
An Interface for Agent-Environment Interaction

Tristan M. Behrens1, Koen V. Hindriks2, Rafael H. Bordini3, Lars Braubach4,
Mehdi Dastani5, Jürgen Dix1, and Jomi F. Hübner6 Alexander Pokahr4

1 Clausthal University of Technology, Germany {behrens,dix}@in.tu-clausthal.de
2 Delft University of Technology, The Netherlands k.v.hindriks@tudelft.nl
3 Federal University of Rio Grande do Sul, Brazil r.bordini@inf.ufrgs.br

4 Hamburg University, Germany {braubach,pokahr}@informatik.uni-hamburg.de
5 Utrecht University, Utrecht, The Netherlands mehdi@cs.uu.nl
6 Federal University of Santa Catarina, Brazil jomi@das.ufsc.br

Categories and subject descriptors: I.2.5 [Artificial Intelligence]: Pro-
gramming Languages and Software; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent Agents; I.6.3 [Simulation and Modeling]:
Applications; I.6.7 [Simulation Support Systems]: Environments

General terms: Standardization

Keywords: Agent development techniques, tools and environments, and Case
studies and implemented systems

Abstract. Agents act and perceive in shared environments where they
are situated. Although there are many environments for agents – rang-
ing from testbeds to commercial applications – such environments have
not been widely used because of the difficulty of interfacing agents with
those environments. A more generic approach for connecting agents to
environments would be beneficial for several reasons. It would facilitate
reuse, comparison, the development of truly heterogeneous agent sys-
tems, and increase our understanding of the issues involved in the design
of agent-environment interaction. To this end, we have designed and de-
veloped a generic environment interface standard. Our design has been
guided by existing agent programming platforms. These platforms are
not only suitable for developing agents but also already provide some
support for connecting agents to environments. The interface standard
itself is generic, however, and does not commit to any specific platform
features. The interface proposal has been implemented and evaluated in
a number of agent platforms. We aim at a de facto standard that might
become an actual standard in the near future.

1 Introduction

Agents are situated in environments in which they perceive and act. From an
engineering point of view, an issue that repeatedly has to be dealt with is how to
connect agents to environments. Sometimes this issue is (partially) solved by the



physical sensors and actuators provided (e.g. in the case of a robot). But even if
sensor and actuator specifications are available, the design and implementation of
the interaction between the agents and the environment still require substantial
effort. This is due in part to the fact that each environment is different but
also because the platforms to build agents provide different support for agent-
environment interaction.

By now, there exist many interesting environments which range from spe-
cialized testbeds for agent systems to industrial applications based on agent
technology. In each of these applications, the interaction between agents and
environments has to be addressed. This is particularly true in application areas
for agent technology such as multi-agent based simulation and the use of agents
in (serious) gaming [12,20,21]. In the former, agents need to be connected to
computational models of real-world scenarios whereas in the latter agents are
used to control virtual characters that are part of a game. The design of agent-
environment interaction raises many interesting issues such as who is in control of
particular features of the system and what would be the right level of abstraction
of the interface that supports the interaction. Technically, there are also many
challenges as witnessed by [11] who discuss an interface for connecting agents to
the game Unreal Tournament 2004. This gaming environment has been identi-
fied as a potentially interesting testbed for multi-agent systems [6]. But without
a suitable, generic interface that supports flexible agent-environment interaction
such a testbed is unlikely to be widely used.

The availability of many interesting environments for applying agents does
not mean that they are easily accessed by agents that are built using different
platforms. To the contrary, in practice, it is often the case that agent developers
rebuild very similar environments such as grid-like environments from scratch
(one well-known toy example is the Wumpus environment [26] of which many
implementations exist). Apart from the duplicate work of developing these envi-
ronments, this also means that dedicated interfaces for agent-environment inter-
action are built: this makes it difficult to reuse existing environments. Instead,
it would be much better to work with an environment interface standard which
provides all the required functionality for connecting agents to an environment in
a standardized way. If environments were developed using such a standard, they
could be exchanged freely between agent platforms that support the standard
and thus would make already existing environments widely available.

In this paper, we propose an environment interface standard that facilitates
the sharing and easy exchange of environments for agents. Such a standard will
facilitate the reuse of environments between agent platforms; it will support the
easy distribution of environments such as the Multi-Agent Contest [15], Unreal
Tournament,and many others. There are, however, many other benefits. An en-
vironment interface standard will provide a standardized and general approach
for designing agent-environment interaction: this is important for the compar-
ison of agent platforms as it would ensure that the same interface is used by
each platform. Moreover, a generic interface will support the development of
truly heterogeneous MAS, consisting of agents from several platforms. From a



more abstract point of view, the design of an interface standard will also increase
insight and conceptual understanding of agent-environment interaction.

Our approach is to design an interface that is as generic as possible, and that
facilitates reuse as much as possible from existing interfaces. Clearly, there is
a trade-off between these two goals. Our strategy for designing a generic envi-
ronment interface is (1) to start with what is currently “out there” in existing
platforms, and (2) to try to merge this into a generic interface which is sufficiently
close to these approaches. As agent-oriented programming platforms seem par-
ticularly suitable for developing agents, we have chosen to use four of the more
well-known agent programming languages (APLs) as our starting point. The
advantage of this choice is that each of these languages to some extent have al-
ready solved the problem of agent-environment interaction even though in ways
more or less specific to the language. As a consequence, a second advantage is
that it may be easier to adapt such platforms to the new interface standard,
and we can evaluate the interface proposal by implementing it in these agent
languages. The design outlined in this paper fits for current APLs and we are
confident that our interface would also be suitable for other agent platforms.
We have incorporated the same functionality as has been used to connect the
selected APLs to environments in the past and improved upon those interfaces.
Our current experience has shown that EIS eases the issue of connecting APLs
to environments, when it comes both to time as well as structure, showing that
standardization helped here.

The paper is organized as follows. The design of an environment interface re-
quires a meta model of environments, agents, and agent platforms. In Section 2,
the principles and requirements such a meta-model should satisfy are identified
and the basic components of the model, their interrelations, and the functional-
ities provided are described. The meta model is used in Section 3 to define the
proposed environment interface standard, the main contribution of this paper.
Section 4 discusses related work and Section 5 evaluates the proposed standard.

2 Principles and Meta-Model

2.1 Principles

Two of the main motivations for introducing a generic environment interface are
to facilitate the easy exchange of environments between agent platforms and to
gain a more thorough understanding of the issues related to agent-environment
interaction. The environment interface should allow for: (1) wrapping already
existing environments, (2) creating new environments by connecting already ex-
isting applications, and (3) creating new environments from scratch. To this end,
in this section we discuss and present requirements such an interface should sat-
isfy. We do so by introducing various principles the interface should adhere to. We
have analyzed the agent-environment support provided by four well-known agent
programming languages: 2APL [14], GOAL [17], Jadex [9], and Jason [10].
Based on the principles, we then present a meta-model for an agent-environment



interface that is able to provide at least the support for agent-environment in-
teraction already provided by existing agent platforms (Section 2.2).

In order to guide the design of the interface, and to ensure that the inter-
face meets our objectives, we have identified a number of principles we believe
a generic environment interface should meet. First, as we aim for a generic in-
terface, the interface should impose as few restrictions on agent platforms and
environments as possible. More specifically, we believe that an environment in-
terface should not impose: (1) scheduling restrictions on the execution of actions
(actions can be scheduled by the agent platform and/or by the environment), (2)
restrictions on agent communication or organization structure (communication
facilities may be provided by the agent platform as well as by the environment),
(3) restrictions on what is controlled in an environment or how this control is im-
plemented except for the fact that control is established by an agent performing
actions , and (4) restrictions on how various components of the model should
be implemented; for example, the interface should allow for different types of
agent-environment connection (e.g. TCP/IP, RMI, JNI).

Second, as the interface is aimed at facilitating comparison of agent platforms,
a strict separation of concerns is advocated: the interface should not make any
assumptions about either the agent platform or the environments such platforms
are connected to, except for the type of connection that is established and as-
sociated functionalities. In our meta-model, this will be represented by a clear
distinction between agents and what we call controllable entities (i.e. “agents’
bodies situated in the environment”). Technically, this means the environment
interface must abstract from all implementation details concerning both agents
as well as environment objects. Instead, the environment interface may only
store identifiers to agents and entities and should administrate which agents
are associated with which entities (i.e. “who controls which body”). This level
of abstraction is required to ensure that no additional implementation effort is
required once the agent platform has been adapted.

Finally, as a more technical requirement, the interface should support porta-
bility, i.e., the easy exchange of environments from one agent platform to another.
As most agent platforms are implemented using Java it is at least possible to
provide this kind of functionality for such platforms if certain fixed policies are
adopted for initialising an environment.

2.2 Meta-Model

We have identified five components that are part of the meta-model on which
we base the design of the proposed environment interface. This meta-model is
illustrated in Fig. 1, and includes an environment model, an environment inter-
face that consists of an environment management system and an environment
interface component, an agent platform and agents.

Our environment model assumes the presence of a specific kind of entity. [7]
defines an entity as “any object or component that requires explicit representa-
tion in the model.” In the context of agent-environment interaction, the entities
that we are interested in may be controlled by an agent. This means that the



APL Side Environment Side

Environment
Management

System

Platform

Agents

Environment
Interface

Environment
Model

Fig. 1. The components of our environment meta-model. The platform and the agents
are on the APL side. The environment management system is in between. The specific
environment model is on the environment side. A specific environment model combined
with the environment interface, yields a specific environment interface.

behavior generated by the entity can be controlled by an agent if the agent is
properly connected to the entity. It is the task of the interface to establish such
a connection. Entities in an environment that can be so controlled are called
controllable entities.

Controllable entities facilitate the connection between the agents running
on an agent platform and an environment by providing identifiers, effecting ca-
pabilities, and sensory capabilities to agents. An agent’s identifier allows the
environment to send percepts or events to agents by means of the interface.
Moreover, the effecting and sensory capabilities specified by controllable entities
allow the environment to contextualize an agent’s action repertoire, the actions’
effects, and which part of the environment can be sensed, thus establishing the
situatedness of the agents.

The objective of defining an environment interface standard is to provide a
generic approach for connecting agents to environments. Agents may refer to
almost any kind of software entity but the stance taken here is that agents are
able to perform actions in the environment, sense the state of the environment
and process such sensorial input, and receive and process events that are gener-
ated by the environment. We use the following very generic definition taken from
[26] that includes precisely these two aspects: An agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that
environment through effectors. We do not intend to restrict our proposal to any



specific kind of agent program, although we are primarily motivated by existing
agent-oriented programming languages.

An agent platform is the infrastructure that facilitates the instantiation and
execution of individual agents. It is also assumed to facilitate connecting agents
with environments and associating agents to controllable entities by means of
the environment interface functionality. Other than that, nothing else is assumed
about an agent platform.

The environment interface consists of two components: the agent-environment
interaction component and the environment management component. The agent-
environment interaction component manages the mapping and interaction be-
tween individual agents and the agent platform on one hand, and the environ-
ment and controllable entities on the other hand. The interaction between an
agent platform and the agent-environment interaction component allows agents
to act in an environment, sense its state, and receive events from it. We allow
two ways of sensing: (1) active sensing through specific sense actions, and (2)
passive sensing through a generic sense action embedded in the control cycle of
the agents. Using the agent-environment interaction component, the platform
can process different types of actions by calling different methods of this com-
ponent and possibly wait for the return values which are subsequently passed
on to the platform. The values returned can be either success/failure notifica-
tions or sense information if actions were (passive or active) sense actions. The
environment interface can also interact with a platform by sending an event to
a specified agent. The platform is then responsible to pass the event on to the
specified agent (e.g., by adding the event to the agent’s event base).

3 A Generic Environment Interface

In this section, we explain our ideas for a generic environment interface. First,
we define an interface intermediate language that facilitates data-exchange (per-
cepts, actions, events) between different components. Second, we assume a func-
tional point-of-view of the interface architecture. The interface provides functions
for:

1. attaching, detaching, and notifying observers (software design pattern);
2. registering and unregistering agents;
3. adding and removing entities;
4. managing the agents-entities-relation;
5. performing actions and retrieving percepts; and
6. managing the environment.

3.1 Motivating Example: Multi-Agent Contest

The Multi-Agent Programming Contest (MAPC) 2010 tournament consists of a
series of simulations. In each simulation (see Fig. 2) two teams of agents compete
in a grid-like world. There are virtual cowboys that can be controlled by agents.



Fig. 2. A screen-shot of a simulation from MAPC 2010. Cowboys (red and blue circles)
should scare cows (brown ellipses) into the corrals (red and blue rectangles). In this
environment, acting is moving the cowboys, and perceiving is getting information about
which objects are contained in each cowboy’s square of visibility.

Agents have access to incomplete information, because the cowboys have a fixed
sensor-range. Acting means moving a cowboy to a neighboring cell on the grid.
There are no further actions. The environment contains obstacles: some cells
can be blocked and thus are unreachable. The grid is also populated by virtual
cows, that behave according to a simple flocking-algorithm. To win a simulation,
an agent team has to herd more cows, and take them to their own corral, than
the opponent team. The simulation proceeds through discrete time steps. In
each step, agents can perceive, have a fixed amount of time to deliberate, and
are then allowed to act. After a number of steps the simulation is finished. The
tournament is run by the MASSim-server, which schedules and runs simulations.
Agents are supposed to connect to the server as clients. Communication between
clients and server is facilitated by exchanging XML-messages via the TCP/IP
protocol.

We have given a very informal but adequate description of the environment-
model. The environment is discrete in space (grid-world) and time (step-wise
evolution). Platforms can interface with the MASSim-server by adhering to the
defined communication-protocol. This has to be done for every platform, in a
way specific to that platform. This is the case because, as we have observed,
every platform has a specific way of connecting to environments. Every platform
would have to use that connection-mechanism, parse XML-messages to evaluate



the percepts, and generate XML-messages for performing actions. Now, assuming
that a platform would be EIS-compatible, you only have to go through the trouble
of connecting to the MASSim-server once and create a specific environment-
interface.

3.2 Interface Intermediate Language

An important design decision has been to define, as part of the environment
interface, a convention for representing actions and percepts. This convention is
called the interface intermediate language (IIL), and supports the exchange of
percepts and actions from/to environments. A conventional representation for
actions and percepts is required to be able to meet the second principle aimed at
facilitating comparison of platforms and the fourth principle that aims at easy
exchange of environments and portability. To meet these principles, the interface
should be agnostic to any implementation details of either agent platform or
environment; this can be achieved by an abstract intermediate language. The
convention proposed here, however, imposes almost no restrictions (which is in
line with our first principle of generality).

The language consists of: (1) data containers (e.g. actions and percepts),
and (2) parameters for those containers. Parameters are identifiers and numer-
als (both represent constant values), functions over parameters, and lists of
parameters. Data containers are: actions that are performed by agents, results
of such actions, and percepts that are received by agents.

Syntactically each element of the IIL is an abstract syntax-tree (AST). Fig. 3
shows the relationship of the IIL-elements. Internally, each such element is stored
as a tree of Java-Objects with the following structure:

– An DataContainer is either an Action or a Percept.

– An Action consists of (1) a string name that denotes the action’s name,
(2) an ordered collection parameters, containing instances of Parameter,
representing the parameters of the action, and (3) an integer timeStamp

encoding the exact time the action-object has been created.

– An Percept consists of (1) a string name that denotes the percepts’s name,
(2) an ordered collection parameters, containing instances of Parameter,
representing the parameters of the percept, and (3) an integer timeStamp

encoding the exact time the percept-object has been created.

– A Parameter is either a Numeral, a Identifier, a ParameterList, or a
Function.

– A Numeral encapsulates a number value.

– An Identifier encapsulates a string value.

For the sake of readability each IIL-element can be printed either in a prolog-
like or in a XML-notation. Note however, that these string representations are
not supposed to be used on either the platform-side or the environment-side.
They are for reading purposes only.



IILElement

DataContainer

Parameter

Action

Percept

Identifier

Numeral

ParameterList

Function

Fig. 3. The inheritance relation of the IIL-elements. Actions and percepts are data-
containers. Each data-container consists of a name and an ordered collection of param-
eters.

Example 1 (a simple action with two atomic parameters). Assuming the exis-
tence of an entity that is capable of moving in a grid-like world, consider that
this entity’s action-repertoire includes an move-action that moves the entity to
a position [X,Y ]. This is the Prolog-like representation of such an action:

moveTo(2,3)

The action’s name-field is moveTo. There are two parameters 2 and 3. Both
of the Identifier-type.

This is the XML-representation of the action:

<action name="moveTo">

<actionParameter> <number value="2"/> </actionParameter>

<actionParameter> <number value="3"/> </actionParameter>

</action>

ut

Example 2 (another action using functions and a list). Consider now that the
same entity is capable of performing a more complex action, that is following a
path consisting of a sequence of positions at a given speed..

followPath([pos(1,1),pos(2,1)],speed(10.0))

The action’s first parameter [pos(1,1),pos(2,1)] is a ParameterList. The
list’s elements are both instances of Function. Considering pos(1,1), the func-
tion name is pos, both parameters are instances of Numeral. The second param-
eter of the action is a function, too.

Here is the XML-representation of the action:



<action name="followPath"><actionParameter>

<parameterList>

<function name="pos">

<number value="1"/>

<number value="1"/>

</function>

<function name="pos">

<number value="2"/>

<number value="1"/>

</function>

</parameterList>

</actionParameter>

<actionParameter>

<function name="speed"><number value="10.0"/></function>

</actionParameter>

</action>

ut

We do not need an explicit example for percepts, because syntactically per-
cepts and actions are almost equivalent.

At this point, we have introduced the syntax of the IIL, and elaborated on
it a bit by considering some examples. Now, we have to look at the semantics.
The semantics of an action and/or a percept depends on the specific environ-
ment. Again, EIS does not make any assumptions here, except for the syntactical
requirements.

After some experiments, a certain but trivial problem became evident. Some
environments (e.g. UT 2004) provide identifiers that might be interpreted as
variables on the platform side, thus rendering every IIL-expression that contains
such identifiers unusable by the platform, causing errors that are difficult to deal
with. To solve the problem we need to assume that none of the IIL-expressions
that are distributed by a specific environment-interface contains interpreters that
might be interpreted as variables.

3.3 Functional Point-of-View

What exactly is the correspondence between an environment-interface and the
components (platform, agents, etc.)? We allow for a two-way connection via
interactions that are performed by the components and notifications that are
performed by the environment-interface.

Interactions are facilitated by function calls to the environment-interface that
can yield a return value. For notifications we employ the observer design pattern
(call-back methods, known as listeners in Java). The observer pattern defines
that a subject maintains a list of observers. The subject informs the observers
of any state change by calling one of their methods. The observer pattern is
usually employed when a state-change in one object requires changes in another
one. This is the reason why we made that choice. The subject in the observer



pattern usually provides functionality for attaching and detaching observers, and
for notifying all attached observers. The observer, on the other hand, defines an
updating interface to receive update notifications from the subject.

We allow for both interactions and notifications, because this approach is the
least restrictive one. This clearly corresponds to the notions of polling (an agent
performs an action to query the state of the environment) and interrupts (the
environment sends percepts to the agents as in the AgentContest example).

Agents and Entities: We make three assumptions: (1) there is a set of agents on
the agent platform side (we do not know anything about them), (2) there is a
set of controllable entities on the environments side (again we do not know any-
thing about them), and (3) agents can control entities through the environment-
interface. An important design decision that we had to make is to store in the
environment-interface only identifiers to the agents, identifiers to the entities,
and a mapping between these two sets. The reason for that decision is, as men-
tioned before, that we do not assume anything about the agent platform side
or the environment side. Fig. 4 shows the agents-entities relation. The agents
live on the agent platform side, they are known by the environment-interface
through their identifiers. The entities live on the environment-side, and they
are also known by their identifiers. The agents-entities relation is stored as a
mapping between both sets of identifiers. In the AgentContest, each cowboy is a
controllable entity. Cows are entities as well but they are not controllable. Each
agent can control only a single cowboy.

In general, we allow the agents-entities relation to be arbitrary. For example,
we also allow for one agent to be associated with several entities. This would
be useful when using the agents&artifacts meta-model [23] to provide means
for agent-coordination through the environment. An artifact would be an entity
that can be controlled by several agents. Agents would perceive the state of the
artifact and can act so as to change it.

Attaching, Detaching, and Notifying Observers: There are two directions for
exchanging data between components and environment interfaces. One is via
environment observers, which inform observers about changes in the environ-
ment or the environment interface. The second is via agent observers, which
send percepts to agents. In order to facilitate sending events (i.e. percepts as no-
tifications and environment events), the interface provides functions that allow
for attaching and detaching observers, and for notifying components connected
via observers. Listeners are useful when connecting to the AgentContest envi-
ronment, since it is the simulator that actively provides agents with percepts.

Registering and Unregistering Agents: This step is the first to facilitate the inter-
action between agents and environments and establishing the agents’ situated-
ness. It is necessary for the internal connection between agents and entities. The
interface provides two methods: one for registering (registerAgent), and one
for unregistering an agent (unregisterAgent). We note that the agents them-
selves are not registered to the interface; instead, identifiers as representatives



Environment Interface

Agent-Platform Side Environment Side

Agent

Agent

Agent

Id

Id

Id

Id

Id

Id

Id

Fig. 4. The agents-entities relation. We distinguish between agents, which are platform-
properties, and controllable entities, which are environmental properties. Agents have
access to the entities effecting and sensory capabilities. In general the agents-entities-
relation, depends on the specific environment-interface.

are stored and managed. We note that only identifiers representing the agents
are stored and managed by the interface.

Adding and Removing entities: Entities are added and removed in a similar
fashion to agents. Again identifiers representing entities are stored instead of
the entities themselves. There are two methods: the first (addEntity) adds, and
the second one (deleteEntity) removes an entity. Again this is necessary to
facilitate the connection between agents and entities. Once an entity is added
or removed, any observing components (platform and/or agents depending on
the design of the platform) are notified about the respective events. This is done
in order to allow components to react to changes in the set of entities in an
appropriate manner.

Managing the Agents-Entities Relation: Associating an agent with one or several
entities is the second and final step of establishing the situatedness of agents
by connecting them to entities that provide effectory and sensorial capabilities.
The agents-entities relation is manipulated by means of three methods. The
first method (called associateEntity) associates an agent with an entity, the
second one (freeEntity) frees an entity from the relation, and the third one
(freeAgent), frees an agent. This can be done by the interface internally and
by other components that have access to it as well. Restrictions on the structure



of the relation can be established by the interface. In the AgentContest, for
example, one agent is supposed to control at most one virtual cowboy.

Performing Actions and Retrieving Percepts: The agents-entities relation is a
connection between agents and the sensors and effectors of the associated enti-
ties. We establish two directions of information flow. Each direction corresponds
to a typical step in common agent deliberation cycles. We have facilitated the
management of the two directions of flow by following a unified approach whereby
two methods are provided by the interface. The first one (performAction) allows
an agent to act in the environment through the effectors of its associated enti-
ties. The second method (getAllPercepts) allows an agent to sense the state of
the environment through the sensors of the associated entities. In the “cows and
cowboys” scenario, nine actions are available. One for connecting to the server
at a given IP address with valid username and password, and the other eight
for moving the cowboy in each possible direction. The method getAllPercepts

retrieves the last percept sent by the server.

Managing the Environment: Although different environments provide different
support to manage the initialization, configuration, and execution of the envi-
ronment itself, it is useful to include support for environment management in the
environment interface. This allows agent platforms to provide this functionality
by means of the interfaces that come with these platforms and relate environment
functionality with similar functionality offered by the platform. For example, it
is often useful to be able to “freeze” a running MAS simultaneously with the
environment to which the MAS is connected by means of pause functionalities
provided by the platform and the environment. As there is no common func-
tionality supported by each and every environment, we have chosen to provide
support for environment management by introducing a convention for labeling
a set of environment commands and environment events. The commands that
are part of the proposed environment management convention include starting,
pausing, initializing, resetting, and killing the environment.

3.4 Implementation Details

The goal of developing an environment interface standard is to facilitate the easy
exchange of environments. The interface would reduce the implementation effort
of connecting agent platforms to environments. Of course, the effort of connecting
to the environment through an environment interface should not substantially
increase the effort needed for directly connecting agents to an environment.
Below, we report on the experience we gained with adapting four agent platforms
so that they support the environment interface as well as the experience gained
with two environments that were adapted to support the environment interface.

In order to create an environment interface for a given environment, dedicated
code that is specific to the environment is necessary. To that end, a particular
Java interface has to be implemented. That interface enforces the functional con-
tract introduced in subsection 3.3. Alternatively, the developer can inherit from



a class that contains a default implementation for all of the contract’s methods.
Whatever path the developers follow, they need to establish a connection to the
environment.

Supported Agent Platforms To evaluate the ease of use and generality of the
developed EIS concepts and components, we have connected four different APLs
to example environments developed with the EIS. For 2APL, GOAL, Jadex,
and Jason, a connection has been established with less than one day of coding
effort each.

2APL proved to be compatible with EIS. In order to establish a connection a
two-way converter for the interface intermediate language had to be developed.
Furthermore, the environment loading mechanism of 2APL had to be replaced
with the environment-interface loading mechanism provided by EIS. Percepts
sent by EIS using the observer functionality are translated into 2APL events and
handed over to the event-handling mechanism of the interpreter. Finally, special
external actions have been added to facilitate the manipulation of the agents-
entities relationship: (1) retrieving all entities, (2) retrieving all free entities, (3)
associating with one or several entities, and (4) disassociating with one or several
entities.

The original environment interface of GOAL did not fit with everything
provided by the environment interface. It nevertheless proved quite easy to con-
nect the interface to GOAL as most functionality provided by the interface is
straightforwardly matched to that provided by the GOAL agent platform. Sim-
ilar to 2APL, a two-way converter for the interface intermediate language had
to be developed with little effort required. There were no percepts as notifica-
tions (like events in 2APL), prior to the adaptation to EIS. GOAL only allowed
for retrieving all percepts in a distinct step of the deliberation cycle. Percepts
as notifications are now collected and processed together in the step where all
percepts are processed. Also, the MAS file specification of GOAL has been ex-
tended. Now one can use launch rules to connect specific agents with specific
entities. This allows for instantiating agents even during runtime.

For connecting Jadex agents to EIS, it is sufficient to make all agents of one
application aware of the concrete EIS object, implementing the current environ-
ment. In order to do this in a systematic way, the Jadex concept of space was
used. A space may represent an arbitrary underlying structure of a MAS that is
known by all agents. To support the EIS, a special EISSpace has been provided,
which implements the required interfacing code for connecting to an EIS-based
environment. Therefore, the participation in such an environment can now sim-
ply be specified in the Jadex application descriptor (“.application.xml”). When
such a defined application is started, the initial agents as well as the EIS environ-
ment will be created. Agents can then access EIS by fetching the corresponding
space from their application context and use the EIS Java API directly for, e.g.,
performing actions or retrieving percepts.

Jason’s integration with EIS was straightforward since almost all concepts
used in the EIS are also available in Jason. The integration consists essentially



of: (1) the conversion of data types, and (2) the development of a class that
adapts EIS environments to Jason environments. In regards to (1), all EIS data
types have an equivalent in Jason. Although some data types in Jason (e.g.,
Strings) do not have a corresponding type in EIS, they can be translated to EIS
identifiers. In regards to (2), the adaptor is a normal Jason Environment class
extension that delegates perception and action to the EIS. The adaptor class is
also responsible for registering the agents with the EIS as they join a Jason
multi-agent system and wake them up when the environment changes (using the
observer mechanism available in EIS). From all the concepts used in EIS, only
that of “entities” is not supported by Jason as all actions and perceptions are
relative to an agent and the overall environment rather than a particular entity
therein. For sensing, the chosen solution was to add annotations to percepts that
indicate the entity of origin. For actions, in case the agent is associated with
exactly one entity, the action is simply dispatched to that entity. Otherwise, a
special action that receives the relevant entity as a parameter must be used.

Implemented Environments The environment interface comes with several
very simple examples of environments for illustrative purposes. These examples
are mainly provided for clarifying some of the basic concepts related to the
interface. We briefly discuss here two EIS-enabled environments, that may be
used by any agent platform that supports EIS.

The elevator environment is a good example of an environment that was not
built specifically with agents in mind, and is available from [1]. The environment
is a simulator of arbitrary multi-elevator environments where the elevators are
the controllable entities and the people using the elevators are controlled by the
simulator. It comes with a graphical user interface (GUI) and a set of tools for
statistical analysis. The environment had been originally adapted for the GOAL
platform. The additional effort required to re-interface that environment to EIS
was very little. The main issue was the event handling related to the initial
creation of elevators, a functionality provided and supported by the environment
interface which required some additional effort for adapting the environment to
provide such events. The environment provides actions that take time (durative
actions) instead of discrete one-step actions, which illustrates that the interface
does not impose any restrictions on the types of actions that are supported.
Similarly, elevators only perceive certain events but not, for example, whether
buttons are pressed in other elevators. The percept handling related to this
was easily established, illustrating the ease with which to implement a partially
observable environment. We have successfully used the elevator environment
with GOAL and 2APL.

Connecting to the MASSim-server turned out to be easy. As already men-
tioned, the entities in the AgentContest-environment are cowboys that herd
cows. From the implementation point-of-view each connection to an entity is a
TCP/IP connection. Acting is facilitated by wrapping the respective action into
an XML-message and sending it to the server. Perceiving is done by receiving
XML-messages from the server and notifying possible agent-listeners. Further-



more, for the sake of convenience, percepts are stored internally for a possible
active retrieval. Much effort had to be invested in mappings from the interface
intermediate language to the XML-protocol of the AgentContest and vice versa.
We have shown that the interface does indeed not pose any restrictions on the
connection between itself and environments.

Finally, it is worth mentioning that an interface to Unreal Tournament 2004
[18] is under developmentGrown out of the need for a more extensive evalua-
tion of the application of logic-based BDI agents to challenging, dynamic, and
potentially real-time environments, this EIS interface might help putting agent
programming platforms to the test.

Evaluation Summary The relative ease with which the interface has been
connected to four agent platforms and various environments already indicates
that the interface has been designed at the right abstraction level for agent-
environment interaction. The four agent platforms differ in various dimensions,
regarding, for example, the functionality provided for handling percepts and ac-
tions (is the platform more logic-oriented or Java-based?) and how environments
were connected to these platforms before using the interface. The environment
interface nevertheless could be connected to each of the platforms easily, thus
providing evidence of its generality and as well. Of course, we need more agent
platforms to use the environment interface, and we have invited other platform
developers to do so, but we do not expect this will pose any fundamental new
issues. Initial experience with various environments has also shown that little to
no restrictions are imposed on the types of environments that can be connected
to an agent platform using the interface. The interface, for example, can support
both real-time or turn-based environments, as well as environments that differ in
other respects. Although we have mainly discussed software environments, there
is no principled restriction imposed by EIS that would make it only applicable
to such environments. It has been shown already in the past that it is possible
to connect agent platforms to embedded platforms such as robots. EIS just pro-
vides another, more principled approach for doing so. In fact, it is planned to
use EIS to connect to a robotic platform in the near future.

4 Related Work

The EIS was designed as a building block for an agent application, providing a
standardized way of interfacing the agents with environmental components. In
the context of agent applications, at least the following forms of environments
can be distinguished: (1) environments in agent-based simulation models, (2)
virtual environments such as testbeds or computer games, (3) real application
components such as enterprise information systems, and (4) coordination infras-
tructures.

Agent-based simulation models can be used for performing experiments and
analyzing the obtained result data. Agent simulation toolkits are specifically
designed for this purpose and often employ custom agent models (e.g. simple



task-based agents) and a proprietary form of defining the environment behavior.
Usually, there is a tight coupling between agents and the environment that is
designed to support these toolkit-specific models. Therefore, simulation toolkits
are closed in the sense that they do not support (and are not meant to) connect-
ing external agents to simulated environments or simulated agents to external
environments.

The specialized architecture Koko [27] provides a reusable and extensible
environment, aiming at an enhanced user experience by linking independent
applications. With our work we neither focus on human interaction with agents
or the environment, nor are we exclusively interested in multiplayer and/or social
games. We see these only as a single class of test-cases out of many ones.

Agent programming testbeds and contests, such as TAC, [5], RoboCup, [4]
and the Multi Agent Contest [3], are specifically designed to offer open inter-
faces for connecting different types of agents to the provided test environment.
Moreover, some network-based computer games with remote playing capabili-
ties (e.g. Unreal Tournament) offer interfaces for controlling entities in the game
environment which have been adapted to connect to software agents instead of
human players [11]. All of these interfaces are quite specific with regards to the
testbed or game they were created for, and therefore agent platform developers
have to repeat the implementation effort of connecting their agents to each of
these interfaces.

To connect agents to an environment composed of real application compo-
nents, different options are available. Application-centered approaches would
directly use available component interfaces or domain specific standards (such
as HL7 in the healthcare domain) for the connection. Depending on the severity
of the “impedance mismatch” between the component interface and the agent
platform, this can become quite laborious and additionally has to be repeated for
each platform and each application. Agent-centered approaches try to “agentify”
the environment components, leading to a more seamless and straightforward
connection. For example WSIG (Jade) [2] is an infrastructure that allows agents
to interact with web services as if they were agents and vice-versa.

One well known approach for coordinating agents is by using blackboard ap-
proaches, which offer agents a possibility to decouple their interactions in terms
of time and potential receivers. Besides passive blackboards acting as informa-
tion stores only, also more advanced tuple spaces such as ReSeCT [22] have been
devised with which one can also capture domain logic in terms of rules. The Open
Agent Architecture (OAA) [13] is another form of coordination environment, in
which the cooperation among agents and also humans is facilitated by automatic
task delegation and execution. In contrast to EIS, these approaches focus on in-
formation exchange and problem solving and do not tackle the question of how
environments could be generically interfaced.

Organizational or institutional approaches such as Islander [16] and Moise [19]
regulate agent behavior at high-level allowing designers and/or agents to define,
monitor, and enforce certain kinds of organizational constraints (e.g. norms and
group membership). The latest platform for Moise is founded on the notion of



organizational environment where agents can perceive and act on their organi-
zation. This kind of environment can also contain artifacts specially developed
to enforce some norms (e.g. a surgical room’s door that forbids agents to enter
if they do not play the role of doctor). Other approaches affect more directly
agent behavior, for example biologically inspired approaches such as pheromone-
based techniques to guide agent movement. While these approaches make use
of the notion of environment, they are quite domain specific and do not allow
for arbitrary environment development. In contrast, the A&A model [23] has
been proposed as a generic paradigm for modeling environments. In the A&A
paradigm, an application is composed of agents as well as so called artifacts.
While the model makes no restricting assumptions with respect to the agents,
the interface and operation of an artifact is intentionally quite rigidly defined.
An implementation of the A&A model is available in form of the distributed
middleware infrastructure CArtAgO [25].

We see EIS not as a competitor, but rather as a desirable complement to
the above mentioned approaches. For example, one possible use of the EIS stan-
dard is reducing the required implementation effort for connecting agent to, say,
virtual environments, as once an EIS-based interface has been developed for a
contest or game, it can easily be reused by different agent platforms. Unlike
FIPA-compliant approaches such as the WSIG, the focus of the EIS is providing
a lean interface, i.e., when FIPA-compliant communication is not necessary, the
EIS allows achieving similar openness and portability with much less effort. In
particular, we see much potential in a combination of EIS and CArtAgO. Cur-
rently, there are specific bridges available for connecting agent platforms such
as Jadex, Jason and 2APL to CArtAgO [24]. Implementing an EIS bridge for
CArtAgO could lead to a universal implementation that could be used to con-
nect CArtAgO to any agent platform (if it is already EIS-enabled). In general,
the EIS standard will facilitate connecting any agent platform to all sorts of
environments (A&A based as well as others).

5 Conclusion

The design and implementation of our proposal for an environment interface
standard (see [8] for a more detailed exposition and more technical details) is
motivated by the fact that it has been difficult to connect arbitrary agent plat-
forms to many of the available environments. The design of the interface provides
additional insight into the general problem of agent-environment interaction. At
a conceptual level, the development of the environment interface has yielded
insight, for example, into some of the distinguishing features of existing agent
platforms. For example, where some platforms expect events initiated by the en-
vironment other platforms are based on a polling model for retrieving percepts.

The initial results of applying the interface to various agent platforms and
environments have been very encouraging: they demonstrate the generality and
usability of our interface. The environment interface standard allows the porta-
bility and reuse of application and testing environments across existing and newly



developed agent platforms. Furthermore, it provides a basis for heterogeneous
agent applications composed of agents implemented in different agent platforms.
The experience so far has also shown that connecting to and using the interface
requires minimal effort and can be implemented easily.

Although the environment interface proposed here provides a solid basis for
agent-environment interaction, there are some topics that require additional
work. One of these topics involves the environment management system which
has only been partly supported by most agent platforms; it facilitates combina-
tions of agent platform and environment functionalities such as combined reset-
ting of MAS and environment, but this requires additional investigation. We also
need to gain more experience with the dynamic addition and removal of entities
and the handling of such events by platforms. Related to the previous point,
there is the issue of managing various types of entities. For example, how can
the interface be extended to support the identification of these different types?
Finally, we need to get more agent platforms, including platforms from multi-
agent based simulation and other areas, involved and support the environment
interface to establish our proposal as a genuine (de facto) standard.

References

1. Elevator simulator homepage. http://sourceforge.net/projects/

elevatorsim/.
2. Java Agent DEvelopment Framework homepage. http://jade.tilab.com/.
3. Multi Agent Contest homepage. http://www.multiagentcontest.org/.
4. RoboCup homepage. http://www.robocup.org/.
5. Trading Agent Competition homepage. http://www.sics.se/tac/.
6. R. Adobbati, A. Marshall, A. Scholer, S. Tejada, G. Kaminka, S. Schaffer, and

C. Sollitto. Gamebots: A 3d virtual world test-bed for multi-agent research. In
Proceedings of the 2nd International Workshop on Infrastructure for Agents, MAS,
and Scalable MAS, 2001.

7. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System
Simulation. Prentice Hall, 2009.

8. T. M. Behrens, J. Dix, and K. V. Hindriks. Towards an environment interface
standard for agent-oriented programming. Technical Report IfI-09-09, Clausthal
University of Technology, Sept. 2009.

9. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Sys-
tems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley
& Sons, 2007.

10. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI-agent system combin-
ing middleware and reasoning. In R. Unland, M. Klusch, and M. Calisti, editors,
Software agent-based applications, platforms and development kits, 2005.

11. O. Burkert, R. Kadlec, J. Gemrot, M. Bda, J. Havlcek, M. Drfler, and C. Brom.
Towards fast prototyping of IVAs behavior: Pogamut 2. In Proceedings of 7th
International Conference on Inteligent Virtual Humans, 2007.

12. M. Buro. Call for AI Research in RTS Games. In AAAI-04 AI in Games Workshop,
2004.

13. A. Cheyer and D. Martin. The open agent architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1):143–148, March 2001. OAA.



14. M. Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

15. M. Dastani, J. Dix, and P. Novák. Agent Contest Competition - 3rd edition. In
M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors, Program-
ming Multi-Agent Systems 5th International Workshop, ProMAS 2007 Honolulu,
HI, USA, May 15, 2007 Revised and Invited Papers, number 4908 in Lecture Notes
in Artificial Intelligence, Honululu, US, 2008. Springer.

16. M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions edi-
tor. In AAMAS ’02: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 1045–1052, New York, NY, USA,
2002. ACM.

17. K. V. Hindriks and T. Roberti. Goal as a planning formalism. In MATES 2009
Proceedings, pages 29–40, 2009.

18. K. V. Hindriks, B. van Riemsdijk, T. Behrens, R. Korstanje, N. Kraaijenbrink,
W. Pasman, , and L. de Rijk and. Unreal GOAL bots. In Preproceedings of The
AAMAS-2010 Workshop on Agents for Games and Simulations, to appear.

19. J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-
isations with organisational artifacts and agents: “giving the organisational power
back to the agents”. Journal of Autonomous Agents and Multi-Agent Systems,
2009.

20. R. Z. Mili and R. Steiner. Modeling Agent-Environment Interactions in Adaptive
MAS. In Engineering Environment-Mediated Multi-Agent Systems International
Workshop, EEMMAS 2007, Dresden, Germany, October 5, 2007. Selected Revised
and Invited Papers, pages 135–147. Springer, 2008.

21. J. Müller. Towards a Formal Semantics of Event-Based Multi-Agent Simulations.
In Multi-Agent-Based Simulation IX, International Workshop, MABS 2008, Esto-
ril, Portugal, May 12-13, 2008, Revised Selected Papers, Lecture Notes in Artificial
Intelligence, pages 110–126. Springer, 2009.

22. A. Omicini. Formal ReSpecT in the A&A Perspective. Electronic Notes of Theo-
retical Computer Science, 175(2):97–117, 2007.

23. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

24. A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Dastani. Integrating
artifact-based environments with heterogeneous agent-programming platforms. In
7th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-08), pages 225–232. IFAAMAS, 2008.

25. A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A framework for prototyping
artifact-based environments in MAS. In D. Weyns, H. V. D. Parunak, and
F. Michel, editors, Environments for Multi-Agent Systems III, Third International
Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected Revised and In-
vited Papers, volume 4389 of Lecture Notes in Artificial Intelligence, pages 67–86.
Springer, 2007.

26. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, 2003.

27. D. Sollenberger and M. Singh. Architecture for affective social games. In
F. Dignum, J. Bradshaw, B. Silverman, and W. van Doesburg, editors, Agents
for Games and Simulations, volume 5920 of Lecture Notes in Computer Science,
pages 79–94. Springer Berlin / Heidelberg, 2009.


