
Unifying Agent and Component Concepts

Jadex Active Components

Alexander Pokahr, Lars Braubach, and Kai Jander

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{pokahr | braubach | jander}@informatik.uni-hamburg.de

Abstract. The construction of distributed applications is a challenging
task due to inherent system properties like message passing and con-
currency. Current technology trends further increase the necessity for
novel software concepts that help dealing with these issues. An analysis
of existing software paradigms has revealed that each of them has its
speci�c strengths and weaknesses but none �ts all the needs. On basis of
this evaluation in this paper a new approach called active components is
proposed. Active components are a consolidation of the agent paradigm,
combining it with advantageous concepts of other types of software com-
ponents. Active components, like agents, are autonomous with respect
to their execution. Like software components, they are managed entities,
which exhibit clear interfaces making their functionality explicit. The
approach considerably broadens the scope of applications that can be
built as heterogeneous component types, e.g. agents and work�ows, can
be used in the same application without interoperability problems and
with a shared toolset at hand for development, runtime monitoring and
debugging. The paper devises main characteristics of active components
and highlights a system architecture and its implementation in the Jadex
Active Component infrastructure. The usefulness of the approach is fur-
ther explained with an example use case, which shows how a work�ow
management system can be built on top of the existing infrastructure.

1 Introduction

Building distributed applications is a demanding and complex task that nat-
urally leads to new problems due to inherent system properties like message
communication, concurrency and also non-functional challenges like scalability
and fault-tolerance. In addition to these inherent properties current technology
trends further increase the demand for novel software technical concepts help-
ing to cope with these issues. Among the most prominent trends are increasing
hardware concurrency and delegation of tasks to computer programs (cf. [12,16]),
which will be discussed with respect to their software technical requirements.

Increased hardware concurrency results from the tendency of chip manufac-
tors to increase processing power by creating multi-core processors with steadily
more cores. This leads to the challenge on the software level of how to cope

with and especially exploit this newly available degree of parallelism. Traditional
rather sequential software products cannot pro�t much from multi-core technol-
ogy except when multiple applications are run at the same time. In order to
make use of the hardware resources it is necessary to provide conceptual means
on the design and programming level and build massively concurrent applica-
tions that go beyond simply parallelizing for-loops. Otherwise performance gains
will remain decent, because following Amdahl's law �the speedup of a program
using multiple processors in parallel computing is limited by the time needed
for the sequential fraction of the program�.1 Therefore, concepts for self-acting
entities are required for embracing concurrency as a �rst-class design principle.

Delegation of work to computer programs is a trend that can be observed
since a long time and is applied even in very complex and sensible domains today
[16]. Building such complex and sensible application has several implications for
the underlying software concepts. On the one hand the complexity demands rich
possibilities for realizing software entities and also for the ways they can interact.
Depending on the application scenario that is considered di�erent kinds of enti-
ties (e.g. work�ows or tasks) and also interaction styles (e.g. message based or
method calls) may be appropriate. On the software level this diversity should be
re�ected by facilitating multiple entity and communication styles. In addition,
when business critical domains are considered, the support of non-functional
criteria like persistency, transactions and scalability is indispensable. These as-
pects are concerns that are orthogonal to business functionality and require that
entities are under strict control of the execution infrastructure (typically named
�managed� entities). Without such a management infrastructure it is very hard
not to say impossible to realize the required non-functional mechanisms.

These requirements should be addressed as much as possible already on the
underlying software paradigm level to avoid rebuilding solutions on the applica-
tion level. The systematic realization of an application requires in addition to the
conceptual properties of modelled entities also adherence to established software
engineering principles. The summarized requirements for a software paradigm
being able to build complex distributed applications are shown below:

1. support software engineering principles (e.g. de/composition and reusability)
2. exhibit di�erent kinds of entity behavior (e.g. agent, work�ow)
3. having rich interaction styles (e.g. messages, method invocation)
4. can act on their own (autonomously)
5. support non-functional characteristics (e.g. scalability and persistency)

Object orientation, although it has been conceptually extended with remote
method invocation, fails in addressing these demands, because it has been con-
ceived with a sequential non-distributed application view in mind. Hence, further
paradigms like agents, active objects, components, and services have been de-
vised building on basic object-oriented concepts. These paradigms have speci�c
strengths and weaknesses but none of them is able to address the full range
of problems in distributed systems. The idea of this paper is integrating the
strengths of promising paradigms into a new one called active components.

1 http://en.wikipedia.org/wiki/Amdahl's_law

The next Section 2 provides an analysis of promising software engineering
paradigms and lays down the foundations for the design choices of active com-
ponents. Thereafter, in Section 3, the basic concepts of active components are
described and in Section 4 their implementation and runtime infrastructure is
presented. Highlighting the usefulness of the approach, Section 5 presents an ex-
ample application, which realizes a work�ow management systems using active
components. Section 6 discusses related work and Section 7 concludes the paper.

2 Paradigms for Complex Distributed Systems

The work presented in this paper is a uni�cation of the concepts of active objects,
agents and components. These three paradigms have been selected, because they
exhibit interesting technical properties with respect to the development of com-
plex distributed systems. The paradigms will be analyzed with respect to the
criteria elicited in the introduction. Other paradigms, such as service-oriented
computing, may o�er additional bene�cial properties, but the inclusion of these
properties is left to future work.

For mapping the criteria to technical properties of the paradigm entities, the
categories structure, interaction and execution have been introduced. The struc-
ture category deals with the inner workings of an entity. The hierarchical aspect
of structure addresses criteria 1 (software engineering principles) and demands
that entities may need to be decomposed into smaller entities themselves. The
second important aspect of entity structure are so called internal architectures,
which conceptually capture di�erent kinds of entity behavior as suggested by
criteria 2. Criteria 3 requires supporting rich interaction styles as represented
in the interaction category. With message-based interaction and object-oriented
method invocation, the two most important interaction styles have been included
as sub-properties in this category. The execution category considers how entities
are embedded into a runtime environment. On the one hand, entities should be
able to act autonomously as stated in criteria 4. On the other hand, the non-
functional characteristics of criteria 5 (e.g. persistence and scalability) can only
be achieved when entities are managed by an infrastructure.

2.1 Software Agents and Multi-agent Systems

Software agents are a paradigm for open, distributed and concurrent systems
[12]. An agent is commonly characterized as being autonomous (independent
of other agents), reactive (advertent to changes in the environment), proactive
(pursues its own goals), and social (interacts with other agents) and may be
realized using mentalistic notions (e.g. beliefs and desires)[16]. Typically, an
agent-based software application is realized as a multi-agent system (MAS),
which is a set of agents that interact using explicit message passing, possibly
following sophisticated negotiation protocols.

Advantages of the agent paradigm for building complex distributed systems
can be found on the intra- and inter-agent level. Intra-agent level concepts al-
low de�ning the behavior of a single agent. Agents naturally embrace concur-
rency, as each agent is autonomous and can decide for itself about its execution.

Moreover, many agent architectures have been developed [4], partially based on
theories from disciplines such as philosophy and biology. They provide ready-
to-use solutions for de�ning system behavior, that �t well to di�erent problem
settings (e.g. simple insect-like agents vs. complex reasoning agents). The inter-
agent level deals with concepts to describe interactions among agents in a MAS.
Agent interaction is primarily message-based, although other forms exist, such
as environment-based interaction (e.g. pheromones for ant-like agents). Regard-
ing message-based interaction, agent research has de�ned many ready-to-use
interaction patterns for open distributed systems (e.g. for negotiation).

Limitations of the agent paradigm can be found in conceptual as well as tech-
nical aspects. An obvious conceptual limitation is that message-passing commu-
nication is not well suited for all application areas. Building such applications us-
ing message-oriented agents leads to cumbersome design with poor performance
and maintainability. On the technical level, many existing frameworks provide no
management infrastructure and therefore do not address non-functional proper-
ties. Moreover, often no sophisticated concepts for modularization on the intra-
agent level are available.

2.2 Active Objects

Active objects [10] are a design pattern in the context of object-oriented software
development, addressing issues of multi-threading and synchronization. The ac-
tive object is an abstraction concept for concurrency. A scheduler in the active
object manages the execution of method calls on the object's own thread. The
pattern increases the concurrency of an application and also avoids synchroniza-
tion issues, because local data is always accessed from the same thread.

The active object pattern excels at providing method-based interaction. From
a developers perspective it may even be transparent, if a method is called on an
active object or a conventional passive object. Additionally, the pattern provides
some autonomous execution. The pattern decouples caller from callee and lets
the active object decide, in which order requests are processed.

The pattern is not a fully-�edged paradigm for distributed computing and
thus does not address the other properties. While it seems reasonable to have
a hierarchical decomposition of active objects and also to equip active objects
with message-based interaction capabilities, it is not obvious how internal archi-
tectures or a managed execution could be incorporated into the metaphor.

2.3 Software Components

The component metaphor [15] is inspired from the manufacturing industry,
where preproduced components (potentially provided by an external supplier)
are assembled into a complete product. From a technical viewpoint software com-
ponents facilitate forming a software application by composing independently
developed subsystems on top of some substrate (component platform).

Regarding interaction, component models support message- as well as method-
based interaction styles. Existing component platforms further simplify system
implementation by providing a ready-to-use component management infrastruc-
ture. In this respect, many component platforms such as Java EE application

structure interaction execution
hierarchical int. arch. msg-based meth.call auton. managed

agents partially yes yes no yes partially

active objects no no no yes yes no

components yes no yes yes no yes

Fig. 1. Technical properties of paradigm entities

servers address non-functional properties like persistence and replication, which
easily allows achieving robustness and scalability of implemented systems.

A major drawback of using software components for distributed systems is
the lack of a concept for representing concurrency. Most component models
regard component instances as passive (i.e. non-autonomous) entities that only
act on request (e.g. when a user performs an action through a web interface).
Some infrastructures such as Java EE even prohibit the use of threads by the
developer, as this would break transaction or replication functionality. Moreover,
component models focus on the interfaces of components and do not address the
internal structure apart from a hierarchical decomposition.

2.4 Summary

In Figure 1 it can be observed that each of the analyzed approaches handles the
criteria, which have been set out in the introduction, to a di�erent extent. On
the one hand, agents and components are conceptually rich metaphors with only
a few weaknesses. Agents have some weaknesses with respect to hierarchical de-
composition and management infrastructure and do not support object-oriented
method interaction. Components lack sophisticated internal architectures and do
not support autonomous execution. On the other hand, active objects are not
as conceptually rich as the other approaches. Yet, active objects are interesting,
because they achieve a combination of method call interaction with autonomous
execution. The analysis result motivates the uni�cation of the paradigms into a
new conceptual framework as described in the next section.

3 Active Component Concepts

In the following the main concepts for the active components approach will be
laid down according to the earlier introduced categories execution, interaction
and structure. The overall architecture is depicted in Figure 2 and consists of
a management infrastructure containing infrastructure services and the active

components themselves. In this respect the management infrastructure repre-
sents a container for all active components and is responsible for their operation.

The characteristics of autonomous and managed entities seem to be con-
tradicting at �rst. Autonomous components are entities that want to decide
on their own about their execution while the management infrastructure needs
to have control about which and when components are executed. This means
a management infrastructure always imposes the inversion of control principle
(IOC), which puts the control �ow responsibility to the infrastructure layer. For
bringing together autonomy and management, active components need to follow

Fig. 2. Active Components (AC) architecture

implicitly the IOC principle by announcing execution requests to the infrastruc-
ture layer. Thus, for the programmer IOC is not visible as components can act
autonomously, but internally are managed and follow the IOC of the platform.

The interaction of components can be message-based as well as method-call-

based. Message based interaction is asynchronous (possibly remote) and uses
unique component identi�ers for addressing receiver components. Hence, it is
very similar to agent based communication with the exception that no speci�c
message format is imposed by the infrastructure. As result message formats can
follow agent related speci�cations such as FIPA ACL2 as well as other formats.
For synchronization of method-call-based interaction, active components employ
a similar scheme as active objects and provide a decoupling layer called external

access. The layer separates the execution from the calling component and thus
avoids inconsistent component states and reduces the possibility of deadlocks.

The behavior of an active component is determined by its internal architec-
ture while the structure may include a hierarchical decomposition into subcom-
ponents. Internal architectures allow making use of di�erent active component
types, thus letting the developer choose for each part of an application, which
component type may be a good �t for the desired business functionality. There-
fore heterogeneous applications consisting of a mix of component types can be
built and interaction between these is easily possible due to the standard in-
teraction means for all active components. Any component may further contain
an arbitrary number of child components, which may follow the same or dif-
ferent internal architectures than their parent component. The hierarchy does
not impose an execution policy such that child components are concurrent to all
other entities. One key bene�t of hierarchical components is that management
commands can be applied to the whole hierarchy of a component allowing e.g.
the termination or suspension of an application as a whole.

In summary, active components integrate successful concepts from agents,
components as well as active objects and make those available under a common
umbrella. Active components represent autonomous acting entities (like agents)
that can use message passing as well as method calls (like active objects) for
interaction. They may be hierarchically structured and are managed by an in-
frastructure that ensures important non-functional properties (like components).

2 http://www.fipa.org/specs/fipa00061/

Fig. 3. Elements of the Jadex AC platform

4 Active Components Infrastructure

The active component concept has been realized in the Jadex AC (active compo-
nents) platform. The implementation distinguishes the basic execution platform
from the kernels, which represent di�erent internal architectures. This separa-
tion allows developing kernels independently of the execution environment and
also providing di�erent execution environments that suit di�erent application
contexts. Figure 3 depicts the elements of the platform. The platform provides
the infrastructure services (cf. Section 3) to the component instances. Di�erent
platform implementations are already available that allow executing components
in a Standalone Java application as well as on top of the well-known JADE agent
framework [2]. Furthermore, a platform for executing active components in Java

EE application servers is currently under development.

4.1 Kernels

Several di�erent internal architectures have already been realized as kernels,
which can be categorized into agent kernels, process kernels and other kernels.
The BDI kernel supports the development of complex reasoning agents, that
follow the belief-desire-intention model [14]. Additionally, for insect-like agents,
a so called micro-kernel is provided, which provides a simple programming style
and supports the execution of large numbers of agents (>100000 in a desktop
Java VM) due to a very low memory footprint. The Task kernel is in between
the other agent kernels in terms of programming constructs and memory con-
sumption and is best suited for agents performing a �xed set of tasks.

The execution of work�ows modeled in the business process modeling nota-
tion (BPMN) is realized by a corresponding BPMN kernel. Moreover, the GPMN

kernel interprets the so called goal process modeling notation, which is a uni�ca-
tion of BDI agent and BPMN process concepts [6]. Finally, an application kernel

is provided, that features con�guration mechanisms for subcomponents as well
as extension points for non-component functionality; so called spaces [13]. As in-
dicated by the m:n-relation between kernel and platform, each kernel may run on
any platform and each platform is capable of executing components based on any
kernel. This facilitates building heterogeneous systems with di�erent component
kinds that interoperate seamlessly.

The right side of the �gure represents the domain components, i.e. that a
developer builds for a speci�c application. Each domain component is based
on exactly one kernel as indicated by the 1:n-relation. Moreover, components

Fig. 4. Modeling tools (left) and runtime tools (right)

may have an arbitrary number of subcomponents of any kernel. For example,
an application based on Jadex AC allows seamless interaction between a Sales

Assistant implemented as BDI agent and an Order Process modeled in BPMN.

4.2 Tool Support

Developing applications with the Jadex active component platform is supported
by a suite of tools that can be coarsely divided into modelling and runtime tools
(see Figure 4). Programming agents can be done using the Java and XML sup-
port of a standard development environment, while modeling work�ows is sup-
ported by particular tools. For BPMN as well as GPMN diagrams, two eclipse-
based editors are available. The BPMN Modeller is based on an existing eclipse
BPMN plugin3, and adds a custom properties view for specifying Jadex speci�c
settings of diagram elements. The GPMN Modeller is a custom development for
supporting the goal process modeling notation, and is based on the EMF/GMF
framework like the BPMN modeller for a consistent look and feel.

Runtime tools are combined in the so called Jadex control center (JCC),
which allows managing the components on a running platform. The JCC is built
up by separate plugins, each of which addresses a speci�c tool need. All of the
tools can be used for any of the previously described kernels. For space rea-
sons, only some of the available tools are presented. The Starter (not shown)
allows browsing existing component models and is used for creating compo-
nent instances. Moreover, existing component instances are shown and may be
stopped (destroyed) as well as suspended/resumed. The ComAnalyzer monitors
and visualizes ongoing message-based communication among components and
is a powerful tool for analyzing complex interactions. Recorded messages can
be shown in di�erent views (table, sequence diagram, 2D graph, bar/pie chart)
and �ltered according to rules entered by the developer. Finally, the Debug-

ger supports stepwise execution of components as well as specifying execution

3 http://www.eclipse.org/bpmn/

Fig. 5. The basic structure of the work�ow management system.

breakpoints. Additionally, the di�erent kernels provide speci�c extensions to the
debugger allowing detailed component introspection, such as current activities
of a BPMN process or current goals of a BDI agent. Descriptions of further tools
can e.g. be found in [14].

4.3 Usage

The complete Jadex active component platform including kernels, tools and
example applications is available as open source software via the project home
page4. At the University of Hamburg, the platform is currently used in two
externally funded DFG research projects as well as in a teaching course. The
next section describes an example application from one of the research projects.

5 Example Application

An interesting research area is the application of agent concepts to implement
and improve work�ow concepts. Work�ows often require a work�ow management
system (WfMS) for interaction with work�ow participants and software they use,
such as CAD applications and word processors. Since the users generally have
their own workstations, the interaction with the work�ow management system
must be able to interact with the client software remotely using message pass-
ing. Such a WfMS was developed as part of the DFG project �Go4Flex�, which
deals with �exible work�ows in areas like change management and production
in cooperation with Daimler AG. The WfMS architecture is largely based on the
reference model of the Work�ow Management Coalition and uses three kinds of
active components as can be seen in Figure 5.

The system is based on three BDI agents each providing an interface expos-
ing a speci�c subset of the WfMS functionality. The �rst agent provides access
to stored work�ow models and allows a user to add and remove models that
are available to the WfMS. Work�ow tasks which require user interaction (work
items) are generated by the active work�ows and are managed by the Client
Application Interface Agent. The third agent provides monitoring and adminis-
trative capabilities.

The functionality of the agents is accessed by a work�ow client using its own
active component to exchange messages with the aforementioned agents. This
active component can be of any type as long as it adheres to the communication
protocol, which employs FIPA ACL messages and FIPA interaction protocols,

4 http://jadex.informatik.uni-hamburg.de/

like the FIPA Request Protocol for requesting a new work�ow instance and
the FIPA Subscribe Protocol to be informed about new work items. The use
of messages and protocols allows a work�ow client to be distributed and inter-
act with the WfMS remotely. The current standard client is based on a BDI
agent, however, using a di�erent active component such as a micro-agent or a
BPMN work�ow would be possible. Using agents as work�ow clients allows the
implementation of features like cooperation between multiple work�ow clients.

Due to the active component concept, the creation of new work�ow instances
can be delegated to the component management service of the Jadex platform so
that the WfMS can handle any kind of work�ow regardless of the concrete type.
As a result, the WfMS automatically supports all types of work�ows for which
active component implementations are available, which currently includes both
BPMN and GPMN work�ows, but can be extended with additional work�ow
models like BPEL by simply providing a corresponding kernel.

The active component approach enables the work�ow management system to
use seemingly disparate concepts like agents and work�ows seamlessly, allowing
interesting new approaches of interaction between work�ows and agents. The
WfMS itself uses such interactions to implement functionality like passing of
work items from work�ows to the managing agent and �nally to the application
component where it will be processed. In addition, the use of active compo-
nents allows the WfMS to abstract from the work�ow type, thus allowing easy
extensibility and avoiding explicit management of separate work�ow engines.

6 Related Work

In the literature several attempts that aim at an integration of agent concepts
with other paradigms can be found, whereby especially components and ser-
vices have been considered. In this paper we focus on components so that �rst
general comparisons of component and agent approaches will be taken into ac-
count. Thereafter, concrete integration attempts will be discussed. These have
been structured according to their primary underlying paradigm, i.e. extending
component approaches with agent ideas and vice versa.

One of the �rst discussions about components and agents can be found in
[8]. It basically considers agents as next generation software components and
explains potential advantages of multi-agent system technology. A deeper look
into both paradigms has been revealed by Lind in [11], who compares them
according to key characteristics of the conceptual entities, the interaction modes
as well as the problem solving capabilities. The paper advocates that agent
technology provides advantages with respect to �exibility and loosely-coupled
interactions and can pro�t from component orientation by adopting software
technical development ideas and execution infrastructure.

With respect to approaches that extend component concepts with agent ideas
�rst Fractal [5] will be discussed. The framework itself provides sophisticated
means for realizing hierarchical components distinguishing between client and
server interfaces and providing a membrane metaphor that shields internals of a
component from the outside. For parallel and distributed component execution

Fractal has been extended in the Dream5 and ProActive [1] projects, which aim
at the integration of active object ideas. All Fractal programming principles
are also valid within the extensions and the interaction style remains based
on method-calls. The decoupling between caller and callee is achieved by using
futures in the method signatures. The approaches are promising, but have some
limitations due to the exclusive use of method-based interactions, making it hard
to realize application cases that e.g. require negotiation mechanisms.

Another strand of development is targeted at the technical integration of
components with agents. The main objective consists in executing normal agent
software in a component infrastructure. A core advantage of this approach is that
agent applications become managed software entities and thus inherit the non-
functional properties from the underlying component execution environment.
Companies like Whitestein [3] and Agentis6 have built their commercial agent
platforms on basis of such a proven infrastructure, which additionally alleviates
the barriers of agent technology adoption. It has to be noted that this form of
technical integration does not contribute much to a conceptual combination of
both paradigms as agents remain the only primary entity form.

True conceptual integration approaches have been conducted in [9] and [7].
The �rst proposes so called AgentComponents, which represent agents inter-
nally built out of components. Externally, agents are slightly componenti�ed
by wiring them together using slots with prede�ned communication partners,
whereby communication is only handled using message passing. Other important
aspects of component models regarding hierarchical composition or method-call
based interaction forms have been neglected. In SoSAA [7] the architecture con-
sists of a base layer with some standard component system and a superordinated
agent layer that has control over the base layer. Typical re�ective mechanisms of
the component layer, like explicit binding controllers, facilitate the way the agent
layer may exert changes on the components of the lower layer e.g. for perform-
ing recon�gurations. Although the overall combined architecture of components
and agent contributes to promoting the strengths of both paradigms the ap-
proach treats components and agents as completely distinct entities and does
not contribute much in consolidating both.

In summary, the possible positive rami�cations of combining ideas from com-
ponents and agents have already been mentioned in early research works. De-
spite this fact, only few concrete conceptual integration approaches have been
presented so far. On the one hand, approaches that enhance component frame-
works with active objects only support simple method-based interaction styles.
On the other hand approaches leveraging agents with component concepts fail
until now in providing a uni�ed view on an agent-component software entity.

7 Summary and Outlook

In this paper paradigms for developing complex distributed systems have been
analyzed. Agents, components and active objects have been contrasted with

5 http://dream.ow2.org/dreamcore/
6 The company does no longer exist.

respect to their properties in the categories structure, interaction and execution.
The notion of an active component has been proposed as a combination of the
properties, which are deemed advantageous for building complex distributed
systems. Most importantly, an active component combines autonomous acting
(like an agent) with managed execution (like a component). Furthermore, active
components support message-based and method call-oriented interaction and
allow hierarchical decomposition as well as elaborated internal architectures.
The Jadex active component platform has been presented as a freely available
implementation of the active component concept. As an example application, a
WfMS has been put forward, which is based on the di�erent active component
types and is developed in cooperation with Daimler AG.

Future work on the technical level will target the integration of the Jadex
AC platform into Java EE application server environments. On the conceptual
level, the active component concept can be extended in several directions by in-
cluding properties of other paradigms, e.g. looking at the area of service oriented
computing or considering extensibility as prevalent in plugin systems.

References

1. F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid
components. In Proceedings of CoopIS/DOA/ODBASE 2003. Springer, 2003.

2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems with
JADE. John Wiley & Sons, 2007.

3. S. Brantschen and T. Haas. Agents in a J2EE World . White paper, Whitestein
Technologies, 2002.

4. L. Braubach, A. Pokahr, and W. Lamersdorf. A universal criteria catalog for
evaluation of heterogeneous agent development artifacts. In Proc. of AT2AI-6.
IFAAMAS, 2008.

5. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
recon�gurable systems. Softw. Pract. Exper., 36(11-12):1257�1284, 2006.

6. B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. Bdi-agents for agile goal-
oriented business processes. In Proceedings of AAMAS08, 2008.

7. M. Dragone, D. Lillis, R. Collier, and G.M.P. O'Hare. Sosaa: A framework for
integrating components & agents. In Proc. of SAC 2009. ACM Press, 2009.

8. M. Griss. Software agents as next generation software components. 2001.
9. R. Krutisch, P. Meier, and M. Wirsing. The agent component approach: Combining

agents, and components. In Proc. of MATES'03. Springer, 2003.
10. G. Lavender and D. Schmidt. Active object: An object behavioral pattern for

concurrent programming. In Pat. Languages of Prog. Design 2. Add.-Wesley, 1996.
11. J. Lind. Relating agent technology and component models, 2001.
12. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing

as Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.
13. A. Pokahr and L. Braubach. The notions of application, spaces and agents � new

concepts for constructing agent applications. In Proc. of MKWI'10, 2010.
14. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In

Multi-Agent Programming: Languages, Platforms and Applications. Springer, 2005.
15. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-

Oriented Programming. ACM Press and Addison-Wesley, 2nd edition, 2002.
16. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2001.

