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RÉSUMÉ.

ABSTRACT. Some data models use so-called maybe tuples to express the uncertainty, whether or
not a tuple belongs to a relation. In order to score this relation’s quality in a meaningful way the
corresponding vagueness needs to be taken into account. Current metrics of quality dimensions
are not designed to deal with this uncertainty and therefore need to be adapted. One major
quality dimension is data completeness. In general, there are two basic ways to distinguish
maybe tuples from definite tuples. First, an attribute serving as a maybe indicator (values YES
or NO) can be used. Second, confidence values can be specified. In this paper, the notion of
data completeness is redefined w.r.t. both concepts. Thus, a more precise estimation of quality
in databases with maybe tuples (e.g. probabilistic or fuzzy databases) is enabled.
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1. Introduction

Since in databases using the three-valued logic uncertain query results can appear
(e.g. resulting from operations on null values), in some cases, it is not exactly clear
whether or not a tuple must be considered to be part of a query result set. For indi-
cating possible result tuples some data models (Biskup, 1984; DeMichiel, 1989) use
the concept of maybe tuples. Furthermore, as a consequence of a poor information
elicitation, sometimes it is not clear, whether a tuple belongs to a database relation
or not. For modeling these cases maybe tuples can be used, too. Besides a simple in-
dication of maybe tuples a more exact specification by individual confidence values
is possible. Such confidence values can be interpreted as the probability by which
the corresponding tuples belong to the considered relation (probabilistic databases
(Barbará et al., 1992; Tseng et al., 1993)) or as their degree of membership (fuzzy
databases (Galindo et al., 2006)), respectively. On the whole, both types of models
(with simple maybe indication as well as with exact confidence values) support the
handling of tuples which may belong to a relation with less confidence.

For estimating a database’s quality or to compare different databases containing in-
formation on the same issue in the last years various data quality dimensions have been
defined. Since current metrics of these dimensions do not consider the uncertainty re-
presented by maybe tuples, frequently these metrics are insufficient. Data complete-
ness is one of the relevant quality dimensions. Therefore, in this paper new metrics for
data completeness are defined. We present three different but each intuitive approaches
and relate them to each other. We consider completeness from a theoretical point of
view and define it as precise and exact as possible. Often some required information
are not available and more approximate and hence more imprecise methods have to be
used. But such a practical point of view is out of the scope of this paper and will be
taken in future work.

The paper is structured as follows : In Section 2 related work is considered. Then,
we introduce an initial set of completeness metrics defined for relations without maybe
tuples in Section 3. After having presented relations with maybe tuples for more detail
(Section 4), we introduce three approaches for extending our completeness metrics to
the maybe tuple-concept in Section 5. In Section 6, we consider completeness compo-
sition w.r.t. relations with maybe tuples. Section 7 summarizes this paper and gives an
outlook to future work.

2. Related Work

Metrics of data completeness are handled in different works (Motro et al., 1997;
Scannapieco et al., 2004; Naumann et al., 2004). None of these works, however, re-
gards the uncertainty resulting from maybe tuples. In (Naumann et al., 2004), com-
pleteness is considered on an extensional (data coverage) and an intensional (data
density) level. Data coverage is the ratio of all stored to all existing entities of the
modeled world. Data density represents the completeness of the stored entities and
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is the proportion of non-null-values. Scannapieco et al. consider completeness w.r.t.
several paradigms as the chosen world assumption (open world vs. closed world) and
the absence or presence of null values. In contrast to Naumann’s approach, they consi-
der completeness on multiple levels of granularity, e.g., relation, attribute and tuple.
Furthermore, they distinguish between strong completeness (boolean : complete or
incomplete) and weak completeness (percentage : different degrees of completeness).
Both works consider completeness w.r.t. algebraic operations. Whereas Scannapieco
stays within the relational algebra, Naumann introduces new operators for merging
relational data and means for predicting the completeness of a merging result. Never-
theless, the metrics resulting from both approaches are similar to a large extent and
only differ from the respective point of view.

Whereas the two before mentioned approaches assume sound relations, (Motro et
al., 1997) takes unsoundness into account. In general, unsoundness can result by mis-
take (e.g. an already fired employee has not been deleted from the database) or by
the fact that the considered entity type does not completely match the actual scope of
the considered relation (e.g. by integrating a relation citizen to get information on lo-
cal students). Motro, however, mainly focuses on the proportion of the true extension
that appears in the database extension (similar to the coverage). Intensional comple-
teness can only be indirectly measured by so called decomposed extensions. Thus, for
measuring the completeness of stored entities this approach is not convenient.

3. Completeness in Databases without Maybe Tuples

Our approaches for measuring completeness in databases with maybe tuples
should base on completeness metrics for certain data. Unfortunately, as mentioned
above, each set of metrics resulting from any previous work is not ideal. Thus, we ini-
tially define some metrics for measuring the completness in databases without maybe
tuples. In order to capture the best characterisitics of all approaches presented in Sec-
tion 2, we consider completeness as a mixture of the concepts defined in these works.
To measure completeness as precise as possible, we use the open world assumption
and take into account that attribute values can be incomplete. As (Scannapieco et
al., 2004), we consider completeness on different levels of granularity, where the com-
pleteness of one granularity based on the completeness of the granularity underlying
beneath. For reasons of interpretability, as (Naumann et al., 2004), we decompose
completeness into coverage and density. As (Motro et al., 1997), we take into account
that relations can be unsound and hence can contain tuples which do not represent an
entity of the considered world.

3.1. Data Relevance

The completeness of data essentially depends on the intended use. A data set can be
totally complete w.r.t. one context and totally incomplete w.r.t. another one. Thus, for
measuring completeness only tuples and attributes which are relevant for the conside-
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red entity type have to be taken into account. Since we consider databases with maybe
tuples, in this paper we primarily focus on tuple relevance. The relevance of attributes
is rudimentarily considered in the metric of tuple density (see Equation 3).

The extension of a relation R (denoted as Ext(R)) is defined as the set of real-
world entities represented by this relation. The set of real-world entities which origi-
nally should to be stored inR (the original intended entity type) is denoted as reference
extensionWR. The extension of an entity type E is generally represented by E itself.

E

WR
Ext(R)

Ext(RC)

Figure 1. Relevance of the extension of a relationR for an entity type E

Given the regarded relation R, the considered entity type E and the mapping m :
R → Ext(R) which maps tuples of R on entities of Ext(R), the subrelation of R
only containing all tuples which are relevant for the entity type E is denoted as the
’cleaned’ relationRC(E) (shortRC).

RC(E) = {t ∈ R | m(t) ∈ E} [1]

Thus, the extension ofRC(E) is the intersection of Ext(R) and E (see Figure 1) :

Ext(RC(E)) = Ext(R) ∩ E [2]

If R is duplicate free, for every tuple of R another real-world entity exists. Thus,
the mapping m is injective and the size of R is equal to the size of its extension
(|R| = |Ext(R)|). In general, if no contrary information is available, a relation is
usually assumed to be duplicate free. For simplification, in the following a relation is
directly considered as its extension, if this fact is evident from the given context (e.g.
in set-based graphics as Figure 16).

3.2. Initial Set of Completeness Metrics

The attribute value level is the lowest level of granularity. In existing approaches
the density of an attribute value is either 1, if the value is specified, or 0 if the value is
missing (null value). Since another notion of density is possible if partial information
(e.g. age< 25) is taken into account (Panse, 2009), we consider the density of a value
v as d(v) ∈ [0, 1].

The density of a tuple is defined as the average density of its attribute values
relevant for the considered entity type. The density of a relation in turn is defi-
ned as the average density of all its relevant tuples. Given a relation R having
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the attributes A = {A1, A2, . . . , Ak}, and an entity type E having the attributes
A′ = {Am, . . . , Ak, . . . , An}, the density of each tuple t ∈ R (d(t, E)) and the
density ofR itself (d(R, E)) w.r.t. the entity type E can be defined as :

d(t, E) =
∑
i∈[m,k] d(t.Ai)

(n−m) + 1
[3] d(R, E) =

∑
t∈RC

d(t, E)
|RC |

[4]

Furthermore, a relation’s density can be defined as the average density of its attributes
(Equation 6). The density of an attribute A in turn can be defined as the average
density of its attribute values :

d(A, E) =
∑
t∈RC

d(t.A)

|RC |
[5] d(R, E) =

∑
i∈[m,k] d(Ai, E)
(n−m) + 1

[6]

The coverage of a relation is the ratio of the number of its extension’s relevant ele-
ments to the total number of actually entities of the considered entity type. If R is
considered to be duplicate free, the coverage ofR w.r.t. E can be defined as :

c(R, E) = |Ext(RC)|
|E|

=
|RC |
|E|

[7]

As mentioned before, the completeness of a relation is composed of its extensional
(coverage) and its intensional completeness (density) :

comp(R, E) = c(R, E) · d(R, E) =
∑
t∈RC

d(t, E)
|E|

[8]

For simplification, in the following, we assume to consider the same entity type E and
hence use abbreviated notions of the defined completeness metrics (e.g. comp(R)
instead of comp(R, E)).

3.3. Further Remarks

For the purpose of illustration, the coverage and density of a relation R can be
interpreted w.r.t. probability theory and w.r.t. set theory. In probability theory, coverage
can be considered as the probability that an element of E is represented by a tuple of
R (and hence belongs to the extension ofR). Assuming a uniform distribution on the
availability of all attribute values, the density ofR can be interpreted as the probability
that an attribute value of R is complete. In set theory, coverage can be considered as
the relative size of the entity type covered by the extension of R. Density can be
considered as the average confidence of all elements in Ext(R).

In this paper all metrics are generally defined from a theoretical point of view.
Unfortunately, in many cases the size of E is not known. Thus, this size often has
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to be estimated or if available, a reference relation1 has to be used (Scannapieco et
al., 2004). The same deficiency holds for information whether a tuple or an attribute
is relevant for a specific entity type or not. As for many other expensive data analy-
zing operations, sampling techniques (Olken, 1993) have to be used. By using this
approach, coverage can be estimated as :

c(R, E) = rR(E) · |Ext(R)|
|E|

=
rR(E) · |R|
|E|

[9]

where rR(E) (relevance factor) represents the average relevance of entities ofExt(R)
to the entity type E . Using statistical techniques as sampling, the relevance factor is
only measured for a small subrelation S ⊂ R and results in :

rR(E) =
|Ext(SC(E))|
|Ext(S)|

=
|SC(E)|
|S|

[10]

In the following, we generally consider completeness from the theoretical point of
view. If some context information is missing (e.g. |E|), metrics for practical solutions
are more approximate and hence more imprecise. Nevertheless, adaptations for such
cases have to be based on the theoretical foundations defined in this work.

4. Relations with Maybe-Tuples

In contrast to definite tuples, maybe tuples are tuples for which it is undefined
whether they belong to the associated relation or not. A relation with maybe tuples
is in the following denoted as maybe relation. As an example we consider the maybe
relation m_cAct representing male comedy movie actors (see Figure 2). m_cAct
results from selecting all tuples whose main genre is ’comedy’ from a database relation
m_Act storing male actors (see Figure 3).

ID f_name s_name m_genre M cfm_cAct

t1 9 Ben Stiller comedy NO 1.0

︸︷︷
︸

m_cActDt2 16 Jean Reno comedy NO 1.0
... ... ... ... ... ... ...
tn 22 Mel Gibson {comedy,action} YES 0.5

︸︷︷
︸

m_cActMtn+1 126 Rene Russo comedy YES 0.3
... ... ... ... ... ... ...

Figure 2. Sample maybe relation m_cAct representing male comedy movie actors

Maybe tuples can appear in database relations as well as in (intermediate) query
result sets. The appearance in database relations can be traced back to a poor infor-
mation elicitation. Sometimes from the available information it cannot be certainly

1. A relation which is known to be highly complete.
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concluded, whether an entity is part of the extension of a specific entity type or not
(e.g. during information elicitation it was ambiguous, whether Rene Russo is male or
not). As a consequence, for representing this uncertainty, the corresponding tuple can
neither be excluded from nor certainly included into the associated database relation.
Thus, these tuples have to be indicated as ’maybe’ (attribute ’M’ for a simple maybe
indication or attribute cfm_cAct, if confidence values are available). Moreover, if a
database contains null values or values representing partial information, during query
evaluation for some tuples the query condition cannot be evaluated to TRUE or FALSE

(e.g. the main genre of Mel Gibson is either ’comedy’ or ’action’). Thus, these tuples
are possible query results and have to be indicated as maybe tuples, too.

ID f_name s_name m_genre M cfm_Act

t′1 1 Tom Cruise action NO 1.0
t′2 9 Ben Stiller comedy NO 1.0
t′3 16 Jean Reno comedy NO 1.0
t′4 22 Mel Gibson {comedy,action} NO 1.0
... ... ... ... ... ... ...
t′k 58 Jude Law drama YES 0.8
t′k+1 126 Rene Russo comedy YES 0.3
... ... ... ... ... ... ...

Figure 3. Maybe database relation m_Act storing male movie actors

A maybe relationR can be divided into two subrelations : RelationRD contains all
tuples which definitely belong toR and relationRM contains all tuples which maybe
belong to R. Since this separation is lossless, always the equation R = RD ∪ RM
holds. If R does not contain duplicate entries (e.g. if R is a database relation), the
two subsets have to be disjoint (RD ∩ RM = ∅). Note, duplicate entries result from
projections and hence a tuple can refer to multiple real-world entities. Nevertheless,
the extensions ofRD andRM are generally disjoint.

In databases with exact confidence specifications, for each tuple t ∈ R an indi-
vidual confidence value cf(t)R is defined, presenting the confidence that this tuple
belongs to the associated relation. Since all tuples of the subrelation RD are defini-
tely in R, the individual confidence values of these tuples always have to be 1.0. In
contrast, due to every maybe tuple only possibly belongs to the relation, its individual
confidence value has to be lower than 1. However, because these tuples cannot cer-
tainly be excluded from this relation, their confidences have also to be greater than 0.
Therefore, the confidence values of all maybe tuples are values within the range ]0, 1[.
The confidence of each tuple is related to the reference extensionWR. For example,
given a relation R for storing students, the confidence cfR(t) = 0.8 means that the
entity represented by tuple t is a student with a confidence of 0.8. If the completeness
of R is considered w.r.t. another entity type E , e.g., citizens (E ⊃ WR), the confi-
dence values of its tuples and hence the resulting quality score become more unsound.
One of the most intuitive interpretations of tuple membership in fuzzy databases is the
certainty that the corresponding tuple belongs to the considered relation (Galindo et
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al., 2006). Since probability is a measure of certainty, we sometimes directly consider
tuple confidence as tuple probability.

In the following, I(R) represents the set of all possible instances and R′ repre-
sents the true instance of the relation R under a closed world assumption2. Due to all
tuples of RD definitely belong to R, each possible instance I ∈ I(R) contains these
tuples. In general, for every possible combination of maybe tuples (i.e. the power set
(P(RM))) one possible instance ofR results. Thus, the set I(R) is given as :

I(R) = {RD ∪M |M ∈ P(RM)} [11]

IfR does not contain maybe tuples, all tuples ofR are known and the true set of tuples
belonging toR is completely described byR itself. As a consequence, I(R) contains
just one element and the relations R and R′ are equal. In contrast, if R contains
maybe tuples, the set of tuples which really belong to R and hence the relation R′
are not completely known. If confidence is interpreted as probability, this uncertainty
can be represented by a discrete probability distribution on R′ over the set I(R). For
example, we assume a relationR containing one definite tuple t1 and one maybe tuple
t2 (cf(t2)R = 0.6). The set of all possible instances is I(R) = {I0 = {t1}, I1 =
{t1, t2}} and the true instanceR′ is a random variable with the probability distribution
P (R′ = I0) = 0.4 and P (R′ = I1) = 0.6.

5. Problem Description

A maybe tuple (and hence the entity which is represented by this tuple) only pos-
sibly belongs to a relation (or entity type respectively). Thus, for measuring data com-
pleteness this imprecision has to be taken into account. In order to demonstrate this
necessity, we consider the three relationsR1,R2 andR3 of Figure 4.R1 andR3 are
relations without maybe tuples. RelationR2 contains two definite (the same tuples as
R1) and one maybe tuple. We assume that all three tuples are relevant for the consi-
dered entity type. It is obvious, that the completeness ofR2 has to be greater than the
completeness ofR1. The uncertain membership of t3 toR2, however, is also a kind of
incomplete information. Since this incompleteness can influence the output of a qua-
lity driven query answering, it is also comprehensible that the completeness ofR2 has
to be smaller than the completeness ofR3. As a consequence, the completeness ofR2

can be bounded by comp(R1) < comp(R2) < comp(R3). Moreover, for adequate
quality metrics a set of requirements exists (Heinrich et al., 2007). For example, to
satisfy the requirement of an interval scale, the completeness of R2 has to increase
linear from comp(R1) to comp(R3) with a growing confidence of t3.

2. In this case, incompleteness resulting from missing values and totally missing tuples is igno-
red. The uncertain membership of maybe tuples is the only incomplete information and for all
possible instances only the tuples ofRD andRM are considered.
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f_name s_name
t1 Ben Stiller
t2 Jean Reno

R1

f_name s_name M cfR2

t1 Ben Stiller NO 1.0
t2 Jean Reno NO 1.0
t3 Mel Gibson YES x

R2

f_name s_name
t1 Ben Stiller
t2 Jean Reno
t3 Mel Gibson

R3

Figure 4. Completeness classification of relations with maybe tuples

6. Data Completeness Regarding Maybe-Tuples

In order to calculate exact completeness scores for maybe relations, we introduce
three different but each intuitive approaches. The first approach is based on the pos-
sible world semantics and considers the completeness of a maybe relation as the ex-
pected completeness of its true instance. The second approach uses the average com-
pleteness of the relation’s instances which can be the result of a so called α-selection.
The last approach is based on the fuzzy-set theory. Partially, we trace our new metrics
to the initial ones, as defined in Section 3.2. For distinction, the newly defined me-
trics of completeness, coverage and density w.r.t. a relationR and an approach Ai are
denoted as comp′Ai(R), c′Ai(R) and d′Ai(R).

6.1. Approach 1 (Possible World Semantics)

As we think, the most intuitive way is to consider data completeness within the
possible world semantics and to treat confidence as probability. In this case, the com-
pleteness of a maybe relation R can be defined as the expected completeness over
all possible instances of R and hence as the expected completeness of R′. Since the
coverage and the density of each instance are not independent from each other, this
approach unfortunately does not allow a decomposition into these two measures :

comp′A1(R) = E(comp(R′)) = E(c(R′) · d(R′)) 6= E(c(R′)) · E(d(R′))

6.1.1. Individual Confidence Values :

In order to define the completeness ofR as the expectation value of comp(R′), for
each possible instance ofR the completeness3 and the probability have to be known.

E(comp(R′)) =
∑

Ik∈I(RC)

P (R′C = Si) · comp(Ik) [12]

=
1

|E|
∑

Ik∈I(RC)

P (R′C = Ik)
∑
t∈Ik

d(t)

3. Since every possible instance Ik has to be handled as a relation without maybe tuples, for
calculating completeness the metric comp(Ik) can be used.
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In the exact case, the probability of a each possible instance Ik ∈ I(R) results from
the product of the probabilities (confidences) of all tuples in Ik and the inverse proba-
bilities (confidences) of all tuples ofRC which are not in Ik :

P (R′C = Ik) =
∏
t∈Ik

cf(t)R
∏

t∈RC\Ik

(1− cf(t)R)

6.1.2. Simple Maybe Indication :

In the simple case, information on confidence values is not available. Thus, we
assume that the possible instances are distributed uniformly. Without tuple dependen-
cies there exist |I(RC)| = |P(RM)| = 2|R

M
C | possible instances. Therefore, the

expectation value E(comp(R′)) and hence the completeness comp′A1(R) defined in
Equation 12 can be simplified to :

comp′A1(R) = E(comp(R′)) = 1

2|R
M
C |

1

|E|
∑

Ik∈I(RC)

∑
t∈Ik

d(t) [13]

If tuple dependencies exist, instead of 2|R
M
C | the reduced number of possible instances

|I(RC)| has to be directly used.

6.2. Approach 2 (α-Selection)

The second approach is based on the α-selection4 introduced in (Tseng et
al., 1993). An α-selection (σ̂αP (R)) on a relation R selects each tuple t ∈ R which
belongs to the result set σP (R) with a confidence greater or equal than α (α ∈ [0, 1]) :

σ̂αP (R) = {t | t ∈ σP (R) ∧ cf(t)R ≥ α} [14]

If no predicate P is defined, an α-selection returns each tuple which belongs toRwith
a confidence of α or greater. In general, α-selections can be used for a quality driven
tuple-filtering. Thus, if for a simple relation output an α-selection is used, the comple-
teness of the resulting subrelation depends on the value of α. The higher α, the more
tuple are filtered. Thus, the completeness comp(σ̂α(R)) decreases monotonically (see
Figure 5). Moreover, the completeness of a filtered relation σ̂α(R) is always greater
or equal than the completeness of the subrelation RD and always smaller or equal
than the completeness of R, if maybe indications are ignored (α = 0). One intui-
tive possibility is to esteem the completeness of a maybe relation R as the average
completeness of its subrelations resulting from all possible α-selections applied onR.

4. This is similar to the α-cut known from fuzzy set theory.
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α

comp(σ̂α(R))

comp(RD)

{comp(RM)


1.0

0 1.0

comp′A2
(R)

s

Figure 5. Completeness of a maybe relationR w.r.t. all possible α-selections

6.2.1. Individual Confidence Values :

If individual confidence values are given, for each α another subrelation can result
from applying an α-selection. Thus, α has to be considered being within the conti-
nuous range [0, 1] and the completeness comp′A2(R) can be defined as the integral of
comp(σ̂α(R)) over α (see the gray colored area in Figure 5) :

comp′A2(R) =

∫ 1.0

0.0

comp(σ̂α(R))dα [15]

Since the tuples of RD belong to the result of each α-selection on R, the following
equation is valid :

comp′A2(R) =

∫ 1.0

0.0

comp(σ̂α(RD))dα+

∫ 1.0

0.0

comp(σ̂α(RM))dα

= comp(RD) + comp′A2(RM)

Unfortunately, due to the inequality shown in Equation 16, a decomposition into
coverage and density is not possible.

∫ 1.0

0.0

c(σ̂α(R)) · d(σ̂α(R))dα 6=
∫ 1.0

0.0

c(σ̂α(R))dα ·
∫ 1.0

0.0

d(σ̂α(R))dα [16]

For demonstrating the usability of this approach, we consider the example introdu-
ced in Section 5. The respective completeness of the three relations R1, R2 and R3

calculated by the metric of Equation 15 is graphically represented in Figure 6. It illus-
trates that by using this approach the completeness of R2 is always within the range
[comp(R1), comp(R3)] and increases steadily from comp(R1) to comp(R3) with
growing cf(t3)R2

.
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α

comp(σ̂α(R1))

comp(R1)

comp(R3)

0 1.0
α

comp(σ̂α(R2))

comp(R1)

comp(R3)

0 1.0cf(t3)
α

comp(σ̂α(R3))

comp(R1)

comp(R3)

0 1.0

Figure 6. The completeness ofR1,R2 andR3 w.r.t. all possible α-selections

6.2.2. Simple Maybe Indication :

Intuitively, in the simple case, the confidence of each maybe tuple cannot be spe-
cified exactly and is assumed to be 0.5 (the possibility that such an element belongs
to the set is equal to its contrary case). Therefore, from applying α-selections only
two subrelations can result : the subrelation RD, if α is within the range (0.5,1] and
the whole relation R = RD ∪ RM otherwise. As a consequence, the completeness
comp′A2(R) defined in Equation 15 can be simplified to :

comp′A2(R) =

∫ 0.5

0

comp(RD ∪RM)dα+

∫ 1.0

0.5

comp(RD)dα

= comp(RD) +
∫ 0.5

0

comp(RM)dα

= comp(RD) + 1

2
comp(RM) [17]

6.3. Approach 3 (Fuzzy Set Theory)

In databases without maybe tuples, completeness computation can be traced back
to set theory. The relevant extension of a relation R can be considered as a subset
(S = Ext(RC) ⊆ E) of the whole entity type (or reference relation, respectively).
In contrast, in databases with maybe tuples, the fuzzy set theory can be used. The
relevant extension of a maybe relation R can be considered as a fuzzy set, where
all definite tuples represent crisp elements and all maybe tuples represent possible
elements. Formally, the extension of a maybe relation RC can be interpreted as the
fuzzy set F = (E , µ), where Ext(RDC ) represents the kernel of F and cfR is the
membership function µ.
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E S

E S

(i) classic set theory

E F

E F

(ii) fuzzy set theory

Figure 7. Relative size of a classic subset (left) and fuzzy subset (right)

6.3.1. Individual Confidence Values :

The cardinality (size) of a fuzzy set is the sum of all of its elements’ memberships.

card(F ) =
∑
e∈F

µ(e)

Thus, the coverage of a maybe relation R can be still considered as the relevant
amount of F = Ext(RC) to E (see Figure 7) and can be defined as :

c′A3(R) =
Card(Ext(RC))

|E|
=

∑
t∈RC

cf(t)R

|E|
[18]

The coverage can be also transformed into5 :

c′A3(R) = c(RD) +
∑
t∈RM

C
cf(t)R

|RMC |
· |R

M
C |
|E|

= c(RD) + avg(cf(t)RM
C
)︸ ︷︷ ︸

AR

·c(RM) [19]

The density of a maybe relationR in turn can be considered as the average density
of the fuzzy set’s elements (for illustration see Figure 8) :

d′A3(R) =
∑
t∈RC

cf(t)R · d(t)∑
t∈RC

cf(t)R
[20]

Consequently, the completeness ofR results in :

comp′A3(R) =
∑
t∈RC

cf(t)R · d(t)
|E|

[21]

5. Since in this notion the new coverage metric is reduced to the initial one, it is very useful for
coverage estimation (see Section 7).



14

d(t1) . . . d(tn)

t1 . . . tn

S

d(t1) . . . d(tn)

d(S)

(i) classic set theory

d(t1) . . . d(tn)

µ(t1) . . . µ(tn)

F

µ(t1)d(t1) . . . µ(tn)d(tn)

d(F )

(ii) fuzzy set theory

Figure 8. Average density for classic subset (left) and fuzzy subset (right)

6.3.2. Simple Maybe Indication :

In the simple maybe indication, once more the membership degree of possible
fuzzy set’s elements is considered to be 0.5. As a consequence, the coverage c′A3(R)
ofR can be directly calculated from the coverage scores ofRD andRM :

c′A3(R) = c(RD) + 1

2
c(RM) =

|RDC |
|E|

+
1

2

|RMC |
|E|

=
|RDC |+ 1

2 |R
M
C |

|E|
[22]

Similarly to the coverage, the effect of the density d(RM) on d′A3(R) is only half
as high as the effect of the definite tuples’ densities. Since single densities are only
relative, the densities of both subrelations have to be correlated by taking into account
their sizes :

d′A3(R) =
|RDC |d(RD) + 1

2 |R
M
C |d(RM)

|RDC |+
1
2 |R

M
C |

=

∑
t∈RD

C
d(t) + 1

2

∑
t∈RM

C
d(t)

|RDC |+
1
2 |R

M
C |

[23]

The completeness comp′A3(R) = c′A3(R) · d′A3(R) results in :

comp′A3(R) = comp(RD) + 1

2
comp(RM) [24]

Thus, in the case of a simple maybe indication, the completeness metrics of Ap-
proach 1 and Approach 2 are identical (compare Equation 24 with Equation 17).
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Note, the same metrics (for individual confidence values as well as for simple
maybe indications) results from tracing completeness computation back to probability
theory in the way already mentioned in Section 3.3.

6.4. Incomplete Confidence Values

In some cases, for example resulting from a query on incomplete information, an
individual confidence value is not completely known (e.g. the confidence that the tuple
t belongs to the relationR is lower than 0.5). To consider such cases, one possibility is
to define the completeness as a partial value by using the minimal possible confidence
cf(t)minR of every tuple for calculating a lower and the maximal possible confidence
cf(t)maxR of every tuple for calculating an upper bound. Another possibility is to use
the expected confidence. By doing so, the metrics of the last approach have to be
adapted to :

c′A3(R) =
∑
t∈RC

E(cf(t)R)

|E|
[25] d′A3(R) =

∑
t∈RC

E(cf(t)R) · d(t)∑
t∈RC

E(cf(t)R)
[26]

For calculating the expected confidence a distribution function is required ; if there is
none, a distribution has to be assumed (e.g., a uniform distribution). In general, data
quality has to appraise the data. Thus, we think completeness as a partial value is not
feasable and using the expectation value is better suitable. In all three approaches, we
derived the metric for the simple maybe indication from the general case by assuming
a confidence of 0.5 for each maybe tuple. Since in this case, the confidence of the
maybe tuples is completely unknown (within the range ]0, 1[), we already have used
the expectation value intuitively.

6.5. Tuple Dependencies

Dependencies between tuples have not been addressed so far. Since in reality data
is often correlated, a complete independence among tuples is a simplistic assumption
which distorts the representation of the modeled world. Therefore, in some newer
proposals (Sen et al., 2007) probabilistic data models are extended by representing
such dependencies. Since tuple dependencies restrict the set of all possible instances
of a relationR, these dependencies are completely represented by the set I(R).

For example, relation R contains one definite tuple t1 and two maybe tuples t2
and t3. A tuple dependency defines that either both maybe tuples belong to R or
none of them (t2 ∈ R ⇔ t3 ∈ R). As a consequence, instead of four possible
instances {{t1}, {t1, t2}, {t1, t3}, {t1, t2, t3}} only two possible instances I(R) =
{{t1}, {t1, t2, t3}} exist. Thus, it is obvious that our completeness metrics which are
based on the possible world semantics (Approach 1) can be used in models with tuple
dependencies without any adaptation.
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In general, the total confidence of each tuple t is (independently of dependencies)
always cf(t)R. If this confidence is interpreted as probability, it does not matter in
which way this probability is distributed on the possible instances. In order to illustrate
this fact, we consider the example mentioned above and assume that t2 as well as t3
has a probability of 0.4. The distribution ofR′ with and without the tuple dependency
is shown in Figure 9. The total probability of t2 is either the sum of P (I1) and P (I3)

I(R)

P

0.36

I0

0.24

I1

0.24

I2

0.16

I3
{t1} {t1, t2} {t1, t3} {t1, t2, t3}(a)

I(R)

P 0.6

S0

0.4

S3

{t1} {t1, t2, t3}(b)

Figure 9. Distribution ofR′ without (left) and with the tuple dependency (right)

(without dependency) or just P (I3) (with dependency), but is always 0.4. For that
reason, the metrics of the other two approaches are also independent to individual
tuple dependencies and do not need to be adapted on such cases.

6.6. Comparison of Proposed Approaches

In the previously explained approaches, we defined metrics for measuring com-
pleteness of maybe relations. The next step is to compare these metrics to each other.
As we proof (see Proofs 1-3), the metrics defined in all approaches supply the same
completeness scores whether tuple dependencies are defined or not. We think, this fact
indicates that the resulting scores are good representations of the actual relations’ qua-
lities. Regarding the requirements proposed in (Heinrich et al., 2007) the metrics of
all approaches satisfy the requirements of normalization, interval scale and adaptivity.
Moreover, the interpretability of all three approaches is similar. Due to its possible
decomposition of completeness into coverage and density, only the interpretability of
the last approach gains a small edge of the interpretability of the other ones. Finally,
the input parameters and hence the feasibilities of all approaches are equal.

Thus, the most severe difference of these approaches relates to the complexity of
the individual metrics. In the following, we consider a relation R with n definite and
m maybe tuples. With respect to all metrics regarding individual confidence values
(Equations 13, 15 and 21), a one-time calculation of all the tuples’ densities is re-
quired (O(n + m)). In the metric of the first approach, the completeness of every
possible instance of R has to be calculated. If no tuple dependencies exist, the num-
ber of possible instances is 2m. Besides completeness6, for every possible instance its

6. The complexity of calculating a relation’s completeness is always O(n+m).
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probability has to be derived from the confidence values of (n+m) tuples. As a conse-
quence, this metric has a complexity of 2m2(n + m) = O(2m(n + m)). Using the
metric of Approach 2 implies calculating the completeness of all possible subrelations
which can result from any α-selection. In the simplest case, all maybe tuples have the
same confidence cf and only the completeness scores of two subrelations (α = cf
and α = 1) are required (2(n+m)). In the most complex case, all maybe tuples have
different confidences and the completeness scores of m + 1 subrelations have to be
calculated ((m+1)(n+m)). The integral of comp(σ̂α(R)) over α can be maximally
split intom+1 subintegrals ofm+1 different completeness scores. Thus, the minimal
and maximal complexity of this metric is either 2(n+m) + (m+1) = O(n+m) or
(m+1)(n+m)+(m+1) = O(max(m2, nm)). The metric of the last approach im-
plies the calculation of only a single completeness score. Thus it’s complexity is just
O(n +m). In conclusion, in databases with individual confidence values, the metric
of Approach 3 has by far the lowest complexity (see Tableau 1). In the case of simple
maybe indication, all three metrics have the same complexity (O(n+m)).

complexity : simple case complexity : exact case

Approach 1 : O(n+m) O(2m(n+m))

Approach 2 : O(n+m) O(max(m2, nm))

Approach 3 : O(n+m) O(n+m)

Tableau 1. Complexities of the three approaches

Regarding its minor complexity, in databases with individual confidence values,
the metric of Approach 3 is most suitable. At a first sight (without considerations on
implementation specific details as speed or storage requirements), in databases with
just a simple maybe indication both metrics (Equations 17 and 13) can be assumed to
be equivalently suitable.

7. Completeness Composition

Until now, we calculate completeness of a maybe relation starting from all its
source data. In many applications, however, it is usual to combine data extracted from
multiple sources (e.g. for quality improvement). Nevertheless, a recalculation of the
resulting quality score is most often too inefficient or the required information for
doing that is simply not available (e.g. for quality prediction in quality driven query
answering). For that reason, it is important to be able to derive the quality of the
resulting data from the quality of its source data. In (Batini et al., 2006), this problem
is stated as the quality composition problem which is illustrated in Figure 10. Given
X , a set of source relations, which is processed by a generic composition function
F (e.g. the join or the union), and a function QD calculates the score of the quality
dimension D. The problem is to define a function QFD(X) that calculates QD(Y )
starting from QD(X), instead of calculating such a score directly on Y by applying
the function QD.
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X

QD(X)

Y = F (X)

QD(Y )

QD QD

QFD ?

F

Figure 10. The general problem of quality composition (Batini et al., 2006)

Completeness composition w.r.t. algebraic operations on certain data is considered
in several works (Naumann et al., 2004; Scannapieco et al., 2004). In general, multiple
relations can be combined in different ways. As a representative, we consider the union
merge operator7 which is defined in (Naumann et al., 2003). The relation T = Rt S
resulting from the union merge of two relations R and S contains one tuple for each
entity represented by a tuple in R or S. If an entity is represented by a tuple in both
relations, the two corresponding tuples are merged to a single one. As a consequence,
the union merge can be considered as a set union of the relations’ extensions :Ext(Rt
S) = Ext(R) ∪Ext(S) (see Figure 11). For an exact definition of the union merge,
we refer the interested reader to (Naumann et al., 2003).

R
S T =RtS−−−−→

T

Figure 11. Union merge of the two relationsR and S

7.1. Coverage Estimation for a Merge of Certain Data

Coverage is a measure for extensional completeness. If information is available,
whether the extensions of the different sources overlap or not, the estimation’s quality
can be enhanced. The degree of extensional overlap may vary from no overlap to a
complete overlap. In (Naumann et al., 2004), four overlap situations of the extensions
of two relationsR and S are considered : disjointness, independence, quantified over-
lap and containment. If the extensions of both relations have no common entity, the
relations are denoted to be disjoint (R ∩d S). Both relations are denoted to be inde-
pendent (R∩iS), if no information about any overlap is available, but the data of both
relations is considered to be independent. If the exact degree of the extensions overlap
is known (X), a quantified overlap of both relations is given (R ∩X S). Finally, the

7. Also known as full outer join merge (Naumann et al., 2004).
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extension of one relation can be a subset of the extension of the other one (R ∩⊆ S).
These four overlap situations can be formallized as :

(disjointness) R∩d S ≡ Ext(R) ∩ Ext(S) = ∅ [27]

(independence) R∩i S ≡ Ext(R) ∩ Ext(S) = ? [28]

(quantified overlap) R∩X S ≡ Ext(R) ∩ Ext(S) = X [29]

(containment) R∩⊆ S ≡ Ext(R) ⊆ Ext(S) [30]

Metrics for estimating the coverage of a merge of two certain relations (relations
without maybe tuples) w.r.t. all four overlap situations are presented in Figure 12.

(R∩d S) c(Rt S) = c(R) + c(S) (1)
(R∩i S) c(Rt S) = c(R) + c(S)− c(R) · c(S) (2)
(R∩X S) c(Rt S) = c(R) + c(S)− |X|/|E| (3)
(R∩⊆ S) c(Rt S) = c(S) (4)

Figure 12. Coverage estimation w.r.t. the four extensional overlap situations of two
certain relationsR and S

For instance, in case of independence, the resulting extension size is the addition
of both relation sizes minus the estimated size of the relations’ overlap. Since in-
dependence between the data of both relations is assumed, the estimated overlap is
determined by the relative sizes of the relations’ extensions. Using probability theory,
the coverage of a merged relation can be considered as the probability that an entity
of one of both reference extensions is represented by a tuple in the resulting relation.
This is the case, if this entity is represented in at least one of the source relations.
In case of independence, this probability is equal to the sum of probabilities that the
entity is represented in one of both relations (c(R) + c(S)) minus the probability that
this entity is represented in both relations (c(R) · c(S)).

7.2. Coverage Estimation for Merged Maybe Relations

If for the concerned maybe relations only the scores of their whole coverage are
known, the estimation of the resulting coverage score is equal to its estimation in
certain data (only c is substitute by c′). If in contrast for each maybe relation R the
coverage of its two subrelations RD and RM as well as the overlaps of the different
subrelations are given, the estimation result can be determined more exactly.
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Reference extensions Confidence merging strategy

Equality8

WR =WS

cfRtS(t) =
qR · cfR(t) + qS · cfS(t)

qR + qS

Disjointness
WR WS

cfRtS(t) = min(1, cfR(t) + cfS(t))

Overlap
WR

WS cfRtS(t) = max(cfR(t), cfS(t))

Figure 13. Three different overlap situations of reference extensions together with
their corresponding confidence merging strategies

7.2.1. Confidence Merging

Coverage estimation essentially depends on the chosen strategy for confidence
merging. Generally, the best strategy for merging confidence values can vary case-
by-case. Three different strategies together with their corresponding cases are depict
in Figure 13. If the reference extensions of both sources are equal, for each entity
the confidence values of all sources are either identical or the confidence value of at
least one source has a minor quality. In this case, calculating a new confidence as the
weighted average (weights qR and qS ) of the original confidence values seems most
suitable. If the reference extensions of both sources are completely disjoint, the confi-
dence values of both relations have to be add up (e.g. a person belonging to male actors
as well as female actors with a certainty of 0.5 in each case is definitely an actor). Ulti-
mately, if the original reference extensions of both sources partially overlap, an entity
belong to the resulting extension, if it belongs to one of the source extensions. Thus,
confidence merging can be traced back to the union in fuzzy set theory by using the
maximum operator (see Figure 14).

E
R

E
S

⇒ E
T = Rt S

Figure 14. The relative size of a fuzzy set representing the union merge ofR and S

8. If this strategy is used for merging the confidences of all duplicates (not only maybe tuples),
the extension of the definite result tuples is onlyExt((RtS)D) = [Ext(RD)−Ext(SM)]∪
[Ext(SD)− Ext(RM)] instead of Ext((Rt S)D) = Ext(RD) ∪ Ext(SD).



Completeness in DBs with Maybe Tuples 21

As an illustrating example, we consider a union merge of the sample maybe rela-
tion m_cAct introduced in Section 4 and a second maybe relation euro_Act storing
european movie actors. The reference extensions of both relations partially overlaps
(european male comedy movie actors). The goal of merging is to get as much as data
on movie actors (every origin, gender or main genre) as possible. Thus, the considered
entity type E is a superset of both reference extensions (E ⊃ WR∪WS ). By assuming
independence between the tuple memberships of the different source relations (e.g. an
actor’s origin does not influence his main genre or gender), a merge of these relations
is applied by using the maximum operator. If a person is male and comedy movie ac-
tor with a confidence of cf1 and is an european movie actor with a confidence of cf2,
the confidence that this person is a movie actor is actually cf3 ≥ max(cf1, cf2). Ne-
vertheless, since the exact confidence was not measurable during confidence merging,
the minimal possible confidence (cf3 = max(cf1, cf2)) has to be taken.

Although the reference extensions of two relations are disjoint, caused by incor-
rect entries, the extensions of both relations, however, can overlap (see Figure 15).
A disjoint situation is given, if we merge the maybe relation m_cAct with a second
maybe relation f_cAct representing female comedy movie actors. Since a person is
either male or female, the confidence values of both relations have to be add up. For
instance, if a person is a male comedy movie actor with a confidence of 0.5 and a
female comedy movie actor with a confidence of 0.4, this person is an comedy movie
actor (WR ∪WS ) with a confidence of 0.9.

E

WR WS

R

S

Figure 15. Situation of two overlapping relations with disjoint reference extensions

7.2.2. Union Merge of one Maybe Relation and one Certain Relation

In order to demonstrate coverage estimation, we firstly consider a union merge of a
maybe relation R and a certain relation S. The reference extensions of both relations
are assumed to be partially overlapping. This situation is graphically illustrated in
Figure 16. Since Ext(RD) and Ext(RM) are per definition disjoint, the coverage of
the union merge can be split into :

c′(Rt S) = c′(RD t S) + c′(RM t S)− c(S) [31]
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E

RM

RD

S

WR

WS

T =R t S−−−−−→

E

T D

TM

WT

Figure 16. Overlap situation of one maybe relationR, one certain relation S as well
as their reference extensionsWR andWS (left) ; the maybe relation T resulting from
Rt S and its reference extensionWT (right)

The relation S can be in five different overlap situations with RD as well as RM
(see Figures 17 and 18). Altogether 18 different overlap situations exist (the combina-
tions (D2,M5), (D3,M5), (D4,M5), (D5,M2), (D5,M3), (D5,M4), (D5,M5)
are not possible).

RD ∩d S c′(RD t S) = c(RD) + c(S) (D1)
RD ∩i S c′(RD t S) = c(RD) + c(S)− c(RD) · c(S) (D2)
RD ∩X S c′(RD t S) = c(RD) + c(S)− |X|/|E| (D3)
RD ∩⊇ S c′(RD t S) = c(RD) (D4)
RD ∩⊆ S c′(RD t S) = c(S) (D5)

Figure 17. Coverage estimation w.r.t. the five overlap situations ofRD and S

RM ∩d S c′(RM t S) = c(S) +ARc(RM) (M1)
RM ∩i S c′(RM t S) = c(S) +AR[c(RM)− c(RM) · c(S)] (M2)
RM ∩X S c′(RM t S) = c(S) +AR[c(RM)− |X|/|E|] (M3)
RM ∩⊇ S c′(RM t S) = c(S) +AR[c(RM)− c(S)] (M4)
RM ∩⊆ S c′(RM t S) = c(S) (M5)

Figure 18. Coverage estimation w.r.t. the five overlap situations ofRM and S

As a representative, we consider the most complex situation, in which RD and S
as well asRM and S are assumed to be independent. Since both reference extensions
partially overlap, the extension of the resulting relation definitely contains the exten-
sion ofRD and S and possibly contains this part of the extension ofRM which does
not belong to the extension of S (Ext(RM) − Ext(S)). The coverage c′(R t S)D
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E

RM

RD

SD SM

T =RtS−−−−→

E
T D

TM

Figure 19. Overlap situation of two maybe relations R and S (left) ; the maybe rela-
tion T resulting from S tR (right)

is equal to the sum of the coverage of RD and S minus the coverage of the estimated
overlap (c(RD) · c(S)). The coverage c′(RtS)M is the relative size of the extension
only covered by RM weighted with its average tuple membership (AR · [c(RM) −
c(S) · c(RM)]). As a consequence, the coverage of the union mergeRtS results in :

c′(RtS) = c(RD) + c(S)− c(RD) · c(S) +AR · [c(RM)− c(S) · c(RM)]

7.2.3. Union Merge of two Maybe Relations

Instead of 18, far more different overlap situations exist, if two maybe relations are
merged. As an example, we consider the situation that the subrelations of both maybe
relations are pairwise independent from each other and assume that their reference
extensions partially overlap (see Figure 19).

An entity of E is represented by a tuple in T D, if there exists an associated tuple
belonging toRD or SD. Thus, the coverage of T D results in :

c(T D) = c(RD) + c(SD)− c(RD)c(SD) [32]

An entity is represented by a tuple in TM, if there exists an associated tuple belonging
toRM or SM which does not belong to T D. Thus, the coverage of TM results in :

c(TM) = (c(RM) + c(SM)− c(RM)c(SM)) · (1− c(T D)) [33]

In databases with only a simple maybe indication, the coverage of T is :

c′(T ) = c(T D) + 1

2
c(TM) [34]

In databases with exact confidence values, the average confidence of the resulting
maybe tuples need to be estimated. The average confidence of all tuples only belon-
ging to RM is AR and the average confidence of all tuples only belonging to SM is
AS . The confidence cfT of a tuple belonging to both source relations depends on the
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chosen confidence merging strategy. In databases with exact confidence values, the
average confidence of the tuples in TM need to be estimated. The average confidence
of all tuples only belonging to RM is AR and the average confidence of all tuples
only belonging to SM is AS . The confidence cfT of a tuple belonging to both source
relations depends on the chosen confidence merging strategy. The average confidence
of these tuples cannot always be exactly derived from the average confidences AR
and AS , but sometimes only can be resticted by an lower and an upper bound (see
Figure 20). In our example both reference extensions partially overlap. In this case the
confidence of all common tuples is at least greater than their confidence in R (or S
respectively). Consequently, for the average confidence AR∩S applies :

AR∩S ≥ AR, AR∩S ≥ AS ⇒ AR∩S ≥ max(AR, AS) [35]

On the other hand, since each of these confidence values is within the range ]0, 1[ (the
considered tuples belong to TM), the maximum confidence of each tuple is definitely
lower than the sum of both confidences :

AR∩S < min(1, AR +AS) [36]

Using the estimated confidence AR∩S , the coverage c′(T ) can be predicted as :

c′(T ) = c(T D) +AT · [c(TM)] [37]

where AT is defined as :

AT =[c(RM)− c(RM)c(S)] ·AR + [c(SM)− c(R)c(SM)] ·AS
+[c(RM)c(SM)] ·AR∩S [38]

7.3. Density Estimation

Density estimation for the union merge of certain relations is defined in (Naumann
et al., 2004). This estimation can be adapted to maybe relations in a similar fashion as
we did it for coverage in this paper.

8. Conclusion

Current metrics of data completeness are not useable for estimating the comple-
teness of relations with maybe tuples. For that reason, we extended these metrics for

9. If this strategy is used for merging the confidences of all duplicates (not only maybe tuples),
the extension of the definite result tuples is reduced from Ext((R t S)D) = Ext(RD) ∪
Ext(SD) to Ext((Rt S)D) = [Ext(RD)− Ext(SM)] ∪ [Ext(SD)− Ext(RM)].



Completeness in DBs with Maybe Tuples 25

Average confidence estimation

AT = [c(RM)− c(RM)c(S)] ·AR + [c(SM)− c(R)c(SM)] ·AS

+

Equality

[c(RM)c(SD)] · qR ·AR + qS
qR + qS

+ [c(RD)c(SM)] · qR + qS ·AS
qR + qS

+ [c(RM)c(SM)] · qR ·AR + qS ·AS
qR + qS

Disjointness

[c(RM)c(SM)] ·AR∩S

AR∩S > max(AR, AS); AR∩S ≤ min(1, AR +AS)

Overlap

[c(RM)c(SM)] ·AR∩S

AR∩S ≥ max(AR, AS); AR∩S < min(1, AR +AS)

Figure 20. Estimation of average confidence value for merged maybe tuples w.r.t. the
three different overlap situations of reference extensions

handling the vagueness resulting from the maybe tuple-concept. Moreover, we have
distinguished two cases of handling maybe tuples. In the first case, maybe tuples are
only indicated as ’maybe’. In the second more exact case every tuple is indicated by
an own confidence value. We considered completeness from three different perspec-
tives and hence introduced three corresponding approaches to measure this quality
dimension. We compared these metrics w.r.t. different requirements and properties as
interpretability or complexity and showed that the metrics of all three approaches sup-
ply the same completeness scores whether or not tuple dependencies exist. Finally, we
considered completeness composition and proposed strategies for predicting the com-
pleteness score of a merged maybe relation based on the completeness scores of its
sources. Altogether, these results enable an adequate scoring of completeness in data-
bases with maybe tuples. Moreover, the presented methods for completeness compo-
sition enable an enhanced quality prediction of relations with maybe tuples in quality
driven query answering (e.g. for discovering the best sources in data integration).

So far, by regarding maybe tuples, we only considered uncertainty on tuple level.
Nevertheless, in order to enable an adequate completeness scoring of probabilistic-
or fuzzy data, uncertainty on attribute value level (e.g. probabilistic- or possibilistic
distributions on single values) also has to be taken into account. Consequently, defi-
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ning completeness for uncertain attribute values, among others, is an important issue
of future work.

Moreover, in this work, we considered completeness only from a theoretical point
of view. In reality such an exact calculation is often impossible, because important
information (e.g., |E|) is missing. Thus, in future reflections these approaches have to
be considered from a more practical (but also more vague) point of view, too.

Besides completeness other quality dimensions are influenced by the possibility
of maybe tuples. Especially quality dimensions for which the quality of a relation
is derived from the qualities of its tuples (e.g. accuracy, currency) are affected. As
for completeness, the maybe tuples have to be considered with a minor emphasis. The
lower the confidence value of a tuple the lower the influence of this tuple on the quality
of the associated relation has to be.

Ultimately, for data models using the concept of maybe tuples, we think a new
quality dimension is required. Different distributions of confidence values and hence
different distributions on a relation’s true instance can lead to the same completeness
score. Thus, the uncertainty resulting from relations with a high number of maybe
tuples is neither considered by data completeness nor by any other existing quality
dimension. Therefore, for estimating the quality of such relations we need a quality
dimension which represents the vagueness resulting from a high number of maybe
tuples.
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A. Proofs :

Preliminaries :

Given two relationsR1 andR2 with disjoint extensions (Ext(R1)∩Ext(R2) = ∅).

Theorem 1 The completeness of their union is equal to the sum of their individual
completeness scores.

Proof

comp(R1 ∪R2) =

∑
t∈R1∪R2

d(t)

|E|

=

∑
t∈R1

d(t) +
∑
t∈R2

d(t)

|E|

=

∑
t∈R1

d(t)

|E|
+

∑
t∈R2

d(t)

|E|
= comp(R1) + comp(R2)
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Proof 1 : Equality of Approach 1 and Approach 3 (individual confidence values)

Given a maybe relationR with I(RC) = {I1, I2, . . . , In} possible instances.

Theorem 2 The completeness scores of R resulting from the metrics of Approach 1
and Approach 3 are equal.

Proof

comp′A1(R) =
∑

Ik∈I(RC)

P (R′C = Ik) · comp(Ik)

=
1

|E|
∑

Ik∈I(RC)

P (R′C = Ik) ·
∑
t∈Ik

d(t)

= 10 1

|E|
∑
t∈RC

cf(t)Rd(t)

= comp′A3(R)

10. In probabilistic databases, per definition, the sum of probabilities of all possible instances a
tuple t belongs to is equal to the probability of t itself :

(∀t ∈ RC) : cf(t)R =
∑

Ik∈I(RC)

P (R′C = Ik) ·mem(t, Ik)

, where mem(t, Ik) is a boolean function resulting to 1 if t belongs to Ik and 0 otherwise.
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Proof 2 : Equality of Approach 2 and Approach 3 (individual confidence values)

Given a maybe relation R with RM = {t1, t2, t3, . . . , tn}. For simplification, we
assume that each maybe tuple has another confidence and that the tuple indexes are
ordered by the tuples’ confidences ((∀i, j ∈ {1, 2, . . . , n}) : i < j ⇒ cf(ti) <
cf(tj)). For the sake of convenience the confidence of tuple ti is abbrevated as cfi.
The relationRi is defined to be a one-tuple relation only containing the tupel ti.

Theorem 3 The completeness scores of R resulting from the metrics of Approach 2
and Approach 3 are equal.

Proof

comp′A3(R) =

∫ 1.0

0.0

comp(σ̂α(R))dα

=

∫ cf1

0.0

comp(σ̂α(R))dα+

∫ cf2

cf1

comp(σ̂α(R))dα

+

∫ cf3

cf2

comp(σ̂α(R))dα+ . . .+

∫ 1.0

cfn

comp(σ̂α(R))dα

=

∫ cf1

0.0

comp(R)dα+

∫ cf2

cf1

comp(R \ {t1})dα

+

∫ cf3

cf2

comp(R \ {t1, t2})dα+ . . .+

∫ 1.0

cfn

comp(RD)dα

= cf1 · comp(R) + (cf2 − cf1) · comp(R \ {t1})

+ (cf3 − cf2) · comp(R \ {t1, t2}) + . . .+ (1− cfn) · comp(RD)

= cf1 · comp(R1) + cf2 · comp(R \ {t1})

+ (cf3 − cf2) · comp(R \ {t1, t2}) + . . .+ (1− cfn) · comp(RD)

= cf1 · comp(R1) + cf2 · comp(R2) + cf3 · comp(R3)

+ . . .+ cfn · comp(Rn) + comp(RD)

= cf1
d(t1)

|E|
+ cf2

d(t2)

|E|
++cf3

d(t3)

|E|
+ . . .+ cfn

d(tn)

|E|
+

∑
t∈RD

C
d(t)

|E|

=
cf1 · d(t1) + cf2 · d(t2) + cf3 · d(t3) + . . .+ cfn · d(tn) +

∑
t∈RD

C
d(t)

|E|

=

∑
t∈RC

cf(t)d(t)

|E|
= comp′A1(R)
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Proof 3 : Equality of Approach 1 and Approach 3 (simple maybe indication)

Given a maybe relationR with I(RC) = {I1, I2, . . . , In} possible instances.

Theorem 4 The completeness scores of R resulting from the metrics of Approach 1
and Approach 3 are equal.

Proof

comp′A1(R) =
1

2|R
M
C |

1

|E|
∑

Si∈I(RC)

∑
t∈Si

d(t)

= 11 1

2|R
M
C |

1

|E|
(|I(RC)|

∑
t∈RD

C

d(t) +
1

2
|I(RC)|

∑
t∈RM

C

d(t))

=
|I(RC)|
2|R

M
C |

1

|E|
(
∑
t∈RD

C

d(t) +
1

2

∑
t∈RM

C

d(t))

= 12

∑
t∈RD

C
d(t)

|E|
+

+ 1
2

∑
t∈RM

C
d(t)

|E|

= comp(RD) + 1

2
comp(RM)

= comp′A3(R)

11. Each possible instance contains all tuples belonging to RD . In contrast, without tuple de-
pendencies each maybe tuple belongs to exact the half of all possible instances. Thus, the density
of every definite tuple is added up for |I(RC)| times and the density of every definite tuple is
added up for 1/2 |I(RC)| times.
12. Without tuple dependencies, the number of possible instances is 2|R

M
C |.
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