 5‘ | _‘:
i cms@lars) e
& di@lars Messages
¢ [contracthlet! D4glars 4
¢ [Participant_1@lars Durnirry ior@lars [ic] Show Labels
& MakeProposalRandom105@lars] Bold Text
& ExecuteRequestRandom 09@lars cfp (Hello? Color By
& O Participant_2@lars 2 | >
& MakeProposalRandom107@lars 5 tfp (Hello?) No colors
¢ & Participant_3@lars I Converstation
[MakeProposalRandoml 06@iars 4 | cfp (Hello?)
¢ O Initiatiorg@lars . S— - @) Performative
[EvaluateProposalsRandormi D8@lar: 5 propose m(‘msa mom al GIpRAE)) Protocol

refuse (Hello?)
6 <
propose (Proposal from Paricipant_2)
7 P —]

accept-proposal (Proposal from Paricipant_1]
>

rejectproposal (Propasal from Pam;pant_z)

inform (ExecLﬁad Proposal from Partic.)

o

Fig. 7. ComAnalyzer screenshot showing a contract net negotiation

In addition, one major objective of the presented approsctb allow reusing established
interaction protocols like contract-net and differenttéarts. To achieve this, specific domain
interfaces for protocols have been proposed, which allovafoustomization of the domain
behavior. Concretely this is achieved by introducing sabpss placeholders, which will be
filled with domain helper workflows by the user and serve fdivéeing the required informa-
tion for the protocol layer. Domain helper workflows need ¢éodefined according to specific
interfaces derived from the general domain interface obageol process.

It has been further shown that BPMN choreographies can beute@ using the open
source Jadex Active Components infrastructure, which stup@gents as well as workflows
and other component types. Predefined interaction pratozah be used as subprocesses
within domain workflows and are instantiated and parametdrias subprocesses. One es-
sential configuration aspect is the role that should be plagthe whole choreography is
modeled in one BPMN diagram. Future work will address baidup a library of ready-to-
use protocols based on the FIPA interaction protocol spatifins.

References

[BPO7] L. Braubach and A. Pokahr. Goal-oriented interacpootocols. In5th German conference
on Multi-Agent System Technologies (MATES 208p)inger, 2007.

[DB08] G. Decker and A. P. Barros. Interaction modeling gdapmn. InBusiness Process Manage-
ment Workshoppages 208—-219. Springer, 2008.

[DNO4] M. Dinkloh and J. Nimis. A tool for integrated designciimplementation of conversations in
multiagent systems. IRroc. of the 1st Int. Workshop on Programming Multi-Agergat&ms
(PROMAS 2003)pages 187—-200. Springer, 2004.

[EC04] L. Ehrler and S. Cranefield. Executing agent UML déamgs. InProceedings of the Third In-
ternational Joint Conference on Autonomous Agents andiMgient Systems (AAMAS 2004)
pages 906-913. IEEE Computer Society, 2004.

[FABEO6] J. Fabra, P. Alvarez, J. A. Bafiares, and J. Ezpelatdamework for the development and
execution of horizontal protocols in open bpm systems4tmint. Conf. Business Process
Management (BPM 2006pages 209—-224. Springer, 2006.

[FIPO2a] Foundation for Intelligent Physical Agents (F)PAIPA Contract Net Interaction Protocol
SpecificationDecember 2002. Document no. FIPA00029.

[FIPO2b] Foundation for Intelligent Physical Agents (F)PAIPA Dutch Auction Interaction Protocol
SpecificationDecember 2002. Document no. FIPA00032.

[FIPO2c] Foundation for Intelligent Physical Agents (F)PRIPA English Auction Interaction Protocol
SpecificationDecember 2002. Document no. FIPAO0031.

[Hug02] M.-P. Huget. Generating code for agent uml sequeli@grams. InProceedings of Agent
Technology and Software Engineering (AgdSjurt, Germany, 2002.

[LCVO09] I. M. Lazarte, O. Chiotti, and P. D. Villarreal. Traforming collaborative process models into
interface process models by applying an mda approacdthi€onf. on e-Business, e-Services
and e-Society (I3E 2009%pringer, 2009.

[OMGO05] Object Management Group (OMGQYML Superstructure 2,(2005.

[PBJ10] A. Pokahr, L. Braubach, and K. Jander. Unifying Agand Component Concepts - Jadex
Active Components. IiProc. of MATES 2010Springer, 2010.

[PTWO7] L. Padgham, J. Thangarajah, and M. Winikoff. Aumbtpcols and code generation in the
prometheus design tool. Froc of the 6th Int. Conf. on Autonomous agents and multiagen
systems (AAMAS'O7pages 1-2. ACM, 2007.

[Smi80] R. G. Smith. The Contract Net Protocol: High-Levai@munication and Control in a Dis-
tributed Problem SolvedEEE Trans. on Comp29(12):1104-1113, 1980.

[Sze96] P. Szekely. Retrospective and challenges for ruated interface development. Design,
Specification and Verification of Interactive Systems (D&\996) pages 1-27. Springer,
1996.

[vdAWO1] W. van der Aalst and M. Weske. The p2p approach terimganizational workflows. In
Proc. of the 13th Int. Conf. on Advanced Information Systénggneering (CAISE’'01)pages
140-156, London, UK, 2001. Springer-Verlag.

[VLRC10] P. D. Villarreal, I. Lazarte, J. Roa, and O. ChiottA modeling approach for collabora-
tive business processes based on the up-colbpip languagaisiness Process Management
Workshopspages 318-329. Springer-Verlag, 2010.

[W3C04] World Wide Web Consortium (W3C)Web Services Choreography Description Language
version 1.0 edition, December 2004.

[Woo01] M. Wooldridge.An Introduction to MultiAgent System3ohn Wiley & Sons, 2001.

