
A Survey of Agent-oriented
Development Tools

Alexander Pokahr and Lars Braubach

Abstract Development tools represent an important additive for the practi-
cal realization of software applications, mainly because they help automating
development activities and are able to hide complexity from developers. In
this chapter, the requirements for tools are generically analyzed by the various
tasks that need to be performed in the di�erent development phases. These
requirements are the foundation for a detailed investigation of the landscape
of available agent-oriented development tools. In order to assess the variety
of tools systematically, existing surveys and evaluations have been used to
isolate three important categories of tools, which are treated separately: mod-
eling tools, IDEs and phase-speci�c tools. For each of these categories speci�c
requirements are elaborated, an overview of existing tools is given and one
representative tool is presented in more detail.

1 Introduction

The term tool is de�ned in dictionaries as a means used in performing an
operation or task. In computing, a (software) tool is therefore a software for

Alexander Pokahr
Distributed Systems and Information Systems Group,
Computer Science Department, University of Hamburg,
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany,
e-mail: pokahr@informatik.uni-hamburg.de
Lars Braubach
Distributed Systems and Information Systems Group,
Computer Science Department, University of Hamburg,
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany,
e-mail: braubach@informatik.uni-hamburg.de

1



2

developing software or hardware.1 As the product that is developed with a
software tool is itself again a piece of software, we further want to restrict
our discussions on tools to so called development tools . A development tool
is a software that is used by a software developer to produce some result (e.g.
a text editor used for editing a source �le). Unlike other kinds of software
(e.g. libraries or agent platforms), a development tool is only used during the
development of a system and not part of the �nal software product.

The results presented in this chapter are part of a larger survey on agent-
oriented development artifacts. Speci�cally, agent architectures, languages,
methodologies, platforms and tools have been researched. For the evaluation
of the surveyed representatives, a criteria catalog has been developed, which
covers besides functional criteria also non-functional issues such as usability,
operating ability and pragmatics. Details of the criteria catalog as well as
condensed and summarized survey results can be found in [14]. The criteria
catalog will be used in this chapter as a guiding principle for discussing
requirements with respect to tool support. More information on the survey
is available in [11], covering architectures, methodologies and platforms, and
in [47], dealing with languages and tools.

In the next section, the background on software development tools will be
presented, thereby highlighting general requirements and providing a model
for assessing tool support for the di�erent phases in the software develop-
ment process. Section 3 deals with agent-oriented tools. In this section, a
survey about existing agent-oriented software development tools will be given.
Thereafter, in Sections 4 and 5, two important categories of tools � namely
modeling tools and integrated development environments (IDEs) � are dis-
cussed in detail. In Section 6, tools for individual phases of the development
process are presented. A short evaluation of the presented state-of-the-art is
given in Section 7. The chapter closes with a summary and conclusion.

2 Background

The following sections discuss which kinds of tools are employed in the di�er-
ent phases of the software development process. For generality and simplicity,
a basic and well-known �ve phase model [6] is used as a foundation instead
of a concrete and detailed agent-oriented methodology such as Gaia [73] or
Prometheus [45]. The �ve phase model distinguishes between 1) requirements,
2) design, 3) implementation, 4) testing, and 5) deployment.

First, an overview of common development tasks in each of the phases
will be given (Section 2.1). For a structured and systematic discussion, these
tasks are then uni�ed according to a generalized classi�cation scheme (Sec-
tion 2.2). Further, kinds of tools for supporting the tasks as well as criteria

1 Wiktionary.com: �tool� (5 October 2008), http://en.wiktionary.org/w/index.
php?title=tool&oldid=5262373



3

for assessing the quality of tool support are presented in Section 2.3. The
following discussions are intentionally kept general (i.e. not speci�c to agent-
oriented software development) to avoid an isolated �agents only� view and
for facilitating a comparison of the state of the art of agent tools with respect
to the state of the art in software engineering in general.

2.1 Development Tasks During the Software
Engineering Process

This section describes the tasks, a developer has to perform during the dif-
ferent phases of the software development process. Usually, these tasks cor-
respond to single steps, which have to be conducted more than once during
iterative re�nements.

The requirements phase is necessary to elaborate the requirements of the
software to be. This phase involves talking to end users and customers to
identify the needs and wishes. These have to be analyzed for being able to
write them down in a precisely de�ned and unambiguous form. The elab-
orated requirements also have to be checked for consistency to each other
and the requirements speci�cations have to be validated with the aid of the
customers and end users.

After the requirements have been �xed, the design of the system can start.
The design phase has the goal to develop a blueprint of a system that cap-
tures all identi�ed requirements. During the continuous re�nements of the
design it should be checked for consistency of the design artifacts to each
other. Moreover, the design should be validated with respect to the identi�ed
requirements, such that problems in the development process can be detected
early.

Tasks during the implementation phase mainly consist in editing the source
code. This includes, besides creating new code fragments, also the task of
refactoring, which is a systematic restructuring of the source with the aim
of preserving the existing functionality but at the same time e.g. better sup-
porting the integration of planned future functionality. Depending on the
level of detail in the design, code generation can be used to produce initial
code fragments automatically based on the design information. For iterative
development processes it is in this case necessary that changes to the code
are also re�ected in the original design artifacts, e.g. by using reverse en-
gineering technologies. Another important task during the implementation
phase is producing documentation to keep the code base maintainable and
understandable. Therefore, decisions should be documented, which are nec-
essary because of a higher abstraction of design artifacts compared to the
concrete code. Especially, the concrete interfaces between modules of the
system should be described, as in larger projects these modules are often
developed by independent developer teams.



4

In accordance with the V-model [22, 52], the steps of system testing mirror
the steps of system design in the opposite direction. System design moves from
abstract requirements to detailed design-speci�cation and �nally concrete
code. To validate an implementation, these steps should be taken backwards.
Therefore one starts validating concrete implementations of partial function-
alities (e.g. by so called unit testing). Validation errors occurring in this step
usually can be corrected directly in the code. When the functionality of sin-
gle components is veri�ed, the correct interplay between these components
can be validated (integration testing). This shows, if design speci�cation (e.g.
interface de�nitions) are su�cient to ensure the smooth integration of com-
ponents. If validation errors occur at this stage, often design decisions have
to be revised and implementations adapted accordingly. Finally, a validation
of the system as a whole is performed with respect to the initially identi�ed
requirements. In so called system tests, the developers can play through the
de�ned use cases. During acceptance tests, the system is evaluated by the
real end users and customers. Problems, which are identi�ed in these tests,
form the requirements that are used in the next iteration of the development
process.

The deployment of a software system follows a sequence of several steps
(cf. [40]). Because systems are usually not developed from scratch, the �rst
step is to obtain/provide the required additional components. Thereafter, the
obtained and newly developed components have to be con�gured according
to the intended usage contexts resulting in a set of application con�guration
speci�cations. For each application con�guration, a deployment plan needs to
be devised. In the preparation step, the code of the application components
will be placed at the required target locations. When all components are in-
stalled, the application can be started, meaning that for a complex distributed
application several components on potentially di�erent network nodes need
to be started. Once the application is running, the maintenance phase starts,
during which e.g. changes to the application con�gurations can be made.
Such changes may not require performing a new iteration of the development
process, if they have been already considered in the system design. Depend-
ing on the runtime infrastructure may be possible while the application runs
or may require the application to be restarted. For unforeseen changes, the
development process has to start again for designing, implementing, testing
and deploying changed components according to the new requirements.

Besides these tasks corresponding to the �ve development process phase,
there are other cross-cutting tasks, which have to be conducted during the
whole development process. Among such tasks are the provision, manage-
ment and usage of a repository for holding and providing consistent access to
the di�erent versions of the produced speci�cations and code. Also the coor-
dination among software developers is a task that is required in all phases.



5

2.2 Classi�cation of Software Engineering Tasks

The aim of the last section was to give an overview of the di�erent tasks and
activities that have to be performed during the software development process.
This section investigates how these tasks can be supported by software tools.
To keep the discussion general it is abstracted away from concrete tools and
speci�c tasks. Instead it is tried to identify the commonalities for tasks that
recur in similar forms in di�erent phases. This investigation helps to identify
the kind of tool support that is required in general and also sheds some light
on the relations between di�erent kinds of tools.

A uni�cation and categorization of the tasks from the last section is il-
lustrated graphically in Figure 1. The �ve phases of the software develop-
ment process (requirements, design, implementation, testing, deployment) are
shown from the left to the right. From top to bottom, you can �nd a classi-
�cation according to primary tasks, ancillary tasks, and cross-cutting tasks

(see left hand side legend).

Fig. 1 Tasks in the software engineering process

Primary tasks are those tasks, that form the major part of a phase. There-
fore, such tasks should if possible be supported by a single integrated tool
to avoid having to switch often between di�erent work environments. This
means that, e.g., a design tool should support all tasks of the design phase
in an integrated and consistent way.

Supporting tasks, which are optional or required less often compared to
primary tasks are termed ancillary tasks. Because these tasks make up only
a low portion of the overall development e�ort, requirements for tool support
for these tasks are somewhat reduced. E.g. support for some of these tasks



6

need not be part of an integrated tool but can also be realized in several
independent tools, without causing too much interruption in the work�ow of
the developer. Nevertheless, an integration of such tools would be bene�cial,
e.g. in the form of plug-in mechanisms that allow to invoke external tools
from an integrated development environment.

Finally, cross-cutting tasks are not associated only to a single phase of
the development process. Therefore, tool support for these tasks should be
realized separately from any tool that is only intended for a speci�c phase
so as not to require the use of tools from di�erent phases. E.g., repository
management support should not be realized solely as part of a design tool,
otherwise developers would be required to always have the design tool at hand
even in the later development phases. Nevertheless, some integration of the
functionality (e.g. using plug-ins) into phase speci�c tools can be bene�cial
as long as it does not hinder the consistent usage across all phases.

In the following, the concretely identi�ed generalized tasks as shown inside
the Figure 1 will be explained in more detail. In the �gure, similar tasks are
subsumed under a common name. Therefore, a common primary task for all
phases is the creation and editing of artifacts, where artifacts depend on the
phase (e.g. requirements speci�cations, design models, application code, test
cases, or deployment descriptors). Also, the consistency checking refers to
the artifacts of the respective phases, e.g. checking di�erent design models
for consistency to each other. Some tasks such as elicitation of requirements
have no counterpart on other phases, as the later phases, the documents
from the earlier phases are directly used as input. Similarly, the performing

of artifacts such as test cases and deployment plans only happens in the last
two phases respectively, because in the earlier phases, the produced artifacts
(design models or code) directly form the desired result, while in the last
two phases, the artifacts are only means to the �nal goal of a validated resp.
installed system.

Unlike the primary task of consistency checking, the ancillary cross-

checking task refers to checking the consistency between artifacts of di�erent
phases (as indicated by small arrows in the �gure), mostly checking the newly
produced artifacts of the current phase for consistency with the artifacts from
the earlier phase(s) to verify that, e.g., design models capture all previously
de�ned requirements. In a similar way, also forward and reverse engineering
(fw. rev. engineering) has to consider artifacts from di�erent phases. The aim
is to automatically create artifacts for one phase out of the information avail-
able in artifacts in an earlier (forward engineering) or later phase (reverse
engineering). A common form of this task is code generation, which pro-
duces an implementation phase artifact (code) based on some design phase
artifacts (design models). Refactoring is the task of systematically changing
a set of artifacts with respect to a common restructuring goal. Systematic
means that changes apply to many artifacts at once and special care has to



7

be taken to ensure the consistency of the artifacts.2 These tasks are termed
ancillary because they are partially optional (fw./rev. engineering and refac-
toring) or are only require limited amount of e�ort (cross-checking) compared
to the primary tasks. Another ancillary task that requires limited amount of
e�ort is producing documentation for the speci�c phase. Because the major
artifacts of the requirements and design phase have documentary character
themselves, a separate documentation task is not considered for these phases,
in other words, (creating/editing of) documentation is a primary task in these
phases.

Cross-cutting tasks are also associated to the artifacts of the di�erent
phases. E.g. the aim of repository management is to store the artifacts and
their changes and to provide access to them, when needed. Besides the arti-
facts itself, meta-information such as the user, version and time of a change
needs to be stored. Also the coordination is usually tightly coupled to the cre-
ation and editing of artifacts. E.g. it has to be coordination who is allowed to
edit which artifact (access management) and who is responsible for creating
which artifact (task allocation).

The dots in the categories indicate that the �gure is not claimed to be
complete with respect to all possible kinds of software development tasks.
For example the list of tasks could easily be extended to tasks, which are
less focused to direct development tasks, such as e.g. project management or
quality assurance.

2.3 Tool Support for Development Tasks

For an e�ective and e�cient software development it is essential that prefer-
ably all tasks and activities during the development process are adequately
supported by tools. Nowadays, a huge amount of vastly di�erent tools has
been developed in research and industry. Grundy and Hosking [30] have given
a broad overview over the state of the art in the area of software tools. Their
overview considers tools in general (i.e. not speci�cally focused on agent-
oriented application development). Grundy and Hosking identify 18 di�erent
kinds of tools (e.g. design tools, IDEs, as well as testing and debugging tools)
and describe the phases in the development process, where these tools are
used. The considered tools usually support more than a single activity or
task inside a phase like, e.g. design tools, which besides the creation and
editing of design models also often support consistency checking and/or code
generation. Moreover, some tools can be used across di�erent development
phases. For example, many IDEs not only address the implementation phase,

2 Although refactoring is often referred to in the context of code refactoring only, it is also
possible to generalize the refactoring idea to other kinds of artifacts. For example, [61, 7]
propose refactoring mechanism for UML design models.



8

but also o�er support for testing and debugging as well as sometimes aspects
of deployment.

The quality of any tool support can be assessed by considering the degree
of support for the di�erent phases and tasks. The support for all tasks and
activities in the sense of a complete tool-support for the software develop-
ment process can be achieved on the one hand by combining a multitude
of specialized tools for single tasks or on the other hand by a few powerful
tools, each of which addresses a large portion of software development tasks.
Besides this functional quality aspects, also non-functional quality criteria,
such as usability, operating ability and pragmatic aspects (cf. [14]) should
be considered when evaluating or designing tool support. For these criteria,
the continuity of the tool support is of primal importance (cf. [51]). In this
respect, continuity refers to the seamless working with the same artifacts
across di�erent interrelated tasks. This continuity can easily be obtained, if
support for related tasks is combined in a larger tool (e.g. design tool or
IDE). When related tasks are supported by separate tools, the continuity
needs to be achieved by an integration of these tools. A fully integrated tool
support also directly improves usability, because it provides a uni�ed view
of the development process reducing the learning e�ort and the potential for
errors.

According to Figure 1, integration can be pursued across two axes. On the
one hand, integration can consider two tasks from di�erent phases (horizontal
integration). For example design and implementation tools, which are both
responsible for creating and editing artifacts could be integrated by providing
an interface for data interchange. On the other hand, tasks from the same
phases can be integrated (vertical integration), like combining support for
these tasks inside a common usage interface, e.g. using a plug-in mechanism.
Grundy and Hosking [30], di�erentiate four basic ways of integration: data
integration, control integration, presentation integration and process integra-

tion. Data integration is achieved by the already mentioned data interchange
interfaces and can be based on standardized as well as proprietary data for-
mats. Data interchange is essential to allow consistency checking among arti-
facts created with di�erent tools (especially for cross-checking artifacts from
di�erent phases). Control integration allows redirecting commands issued in
one tool to another tools. As an example consider a debugger and a source
code editor, where the debugger has to tell the editor, which line to show,
when the developer issues a program step. Presentation integration has the
goal to combine the functionality of di�erent tools in a uni�ed user inter-
face, e.g. simply by invoking the command line tools such as CVS/SVN and
present their output or by using sophisticated plug-in facilities that allow to
extend also the user interfaces, e.g. of integrated development environments.
Finally, process integration focuses on integrating subsequent activities or
steps. Therefore, process integration has to combine data, control, and pre-
sentation integration and adds knowledge about the development process and
the interdependencies of process steps, i.e. process integration automatically



9

presents to the developer the right tool with the right data for the next
required working task.

To summarize the preceding analysis of tools and tool support it is noted
that, according to Section 2.2, the quality of tool support and integration is
more important for the primary tasks than for ancillary tasks. With respect
to the goal of achieving a complete and continuous tool supported develop-
ment process this means that modeling or design tools as well as IDEs are
the most important class of tools, as these tools aim to combine and integrate
most of the primary tasks and also many ancillary tasks from the require-
ments and design as well as implementation testing and deployment phases.
Moreover, cross-cutting tasks should be supported by separate tools, which
are not bound to a speci�c development phase. In the following, it will be
investigated, how these requirements for design tools, IDEs, and tools for
cross-cutting tasks can be met by existing agent-oriented software tools.

3 Agent-oriented Development Tools

The previous sections of this chapter have taken a general viewpoint towards
tools. This section investigates, which kind of tools exist in the speci�c area
of agent-oriented software engineering. For this investigation, existing sur-
veys and online resources on agent software are used as a starting point. As
some of these surveys have a quite speci�c focus, the results of them cannot
be easily compared to each other. Particularly, some surveys consider quite
di�erent kinds of agent software, not limited to pure development tools as
de�ned in the introduction, but often also agent platforms and execution envi-
ronments. Moreover, it should be distinguished between generic software and
software that is targeted to a speci�c application domain or category. Such
category-speci�c software e.g. supports the creation of virtual characters or
the building and execution of simulation experiments. In addition, some of
the surveys also include built agent-oriented applications. To give a coherent
view of existing agent software, the following analysis presents not only de-
velopment tools, but also runtime-relevant software like agent platforms and
support libraries. Further categories of software are introduced as needed,
when they are present in some survey or online resource. Nevertheless, in the
subsequent discussions the scope will again be reduced to development tools.

3.1 Analysis of Existing Surveys and Online Resources

The examined surveys di�er in the selection of tools as well as in the de�-
nition of the investigated categories. Some investigations only de�ne a single
category and only study representatives of this category. Other surveys have



10

the aim to be broader and therefore examine di�erent representatives of cat-
egories, which are de�ned in advance or afterwards.

Among the surveys focused on a single category, Eiter and Mascardi [23]
and Bitting et al. [5] only consider environments for developing agent applica-
tions. The term multi-agent system development kit (MASDK) is introduced
to denote integrated development environments with functionalities similar
to object-oriented IDEs, such as eclipse3 or IntelliJ IDEA4. Considering the
examined development environments such as AgentBuilder [53], IMPACT
[21], JACK [71], and Zeus [39], it can be noted that each of them intro-
duces a new proprietary programming language for agent speci�cation. In
contrast, object-oriented IDEs usually support existing languages like C++
and Java. This di�erence is probably due to the fact, that in the area of agent
technology no broad consensus exists about how to implement the agent spe-
ci�c concepts leading to quite di�erent approaches with their own respective
advantages and drawbacks. The use of proprietary concepts and languages
forces these development environments to also include runtime components
such as an agent platform for supporting the execution of the developed
agents. Runtime environments resp. platforms for executing agents are the
focus of Serenko and Detlor [56], Fonseca et al. [24] as well as Pokahr and
Braubach [48, 13]. These surveys consider in addition to platforms as part of
a development environment also pure execution environments like JADE [3]
and ADK [64]. These platforms do not introduce new proprietary program-
ming languages, but instead rely on existing object-oriented languages such
as Java.

The respective aims of the broader surveys are sometimes quite di�cult
to de�ne. E.g. Mangina [36] considers agent software in general, based on
the entries of the AgentLink agent software directory at that time. The sur-
vey includes 36 representatives, but partitions them in quite vaguely de�ned
categories such as �development environment� or �support software�. Newer
reviews of Bordini et al. [9, 8] and Unland et al. [65] consider current soft-
ware from the area of agent-oriented software engineering categorized, e.g.,
in languages, platforms, and applications [9].

3.1.1 Agent Software in the AgentLink Software Directory

The most current and comprehensive overview over agent software is the
publicly available AgentLink agent software directory.5 It was initiated in
the context of a series of EU-funded research networks. Although AgentLink
ended in 2005, the list has still been updated since then.6 With a total of

3 http://www.eclipse.org
4 http://www.jetbrains.com/idea/
5 http://eprints.agentlink.org/view/type/software.html
6 Last entry was added on September 10th, 2007.



11

125 entries7 it is therefore much more up-to-date than other online resources,
which seem to be no longer maintained, such as the UMBC Agent Web soft-
ware directory (149 entries until 2003)8 or the even no longer available Uni-
versité Laval Agents Portal (40 entries until 2006) or MultiAgent.com (35
entries until 2007).

An in-depth analysis of the representatives listed in the AgentLink direc-
tory results in the chart shown in Figure 2. For the chart, each of the entries
has �rst been assigned to one of the major groups introduced in the begin-
ning of this section, namely tools (left hand side), runtime software (middle)
and software for a speci�c application category (right). The tools group is
subdivided into IDEs, design tools, as well as other tools. In the runtime
software group it is further distinguished between complete platforms and
additional supporting libraries, which do not form a platform in their own
respect. Category-speci�c software comprises runtime environments for sim-
ulation (sim.), applications (app.) and miscellaneous agent software (misc.),
which does not �t into any other category, such as libraries for developing
virtual characters.

Fig. 2 Analysis based on AgentLink tool directory

For valid conclusions about the current state of the art, it has also been
investigated, which of the representatives are still actively developed. A rep-
resentative is termed inactive, if there has not been a software update or a

7 Of the actually 128 entries, three have been identi�ed as duplicates.
8 http://agents.umbc.edu/Applications_and_Software/Software/index.
shtml



12

publication about the software in the last two years. The number in braces
give the exact number of representatives, whereas the �rst number is only
the active representatives, while the second number is the total number (i.e.
active and inactive) representatives.

Considering the distribution of entries into the three major groups, it can
be observed, that runtime software is by far the most common group (69 of
125, i.e 55%). The smallest part is tools with only 15 of 125 entries (12%). The
reason for this distribution could be that agent programming is still young
compared to e.g. object-oriented programming and therefore the main focus
of research and development has initially been on the basic infrastructure
for execution, and somewhat less on abstract and easy to use development
tools. When considering only actively developed representatives, the picture
changes in favor of the tools, which now make up 20% (14 of 72) compared
to now only 48% for runtime software, while the third category stays around
the same level of 32%. This result could be an indication that the available
runtime infrastructure has matured in the recent years as now the focus has
shifted towards higher level tools.

Concerning the subdivisions in the major groups, it can be noted that
platforms are by far the most commonly developed kind of agent software (53
of 125 entries, i.e. 42%). A reason for this might be the already mentioned
lack of consensus among agent researchers forcing many research teams to
develop a platform on their own instead of reusing existing software. Also,
simulation software makes up a considerable portion (16%), which is even
higher than the tools group in total and indicates that agent technology is
already quite well accepted in the area of simulation. Another noticeable fact
is that IDEs are developed twice as much compared to design tools. A possible
reason for this could be that the proprietary programming languages often
require developing new IDEs while for modeling techniques, which are not
speci�cally agent-oriented, existing tools (e.g. UML tools) can partially be
used.

Finally, the reduction of the subcategories to only active representatives is
explained. It con�rms the picture already present with regard to the major
groups, namely, that fewer representatives of runtime software like platforms
and libraries remain compared to, e.g. IDEs and development tools. The
biggest reduction is in the area of platforms, where more than half of the
platforms (54%) are no longer developed. This indicates this area has ma-
tured and a convergence to a few widely used platforms, such as JADE, has
happened. Additionally, only few of the platforms have been developed in a
commercial setting (ca. 10 of 53, i.e. less than 20%) while the majority of
IDEs (7 of 10, i.e. 70%) have a commercial background.9

9 This is also due to the fact that many commercial agent platforms like JACK include
IDE support and have therefore been assigned to the IDE category.



13

3.1.2 Tool Kinds for Supporting Agent-oriented Software

Development

The goal of the previous sections has been to identify the kinds of tools, which
are required and already used for supporting the development of agent-based
applications. Therefore, Section 2.1 has presented an overview of software
development tasks, which have been generalized and classi�ed in Section 2.2,
according to process phases, as well as primary, ancillary and cross-cutting
tasks. Moreover, Section 2.3 has discussed how these single tasks should be
addressed by integrated (sets of) tools. Finally, Section 3.1.1 has given an
overview of tools and other development supporting software in the area of
agent technology. This overview identi�es the important classes of IDEs and
design tools and therefore �ts well with the generic analysis from Section 2.3,
which identi�es modeling tools and IDEs as the basis of a continuous tools
support, augmented by additional tools for project management, coordination
and special purpose tasks. This leads to the question, for which tasks speci�c
agent-oriented tools are necessary and for which other tasks existing tools e.g.
from the object-oriented world would be su�cient. An important criterion
for this decision is the kind of artifact, that is manipulated by a tool, i.e.
for working with agent-speci�c artifacts like design models or program code
speci�c agent tools would be advantageous. Cross-cutting tasks (cf. Figure 1)
like project or repository management abstract away from concrete artifact
types and therefore can be adequately supported by existing tools, such as
Microsoft Project10 or CVS11.

Therefore the identi�ed modeling tools and IDEs form the most important
aspect of a tool-supported agent-oriented software development process to
adequately support the requirements and design, as well as implementation,
testing and deployment phases. In the following two sections, these two tool
kinds will be analyzed in more detail, by discussing the common properties
and giving an overview of typical representatives.

4 Modeling Tools

Agent-oriented graphical modeling tools are developed to support the soft-
ware engineer during modeling tasks and to simplify the transition from an
abstract speci�cation to an implemented multi-agent system. Replacing or
augmenting existing object-oriented modeling techniques as e.g. available in
UML [41], new agent-oriented diagram types are introduced, which allow to
specify e.g. interaction protocols or describe internal agent properties at the
abstraction level of graphical modeling. A modeling tool realizes the corre-

10 http://microsoft.com/office/project
11 http://www.nongnu.org/cvs/



14

sponding user interface for working with these diagram types. The graphical
representation of system properties allows visualizing interdependencies be-
tween the elements and improves the developer's understanding of the struc-
ture of single agents as well as the system as a whole.

Graphical agent-oriented modeling techniques usually are not self-con-
tained (with the exception of AUML [42] for specifying agent interactions),
but rather are embedded into complete software engineering methodologies
(see, e.g., [58] or [31] for an overview). Methodologies provide besides model-
ing techniques also a development process, in which the single techniques are
embedded. The development process de�nes a sequence of steps, which have
to be passed through during the realization of a system, and the techniques to
be employed in each of the steps [59]. Regarding this aspect, some method-
ologies are more strict than others, i.e., some restrict single techniques to
be only used in some of the steps, while others propagate an iterative re�ne-
ment of speci�cations in subsequent steps using the same modeling technique.
This strictness can be supported by a tool by o�ering only those modeling
techniques, which correspond to the current process step.

4.1 Requirements for Modeling Tools

This section discusses the speci�c requirements for modeling tools by referring
to the general discussions from Sections 2.2 and 2.3. With respect to devel-
opment tasks (cf. Figure 1), modeling tools address the design phase as well
as (sometimes) the requirements phase. Artifacts of these phases are graph-
ical models and text-based speci�cations, which can be written in natural
language or follow a prede�ned (formal) scheme (e.g. role schema de�nitions
in GAIA [73]). The main function of a modeling tool is to enable the devel-
oper to create and edit these models and speci�cations. Depending on how
strict or formal the models and speci�cations of the employed technique or
methodology are, a tool can also check the consistency of created artifacts
and suggest changes for improving the speci�cation (so called design critics
[55]).

Among the further tasks in the requirements and design phases is vali-
dating speci�cations or modeling artifacts from di�erent phases with respect
to each other. E.g., it can be checked that design documents adequately re-
�ect the scenarios, which have been identi�ed in the requirements phase [2].
Moreover, it is advantageous, if a tool provides the developer with an option
to transform artifacts from one phase into artifacts of another phase. For
instance, a tool might be able to generate code fragments based on design in-
formation (forward engineering) or extract design information out of existing
application code (reverse engineering). A drawback of forward or reverse en-
gineering techniques is that after a once generated artifact has been changed
manually, forward or reverse engineering cannot be reapplied without loos-



15

ing the changes, i.e. the so called �post editing problem� [62]. The combined
support of forward and reverse engineering, such that changes in one arti-
fact can always be merged into the other without compromising consistency
or loosing changes, is called round-trip engineering. Round-trip engineering
allows employing forward or reverse engineering techniques also in iterated
and agile development processes, where existing implementations are used as
a basis for the design of the next iteration. Refactoring techniques are also
most useful in agile development processes. Initially only applied to the im-
plementation phase, refactoring ideas have recently also been transferred to
graphical modeling [61, 7].

Among the non-functional criteria, especially the group of usability criteria
(cf. [14]) requires a speci�c treatment. To evaluate the usability of graphical
modeling tools, the ergonomics of the user interface is of primary importance.
In general, this covers properties, such as the suitability for the intended task
and controllability (cf. ISO 9241-110 �Ergonomics of human-system interac-
tion - Dialogue principles� [32]). In the speci�c context of modeling tools,
these properties can be re�ned to concrete requirements. For instance, a tool
should relieve the developer by automating tedious tasks like the uniform and
clearly arranged placement of diagram elements, but without posing unnec-
essary restrictions on the user. Moreover, it should be possible to take back
actions in case of undesired e�ects (undo), and often used functionality should
be easily accessible without forcing the developer to repeatedly change be-
tween mouse and keyboard (e.g. by enabling commands to be issued through
hot keys as well as dialog elements).

4.2 Existing Agent-oriented Modeling Tools

The analysis of existing agent-oriented tools from Section 3.1.1 has shown
that the choice of tools in the area of agent technology is somewhat limited.
Most tools evolved in the context of a speci�c project or product. Hence,
for each speci�c approach, such as a concrete agent-oriented programming
language or development methodology, usually only a single tool (if any) is
available, which is highly tailored for this speci�c approach.

Due to this situation, it seems appropriate to examine tools not in iso-
lation, but to also consider the project or product context. Figure 3 shows
current agent-oriented design tools and highlights their interdependencies to
other agent-oriented development artifacts. In the �gure, design tools are de-
picted in the highlighted column in the middle. To the left hand side of the
design tools, their conceptual foundations are given in the form of develop-
ment methodologies. Methodologies in turn are related to their originating
software engineering (SE ) approaches, which, according to [14], are given
as agent orientation (AO), object orientation (OO), knowledge engineering
(KE ), and requirements engineering (RE ). To the right of the design tool



16

Fig. 3 Modeling tools and relations to other artifacts

column, interdependencies to implementation aspects of the modeled agents
can be seen. Those interdependencies go through the development environ-

ments (i.e. IDEs), which are also covered in this chapter, and programming
languages to the behavioral agent architectures, which in turn form the con-
ceptual foundation of the programming languages. For reasons of clarity,
artifacts without relations to modeling tools are not shown in this �gure,
even if they will be covered later with regard to IDEs (e.g. 2APL or AOP
languages and associated tools).

All modeling tools shown in the �gure have been developed to support a
concrete methodology, but not all of them are related to some agent-oriented
IDE. The relation to an IDE follows from the fact that a tool is able to
generate code of a speci�c agent programming language or platform, sup-
ported by this IDE. For example this is the case for the Prometheus Design
Tool (PDT)12 [63] and the LS/TS Modeler, which are developed for the
Prometheus methodology [72] resp. the Agent DEvelopment Methodology
(ADEM, [67]), are able to generate code for the language JAL of the JACK
agent platform [71] resp. the Java API of the Living Systems Technology
Suite LS/TS [54]. The INGENIAS Development Kit (IDK)13 [27] supports
the INGENIAS Development Process IDP [46] and generates code for two

12 http://www.cs.rmit.edu.au/agents/pdt/
13 http://ingenias.sourceforge.net/



17

languages/platforms (JADE [3, 4] and Soar [34]), one of which (Soar) is sup-
ported by a speci�c IDE.

Other tools, such as the PASSI Toolkit14 and agentTool15, which have
been developed for the PASSI [16] resp. the MaSE methodology [20], are able
to create code from the models, but no speci�c IDEs exist for the target lan-
guages. Especially tools related to requirements engineering (OpenOME16,
Objectiver17, FAUST18) are not capable of generating agent-oriented code.
This is probably due to the fact that the supported methodologies KAOS
[35] and i* [74] as a foundation of Tropos [26] consider agents merely as
an abstract modeling concepts and do not target an agent-oriented imple-
mentation. The TAOM4e tool19 is an exception to this case, because unlike
OpenOME supporting i*, it supports the Tropos methodology directly and
therefore explicitly considers using agent-oriented concepts for the implemen-
tation (here by generating JADE code). The Multi Agent System Develop-
ment Kit MASDK, [28], deserves a special presentation covering the design
tool as well as the IDE column. MASDK realizes an approach for graphical
programming, which is inspired by the Gaia methodology [73].

4.3 Example Modeling Tool: Prometheus Design Tool
(PDT)

The Prometheus Design Tool (PDT) is developed at the RMIT University
in Melbourne [44, 43]. It has the objective to support the agent-oriented de-
velopment according to the Prometheus methodology [72]. The Prometheus
methodology consists of three subsequent stages: system speci�cation, ar-
chitectural design, and detailed design. In each of these stages a developer
speci�es design artifacts, which is supported by the PDT. In Figure 4 a screen-
shot of the PDT user interface is shown. The basic working area is split into
four main regions. At the upper left pane the three mentioned development
stages and the associated design diagrams are listed. This area can be used
to select a speci�c diagram, which is then shown at the right hand side and
can be edited there. Each element of a design is also contained in an entity
list at the lower left region. For each design element the editor for the type-
dependent textual descriptor can be activated and used for adding further
details (bottom right area of main window).

14 http://sourceforge.net/projects/ptk
15 http://macr.cis.ksu.edu/projects/agentTool/agentool.htm
16 http://www.cs.toronto.edu/km/openome/
17 http://www.objectiver.com/
18 http://faust.cetic.be
19 http://sra.itc.it/tools/taom4e/



18

Fig. 4 Overview of PDT

In the system speci�cation phase an analysis of the problem domain is
pursued. Main goal in this phase is the speci�cation and elaboration of the
analysis overview diagram, which has the purpose to highlight the main use
cases and the stakeholders participating in these use cases. This diagram
can be further re�ned to include also the interface of the system described
by percepts as inputs and actions as outputs of scenarios. In addition to this
analysis overview, a system goal hierarchy can be modeled. As starting point,
it is assumed that for each scenario one top-level goal exists, which can be
used for a subsequent re�nement into lower-level goals.

The next phase is the architectural design, where the internal composition
of the system is speci�ed. In this phase it needs to be decided which agent
types make up the system and additionally in which way these agent types
communicate via protocols. An agent type here is seen as a composition of
one or more roles and is guided by data coupling and acquaintance considera-
tions. Once the agent types have been identi�ed, the agent overview diagram
can be composed. This diagram is similar to an object-oriented class dia-
gram, because it mainly highlights the agent types and their communication
relationships. Also similar to class diagrams, the system overview diagram
plays a central role in Prometheus and represents one of the most important
artifacts produced by the methodology.

Finally, in the detailed design phase the agent internals are speci�ed in
order to equip the agents with the means to achieve their goals and handle
their interactions appropriately. For each agent type, represented in an agent
overview diagram, a functional decomposition is performed in order to iden-
tify its required functionalities. These functionalities are grouped according



19

to their coherence and consistency into so called capabilities (agent mod-
ules). For each capability a capability overview diagram is developed, which
shows how a functionality can be realized in terms of belief-desire-intention
concepts. For these concepts individual textual descriptors can be devised.
Using the detailed design artifacts, the code generation facility of the PDT
can be employed for automatically producing JACK agent language code.

PDT provides all standard functionalities of a modeling tool. It allows
design diagrams being created and re�ned and also exported in a graphical
format for documentation purposes. In addition, the consistency of the design
artifacts is ensured to some degree based on constraints derived from the
Prometheus metamodel. According to [44], the tool inter alia avoids references
to non-existing entities, giving the same name to two elements, connecting
unrelated entities and breaking interface rules. Semantical aspects can be
further investigated by the tool, which generates a report indicating possible
weaknesses and inconsistencies in the current design. Such a report could e.g.
highlight that the model contains a message, which is actually never send by
any agent in the design.

PDT also partially addresses the ancillary tasks (cross-checking, refactor-
ing and forward/reverse engineering). The consistency of di�erent artifacts is
mainly ensured within one development phase but as speci�c elements such
as percepts and actions are used throughout all phases, also cross-stage con-
sistency is respected. Additionally, the automatic propagation of elements to
diagrams of later phases increases the consistency further. Refactoring is not
supported by the PDT so far, even though the persistent usage of elements
throughout di�erent diagrams helps to make simple operations like renaming
of elements work without consistency problems. The PDT o�ers a code gener-
ation module for producing code skeletons directly from the models (forward
engineering). If changes in the design are done only within the tool, it will
preserve hand-made code changes and hence mitigate the post-editing prob-
lem [62]. A reverse engineering for producing design artifacts out of existing
code is not yet available and hence no round-trip engineering is possible.

The PDT aims at supporting all relevant modeling activities of a system.
A vertical integration, i.e. the integration of further tools for enabling a richer
modeling experience, is currently not provided. Concerning the horizontal in-
tegration, the PDT has the already mentioned code generation mechanism,
which represents a weak form of data integration. The data integration is
weak, because it works in one direction only (from PDT -> Code). Further-
more, a PDT eclipse plugin is available, which allows using PDT from eclipse
and realizes a control integration.

For the future several extensions are planned. One aspect is the achieve-
ment of a complete data integration between the design and code layer. More-
over, the functionalities of the PDT eclipse plugin shall be extended substan-
tially to provide further integration facilities. In this respect, it is aimed at
supporting code generation also for other target agent platforms and allow
other modeling tools (e.g. UML) to be used directly from PDT, e.g. to model



20

non-agent related system aspects such as the underlying data model. The
horizontal integration shall be further extended in direction of including the
test and deployment phases as part of Prometheus and PDT.

5 Integrated Development Environments (IDEs)

IDEs are software applications, which combine di�erent development tools
under a uni�ed user interface. The main focus of IDEs are the programming
tasks that appear primarily in the implementation phase, but also in the
testing and (partially) deployment phases (cf. Sections 2.1 and 2.3). Therefore
most IDEs are restricted to these phases. Yet, some IDEs o�er graphical
modeling features, but these are usually not focused on providing a fully
�edged design phase support, but instead target an abstract visual way of
programming (e.g. MASDK [28]).

In the area of object-oriented software engineering there are numerous
IDEs of di�erent levels of maturity. E.g., among mature IDEs focusing on
Java programming, the most widely used ones are eclipse20, IntelliJ IDEA21

and NetBeans22 (cf. Methods & Tools23 and ComputerWire24). IDEA is a
commercial product of the company JetBrains, whereas eclipse and NetBeans
are freely available Open Source solutions, which are nevertheless initiated
and pushed forward by commercial companies (Sun Microsystems in case
of NetBeans and a consortium of IBM, Borland, QNX, RedHat, SuSE and
others for eclipse).

The following section will discuss desired features of IDEs in general,
backed by the analysis from Section 2.2 and the available features of the
aforementioned state-of-the art object-oriented IDEs.

5.1 Requirements for IDEs

A simple IDE at least combines an editor for working on source code with
a compiler or interpreter, which translates code to a runnable program or
directly executes it. Additional important functionalities of an IDE are a
debugger, which allows monitoring and control a running program in order
to �nd programming errors, as well as a repository management functionality
for dealing with the �les associated to a development project.

20 http://www.eclipse.org/
21 http://www.jetbrains.com/idea/
22 http://www.netbeans.org/
23 http://www.methodsandtools.com/facts/facts.php?nov03
24 http://www.computerwire.com/industries/research/?pid=
8885533F-BE8C-4760-881C-0BBBFECF534E



21

The central component of an IDE from the viewpoint of the developer
is the editor, which is used primarily to create and edit source code but
sometimes also other kinds of artifacts, such as deployment descriptors. The
editor should o�er integrated consistency checks, validating the code while it
is typed. To improve the productivity of a developer, many IDEs addition-
ally o�er so called auto-completion, i.e. the IDE makes useful suggestions
to the developer, how the partial code pieces can be expanded (e.g. variable
or method names). These suggestions bear on the one hand on a syntacti-
cal understanding of the programming language and on the other hand on
the current context, i.e. knowledge of the classes, variables, methods, etc.
of the current project, which are accessible from the given code location.
Similar knowledge is required for refactoring functionalities, which in the im-
plementation phase also belong to the duties of an editor (e.g. the consistent
renaming of methods). Besides text-based source code editors, some IDEs
o�er other (e.g. visual) description means for speci�c aspects of a system,
such as graphical user interfaces, and transform these descriptions to source
code automatically.

To verify progress during programming, the developer continuously has
to execute and test those parts of the system, she is working on. Therefore,
the IDE on the one hand has to transform source code into an executable
program. For larger projects this can include, besides compiling single source
�les, also additional steps, such as pre- and post-processing as well as creat-
ing and assembling complex subcomponents (e.g. libraries). The IDE should
enable the developer to specify/alter project speci�c guidelines for the build
process and de�ne all the required steps for constructing the application. Ca-
pabilities of an IDE related to the build process therefore also address tasks
from the deployment phase. On the other hand, the IDE has to provide a
runtime environment, in which partially completed versions of an application
can be executed. Using di�erent execution con�gurations, a developer can
select di�erent parts of the application for execution, based on her current
situation.

A common task during the programming activity is the process of localiz-
ing bugs in a running system. For this purpose, IDEs o�er so called debuggers,
which allow executing a program in a step-wise manner, while observing the
position in the source code as well as current variable values. A central con-
cept of a debugger are breakpoints, i.e. positions that a developer has marked
in the source code and at which executing should be interrupted. For com-
piled programs the debugger therefore has to be enabled to map the internal
machine representation of the running program back to the source code. To
support this process, program binaries usually are enriched with debugging
information during the compilation process. Modern IDEs support in addi-
tion to simple breakpoints also semantic breakpoints, which are activated
only, when certain conditions or events are detected (e.g. the occurrence of a
speci�c exception type).



22

Fig. 5 Agent-oriented IDEs and relations to other artifacts

Besides phase-speci�c activities in the area of implementation, testing
and deployment, many IDEs also support cross-cutting tasks. Especially the
repository management or an integration of an existing repository manage-
ment or versioning system is among the standard features of today's IDEs.
The �rst goal of repository management is grouping all �les belonging to a
project into a common (e.g. directory) structure, such that the developer can
easily grasp the current state of the project. Moreover, versioning features al-
low retrieving di�erent (earlier) states of single �les or the project as a whole,
when needed. The integration with an external repository management sys-
tem like CVS further facilitates a parallel and distributed development in
larger project teams.

5.2 Existing Agent-oriented IDEs

For a systematic overview of existing agent-oriented IDEs , the approach from
Section 4.2 is picked up. Therefore Figure 5 shows in the style of Figure 3 the
interdependencies of existing agent-oriented IDEs with other development
artifacts. E.g. the Visual Soar IDE25 supports the Soar Language, for which
the IDK modeling tool can generate code as also already shown in Figure 3.

25 http://www.eecs.umich.edu/~soar/sitemaker/projects/visualsoar/



23

Extending Figure 3, the AOP and 3APL/2APL architectures have now
been included in the �gure (see top right), because corresponding IDEs are
available. The current 2APL platform26 [19] supporting the 2APL language
provides an IDE-like tool, that o�ers code editing as well as debugging capa-
bilities. AgentBuilder27 is a commercial agent platform and toolkit support-
ing the Reticular Agent De�nition Language (RADL), while Agent Factory28

[crossref for chapter in this book] is an IDE supported framework for the
Agent Factory Agent Programming language (AF-APL) and its variations.
Both RADL and AF-APL are inspired by the seminal work of Shoham [57]
on Agent-oriented Programming (AOP).

Besides the 3APL/2APL and AOP branches, additionally, the IMPACT
development environment and corresponding language [21] have been added
(see bottom), which are not inspired by a speci�c agent architecture or
methodology. On the other hand, several methodologies (e.g. Tropos and
MaSE), which are present in Figure 3, have been removed in Figure 5, be-
cause for these there is no continuous tool support available, which includes
an IDE.

In the area of IDEs supporting BDI (belief-desire-intention) languages (cf.
middle), many IDE/language pairs have been added in addition to the al-
ready mentioned JACK development environment and language (JDE, JAL,
cf. Section 4.2). The Jason agent interpreter29 [10] includes an IDE for the
Jason agent language, which is a derivative of AgentSpeak(L) [50]. JIAC
(Java-based Intelligent Agent Componentware)30 [25] is a sophisticated tool
suite and agent platform, which recently has been made available as open
source and uses a BDI-style language called JADL (JIAC Agent Description
Language). Finally, for the PRS successor SPARK (SRI Procedural Agent
Realization Kit)31 [38], developed at SRI, an IDE is available, which is re-
alized as an eclipse plugin. Although the �gure shows that an LS/TS API
for BDI-style agents is available (MARGE - multi-agent reasoning based on
goal execution [70]), the LS/TS Developer IDE support is mostly oriented
towards the alternative task-model based MDAL API as described below.

26 http://www.cs.uu.nl/2apl/
27 http://www.agentbuilder.com/
28 http://www.agentfactory.com/
29 http://jason.sourceforge.net/
30 http://www.jiac.de/
31 http://www.ai.sri.com/~spark/



24

5.3 Example IDE: LS/TS Developer

The LS/TS Developer is part of the Living Systems Technology Suite
(LS/TS) of Whitestein Technologies.32 As already mentioned in the last sec-
tion, instead of a new agent language, LS/TS provides several APIs that
allow implementing agent applications in Java. The agent concepts and be-
havioral architecture are realized in the existing framework classes, while the
programmer can provide new implementations of API classes that are called
by the framework at relevant time points (inversion of control principle). One
example of such a class is a user de�ned message handling component to be
executed, when a matching message is received. The basic API of LS/TS
is CAL (core agent layer) [68] on top of which the other APIs are built.
CAL only provides a very basic autonomous agent that reacts on incoming
messages or the passage of time. Besides the autonomous agent, CAL also
provides so called Servants, representing passive service, and DAOs (data ac-
cess objects) for managing potentially persistent data. The MDAL (message
dispatching agent logic) [69] extends CAL and introduces mechanisms for se-
lecting speci�c components (so called message handlers) based on properties
of incoming messages. Each message handler is responsible for a sequence of
messages (e.g. a negotiation with another agent) and is composed of so called
fragments for each single step of the interaction. A so called context factory is
responsible for instantiating new message handlers for messages that cannot
be assigned to an existing message handler.

The LS/TS Development Suite includes on the one hand the already men-
tioned LS/TS Modeler (cf. Section 4.2) and on the other hand a set of de-
velopment tools, which provide views and editors for working with CAL and
MDAL elements, carrying handy names such as Developer, Debugger, Tester,
and Administrator. Despite this naming, these are not separate tools, but in-
tegrated into the eclipse IDE, therefore o�ering an agent developer an accus-
tomed environment allowing �exible access to the additional agent-oriented
development features. The features are grouped into two perspectives that
o�er a useful prede�ned layout of the available views that can also be adapted
if necessary. In the developer perspective, the agent-speci�c code of an appli-
cation can be edited. The administrator perspective contains tools for moni-
toring and manipulating a running agent application.

Figure 6 shows some features of the developer perspective. In the upper
half, there are existing eclipse views for Java programming (package explorer
left, Java source editor middle, Java source outline right), which are useful
also for editing CAL and MDAL artifacts. The lower area shows extensions
like the CAL explorer and MDAL explorer (both left) or message handler
diagrams (middle). In the following, the tool support available in the LS/TS
Developer will be discussed with respect to the phases implementation, test-
ing, and deployment as well as the corresponding tasks.

32 http://www.whitestein.com/



25

Fig. 6 Developer perspective of the LS/TS Development Suite in eclipse

Relevant implementation artifacts of LS/TS applications are Java �les as
well as (mostly XML-based) con�guration �les. Elements of the CAL and
MDAL APIs are represented as Java classes that can be created and edited
using existing eclipse mechanisms. Additionally, the LS/TS Developer in-
troduces new wizards that simplify the creation of such elements based on
prede�ned templates and can be activated from the CAL/MDAL explorer
and partially also directly from the Java code editor. Syntactical consistency
of Java classes can also be checked using existing eclipse mechanisms. De-
pendencies between MDAL elements (e.g. message handlers and contained
fragments) are not considered by eclipse, because these are stored in string-
based mapping tables in Java code. Besides editing Java code directly, two
graphical views are provided. The �rst (agent diagram) allows observing
and manipulating the aforementioned dependencies between context facto-
ries, message handlers, and fragments. The agent diagram is extracted from
the Java sources and changes to the graphical view, such as adding/removing
elements, are written back to the corresponding Java �les after the changes
have been reviewed and accepted/rejected by the developer in a preview win-
dow (roundtrip engineering). The second view (message handler diagram, cf.
Figure 6 middle) is also extracted from the Java code and shows the execu-
tion �ow of a message handler as a Petri-net. Editing of this diagram is not



26

possible. Refactoring for Java source �les is already supported in eclipse and
can also be applied to the Java-based CAL and MDAL elements, but may
lead to inconsistencies, because references to elements in the aforementioned
mapping tables and e.g. in XML-base deployment descriptors will not be
considered by eclipse. Similarly, automatic cross-checking between di�erent
phases (e.g. implementation classes and deployment descriptors) is currently
not supported and therefore has to be performed by hand. No additional
support is o�ered for documentation tasks (e.g. it is not directly possible to
export message handler and agent diagrams or include these automatically
in generated Javadoc documentation).

For testing and debugging, existing Java mechanisms of eclipse can be
reused. Additionally, LS/TS extends Java breakpoints in terms of agent con-
cepts, allowing the developer to focus on speci�c agent instances or mes-
sage types. The administrator perspective allows to record messages that are
passed between agents and, for the purpose of debugging, display these mes-
sages in a sequence diagram like view as well as in a topological view. Creating
test cases is supported by a test framework based on the open source jUnit33

framework. It allows testing parts of agents (e.g. message handlers) and is
supported in the IDE through wizards that enable the creation of test cases
based on templates. Consistency checking and refactoring, is supported by
existing eclipse mechanisms, but, as in the implementation phase, does not
respect all dependencies.

Application con�gurations for deployment are stored in XML �les. A map-
ping �le declares available agent types and relates them to the implementing
Java classes. A startup �le de�nes the required agent instances for a concrete
application con�guration by specifying for each agent instance the name, type
and optionally parameters. Both descriptors can be edited in XML directly
as well as in a speci�c form based editor that abstracts away from XML syn-
tax and provides all settings in an intuitive manner. To create an application
from a speci�ed con�guration, a build process can be initiated, that is based
on a prede�ned Ant34 build �le. Using a dialog, settings can be made that
specify which con�guration �les are to be used and if the application should
be directly deployed into an existing runtime environment. Once speci�ed,
such deployment con�gurations can then be executed as needed.

Cross-cutting tasks like project and repository management are already
supported in part by existing eclipse features or separately available eclipse
plugins for e.g. repository management with CVS. For project management,
eclipse o�ers e.g. management of to-do entries and various search features.
LS/TS additionally o�ers access to project �les through the CAL and MDAL
explorers. Moreover, the MDAL explorer o�ers special search functionality
that simpli�es the navigation in the project.

33 http://www.junit.org/
34 http://ant.apache.org/



27

6 Phase-speci�c Tools

Besides the already discussed modeling tools and IDEs, which generally span
several development phases, in this section phase-speci�c tools will be dis-
cussed. Phase-speci�c tools can substantially support selected development
tasks. Nonetheless, these tools are intentionally not meant to be a universal
solution for building software. In order to build software the whole develop-
ment process consisting of all mentioned phases need to be homogeneously
tool supported. In this respect, it is of crucial importance that the tools can
be integrated with each other and therefore allow a smooth transition for-
ward and back along the di�erent development phases, meaning that artifacts
produced in one phase can be also used or re�ned in another phase. This in-
tegration is rather di�cult to achieve and requires agreed upon conceptual
models as well as standards or at least published speci�cations. In the area
of multi-agent systems, a high heterogeneity on all layers exists rendering a
desired fully-integrated tool-support across all development even harder to
achieve than for the standard object-oriented paradigm. The following sec-
tions will introduce the speci�c requirements each phase poses towards the
possible tool support, name important tool representatives and discuss one
of these representatives in detail.

6.1 Requirements Analysis Phase

The artifacts of the requirements analysis phase are graphical models and/or
textual speci�cations of an initially abstract problem. These artifacts repre-
sent concretized requirements for the system to be built. At this point in the
development process, normally no decision is made about the usage of agent
or an alternative technology for the realization of the system. Therefore, the
produced artifacts in this stage are generally not agent-speci�c, which makes
it possible to employ existing techniques for the communication between the
customers and users on the one side and developers on the other side. Among
such techniques, use cases [33] are a widespread approach that allow for cap-
turing the main interaction possibilities of users with the system at a high
abstraction level and thus facilitate the customer-developer communication.
Another well-known technique is rapid prototyping, which aims at develop-
ing software demonstrators with limited functionality very early to be able to
get feedback from the customers as soon as possible. As an alternative, also
agent-related requirements engineering techniques can be used. Examples es-
pecially include the goal-driven approaches i* [74] and KAOS [35], which do
not prescribe an agent-oriented implementation of the system, even though
the transition to agent systems is conceptually more straight-forward than to
traditional approaches.



28

Fig. 7 Requirements traceability (from [47])

One important requisite for tools from this phase consist in the traceabil-
ity of the produced application requirements, which means that the state
of a requirement can be described and can be traced from all development
phases. This traceability includes two di�erent aspects (cf. Figure 7). From
the viewpoint of a developer, traceability mainly refers to the later develop-
ment phases, whereby the components responsible for implementing require-
ments should be locatable (forward tracing) and also the other way around
the contribution of components to the requirements should be determinable
(backward tracing). Taking up the customer's perspective, it is of importance
that changed requirements are adequately communicated to the developers
(forward tracing) and also that user groups can be identi�ed, which are re-
sponsible for speci�c requirements (backward tracing). Requirements trace-
ability can be realized utilizing di�erent strategies (cf. [29]). One example are
cross-references between requirements and other artifacts, which need to be
explicitly speci�ed.

As tools in this phase need not to be agent-oriented, among many di�erent
traditional and agent-related tools can be chosen. Overviews of the di�erent
tools available in this phase can be e.g. found at the web.35 If use cases
shall be utilized, it is also possible to resort to standard UML case tools.36

As agent-related requirement tools facilitate an agent-oriented design and
implementation, in the following the Objectiver tool for KAOS will be shortly
presented.

The commercial Objectiver tool is developed by company Respect-IT.37

It supports a KAOS-based goal-driven requirements speci�cation, whereby a
goal is meant to describe what the system needs to achieve. Goals are de-
scribed in terms of so called patterns, which de�ne their behavior in temporal
logic. In many cases, standard patterns such as �achieve�, for making true a
speci�c world state (♦P ) or �maintain� for permanently preserving a state
(�P ) . The initial system goal de�nitions will subsequently be re�ned to a
goal hierarchy using �why� and �how� questions until the point is reached
that the subgoals on the lowest level can be clearly assigned to one of the

35 http://easyweb.easynet.co.uk/~iany/other/vendors.htm
http://www.volere.co.uk/tools.htm

36 http://www.objectsbydesign.com/tools/umltools_byCompany.html
37 http://www.objectiver.com/ http://www.objectiver.com/



29

Fig. 8 Objectiver tool

actors. In a second step, besides the goal view, also system responsibilities,
data objects and operations are considered and integrated to a holistic sys-
tem requirements speci�cation. In Figure 8 a screenshot of the Objectiver tool
is depicted. In the main area a goal hierarchy is shown, which decomposes
the top-level goal �emergency stop available� into several subgoals. Using the
form at the bottom left, various entity properties can be edited. An overview
of all di�erent diagrams is given via the tree structure above. The tool au-
tomatically ensures consistency between di�erent diagrams and can also test
the speci�cations for plausibility and completeness.

6.2 Design Phase

In the design phase graphical and textual speci�cations for di�erent aspects
of the system to be realized are described. In contrast to the requirements
analysis phase, agent concepts play an essential role in this stage of the devel-
opment process. Considering the system as a whole, organizational concepts
play an important role and can be used to describe the high-level structures
of the system. In this respect, e.g. the AGR-model has been conceived for
de�ning a system in terms of agents, groups, and roles. For the design of con-
crete system functionalities on the agent level, the internal agent architecture
concepts are of primary interest. For example, if intentional agents shall be
designed, BDI concepts such as beliefs, goals and plans could be utilized. Be-
sides these agent related concepts, for the description of speci�c aspects the



30

agent-based views can be complemented by standard modeling concepts. One
prominent area is the description of data model or conversation relationships,
which can e.g. be done by using standard UML class and sequence diagrams.

The most important requirement for design tools relates to their integra-
tion ability with earlier and later development phases. It should be possible
to systematically deal with already de�ned requirements and connect them
to the newly speci�ed design artifacts. Furthermore, the connection from the
typically graphical design phase to the following code-centric implementation
phase is of vital importance. This connection is di�cult to achieve, because
the often existing conceptual gap and additionally, the di�erent representa-
tion media (diagrams vs. code) have to be bridged adequately.

Existing tools for the design of agent systems mainly have two di�er-
ent origins. First, many agent-oriented tools exist that aim at supporting a
speci�c agent-oriented methodology such as PDT, TAOM4e or agentTool.
These kinds of tools have already been discussed in the context of modeling
tools (cf. Section 4) and will not be considered further here. Second, a few
dedicated agent-oriented modeling tools have been developed to support the
agent-oriented design approaches such as AUML and AML (agent modeling
notation)[66]. The main contribution of AUML consists in the de�nition of
a standard interaction diagram notation, which has in�uenced the UML 2.0
standard. Hence, traditional UML case tools can readily be used for modeling
agent interactions. AML is already conceived as an agent-speci�c extension
to UML 2.0 and extends it with agent concepts to also support the design
of such kinds of software systems. An overview of the new AML diagram is
given in Figure 9. In the following the LS/TS modeler, which can be used for
creating AML designs, will be presented in more detail.

Fig. 9 AML Diagrams (from [66])



31

The LS/TS Modeler is part of the commercial Living Systems Technology
Suite, which is distributed by Whitestein technologies. All new diagram types
of AML have been introduced as re�nements of existing diagram types using
the standardized UML extension mechanisms. This allows normal UML case
tools to be used for AML modeling when an AML UML pro�le for the tool
exists. So far, Whitestein has developed an UML pro�le for the Enterprise
Architect UML tool. The modeler supports all new kinds of AML diagrams,
which can be categorized into architectural, behavioral and communication
diagrams. Architecture diagrams are intended to describe a multi-agent sys-
tem as a whole, whereas behavioral diagrams relate to the internal agent
architecture and �nally communication diagrams re�ne protocol speci�ca-
tion facilities. As the tool is based on a standard UML tool it exhibits all
necessary modeling features. In addition, the modeler add-in mainly provides
code generation mechanism that can be used to create agent skeleton code
for the LS/TS platform.

6.3 Implementation Phase

The focus of the implementation phase is on code and corresponding editing
tasks. A major concern therefore is the agent-speci�c code, which depends on
the chosen agent architecture and platform. E.g. for a BDI-based platform,
the developer will have to write textual speci�cations of beliefs, goals, and
plans in the provided agent language, while for a platform supporting the task
model, the activities of an agent and their interrelations have to be coded
(e.g. in Java). Regardless of the internal agent architecture, also communica-
tion and integration aspects have to be implemented. This includes e.g. Java
classes or XML-Schema de�nitions for representing message content as well
as mapping information for persistent data. Often, for the communication
and integration issues, traditional implementation means (e.g. XML, JDBC)
can be used alternatively to possibly available agent-speci�c solutions.

Most important requirement for agent-oriented implementation tools is
the ability to deal with agent-speci�c code. In this respect, agent-oriented
tools should strive to o�er the same level of support that developers are used
to in the prevailing object-oriented world. Besides the primary tasks such as
creation and editing, therefore also the ancillary tasks should be adequately
supported. E.g. in object orientation, code metrics are available that allow
to check code consistency not only on the basis of a strict syntactical check,
but also provide indications in terms of good or bad design. Moreover, given
that some communication and integration issues can be realized using exist-
ing techniques, there should be tools, which provide the necessary �glue� to
seamlessly operate on the di�erent speci�cation means.



32

Primary tasks are captured by IDEs for speci�c agent languages. Adapt-
able editors, such as jEdit38 or extensible IDEs like eclipse can be used as a
basis for building such IDEs to support features like syntax checks and syn-
tax highlighting. For consistency checks, separately developed tools, such as
[60], can be implemented. Moreover, some existing object-oriented metrics or
style check programs allow additional metrics or inspections being added (e.g.
Eclipse Checkstyle39), which allows adding agent-speci�c consistency checks.
To provide the necessary glue between di�erent technologies, often plugins or
code generation templates can be used. E.g. the database mapping framework
Apache Cayenne40 supports custom code templates being used and therefore
can be adapted to agent-speci�c requirements and for the ontology editor
Protégé several plugins exist that aim at integrating ontology-based knowl-
edge representation with an agent platform. As one example of such a tool,
the Beanynizer plugin, which is part of the Jadex BDI agent framework [49],
will be shortly described.

The Beanynizer is a plugin to Protégé and allows generating Java classes
from an ontology modeled in Protégé. The output format is de�ned using
templates written in the Apache Velocity41 template language. Besides using
custom templates, the Beanynizer includes two ready to use template sets
� one for JADE ontology code and one for JavaBeans compliant code. For
the JADE template set, the modeled ontology has to be based on a standard
FIPA ontology, which includes common agent-related concepts like actions
and agent identi�ers. Generated classes can be used for developing JADE-
based agents communicating, e.g., via the FIPA-SL content representation
language. The JavaBeans templates generate platform independent pure Java
code, which can e.g. be processed by the Java XML de- and encoding facilities.

6.4 Testing Phase

The aim of the testing phase is to �nd and correct conceptual as well as tech-
nical implementation errors. As these errors are also called �bugs� a common
name for this activity in the development process is debugging. According
to Dassen and Sprinkhuizen-Kuyper [18] debugging mainly consists of three
subsequent steps: noticing the bug, localizing the bug and �nally �xing the
bug. To �nd possible bugs in a systematic way, often a testing approach is
chosen, which requires that important aspects are captured in test cases.
These test cases represent requirements that can be veri�ed against the cur-
rent implementation. The localization of bugs is still a manual skill that

38 http://www.jedit.org/
39 http://eclipse-cs.sourceforge.net/
40 http://cayenne.apache.org/
41 http://velocity.apache.org/



33

requires considerable e�ort, experience and creativity. It mainly requires the
programmer to inspect the source code in detail and possibly use a debugger
tool execute the program stepwise resp. stop it at speci�c breakpoints. As
errors may manifest themselves in unpredictable behavior their identi�cation
can be a very hard and complex task. Fixing the bug is not directly part of
the testing phase but requires a developer to step back to the implementation
phase or in case of conceptual problems even to the design phase and correct
the identi�ed artifacts. As can be seen from this description, additional arti-
facts in this phase are only constructed for specifying test cases. The other
activities fully operate on existing artifacts, especially on the code level.

Main requirements for tools of this phase consist in a conceptual and tech-
nical support for the detection and localization of bugs. For the systematic
detection of bugs tools should facilitate the implementation and automated
execution of test cases. This should include test cases for di�erent layers such
as unit tests for single functionalities, integration tests for larger components
and system tests for the validation of system requirements. In addition, it
is helpful if the test coverage, i.e. which system aspects are tested to what
degree, can be automatically calculated and presented to the developer. An
indication of possible bugs can also be produced by software metrics that try
to capture the quality of source code.

Tools supporting the testing phase have mainly been developed in the con-
text of object-oriented languages and are often directly integrated into IDEs.
In the area of multi-agent systems, only recently the testing topic has gained
some attention. Conceptually, multi-agent systems increase the complexity of
all activities in this phase, so that a direct transfer of existing solutions is not
easily possible. Testing and debugging on the level of the whole multi-agent
system entails all the di�culties involved in testing and debugging distributed
system (e.g. concurrency and lack of global state). Tools in this area focus on
the interactions, i.e. the messages passed between agents and allow monitor-
ing messages (e.g. JADE Sni�er) or testing compliance to speci�ed protocols
(e.g. [1]). To address the issues of debugging under consideration of the whole
development process, it is also researched how design artifacts can support
this phase [crossref chapter debugging from Winiko�]. Support for unit test-
ing at the level of single agents has been devised in the context of tool suites
for agent platforms such as JADE , Jadex and LS/TS . Furthermore, nearly
all existing agent platforms o�er (at least simple) debugging tools, which al-
low the stepwise execution of agents. In the following Jadex TestCenter tool
will be shortly described.

A screenshot of the Jadex TestCenter is shown in Figure 10. Its underlying
concepts are based on JUnit, i.e. it is possible to de�ne a set of test cases as
test suite (in form of a list at the top right area) and then execute this suite
automatically (control area below the list). Here, test agents containing an
arbitrary number of test cases can be directly added from the �le system view
(left area) to the list. The results of the test suite execution are summarized
as a colored bar, which is green in case all test cases have been successful and



34

Fig. 10 Jadex TestCenter

red in case at least one test failed. The detailed test results are displayed in a
form of a textual report (right bottom), which explains what the individual
test cases do, which ones have failed and a possible reason for that failure.

6.5 Deployment Phase

For object-oriented systems the tasks of the deployment phase are clearly
speci�ed and also well tool-supported. In this context, the Object Manage-
ment Group (OMG) has de�ned deployment as the activity between obtain-
ing and operating a software product. More concretely, in [40] the OMG has
speci�ed a general deployment process consisting of �ve subsequent steps. In
the �rst, so called installation step, the software is obtained and stored in
a local repository, which must not necessarily be the same location as the
destined execution location. In the following con�guration step, the software
is parametrized according to the intended use cases. Hereafter, a deployment
plan is devised in the planning step. This plan is then used in the preparation
step to install the desired components on the target platforms. In the �nal
launching step the application is started and hence put into operation, which
might require further con�guring activities at runtime.

Regarding agent-based systems this process is usually more �exible, be-
cause the constituents are not passive components, but active autonomous
entities [12]. Nonetheless, the aforementioned steps remain important for
multi-agent systems as well. In the installation step the execution infrastruc-
ture for the agents, i.e. the agent platform and also the application speci�c



35

components, e.g. consisting of agent code as well as standard libraries, have
to be available. This may not necessarily mean that the application code
has to be obtained completely in beforehand. Possibly agent code could also
be downloaded on demand at runtime. The functional con�guration of the
application can be done by de�ning the number and kinds of agents that
should be initially started and by setting their initial parameters to appro-
priate values. The planning and preparation steps mainly need to take into
account at which hosts which infrastructure should be accessible and which
agents should be located. In case of mobile agents, the distribution of agents
at the di�erent nodes could also be adjusted at runtime, e.g. with respect to
non-functional aspects like load balancing. Starting an agent application is
quite di�erent from launching a component-based software, because there is
no single centralized starting point. Instead a set of (possibly independent or
interrelated) actors need to be created in a meaningful way. Hence, in order
to specify agent applications it should be abstracted away from single agents
and some form of application descriptors should be made available.

Artifacts of the deployment phase are therefore mainly these application
and agent descriptors. Tools of this phase have the tasks of supporting the
creation and processing of such descriptors, whereby the creation can be
associated with the con�guration and the processing with the launching step.
In addition, deployment tools can also be extended in direction of runtime
monitoring facilities.

Tool-based deployment support for agent applications is rather limited
today. It has mainly been considered technically in the context of agent plat-
forms and several similar ad-hoc solutions have been provided so far. E.g.
in Agent Academy [37], AgentFactory [15], Jason [10], simple application
descriptors have been introduced, which at least enable a de�nition of the
parametrized agent instances to start. With the LS/TS Developer also a tool
exists, which simpli�es the speci�cation of agent applications in a similar
way to J2EE deployment descriptors. It can be used to deploy the tool gen-
erated application in the agent platform automatically. Similarly, approaches
like BlueJADE [17] and jademx42 try to make agent platforms administrable
similar to J2EE server environments, but do not consider the assembly of
agent applications. In the following, the ASCML tool, conceived speci�cally
for the deployment of agent applications, will be described.

The ASCML (Agent Society Con�guration Manager and Launcher) is
based on a generic deployment reference model for agent applications (cf.
Figure 11) [12]. This reference model assumes that agent applications (here
called societies) are controlled by dedicated manager (ASCML) agents. These
agents have the responsibilities to start, supervise, and possible recon�gure
the controlled societies. The concept of agent society here is recursively de-
�ned, meaning that it can be composed of a hierarchy of agent instances or
sub societies possibly distributed across di�erent network nodes. The AS-

42 http://jademx.sourceforge.net



36 Agent Platform A Agent Platform B

Society I Society II
ASCMLAgent ASCMLAgent

Agent 2Agent 1 Agent 4Agent 3
Fig. 11 ASCML refernce model (from [12])

CML tool allows de�ning agent applications in the form of society and agent
descriptors, which are interpreted by the tool at runtime and lead to the
instantiation of the speci�ed software runtime con�guration. It extends the
basic facilities by constraint expressions, which can be used to state, in which
cases the application needs to recon�gured, e.g. by restarting speci�c agents
given that a necessary service is not available any longer.

7 Evaluation

The preceding sections have shown that numerous agent-oriented tools have
been developed. Besides the phase-speci�c tools, which only address tasks of
one development phase, mainly modeling tools and IDEs have been identi-
�ed as important tool categories. In this section a coarse evaluation of these
modeling tools and IDEs will be presented.43 The main objective of this
evaluation is an assessment of the state of the art of agent-oriented tools in
order to highlight the strengths and weaknesses of the current tool landscape.
The evaluation is based on the generic task requirements within the di�erent
phases of a development process (cf. Section 2.2). Each of the 10 modeling
tools and 11 IDEs have been analyzed with respect to the identi�ed tasks
of the corresponding phases, i.e. modeling tools have been evaluated against
task requirements from the analysis and design phase whereas IDEs have
been tested against the task requirements from the implementation, testing
and deployment phases. Cross-cutting activities like repository management
and development coordination are not agent-speci�c and have not been eval-
uated. With regard to those cross-cutting tasks established tool support can
be reused, e.g. the CVS (Concurrent Versions System) can be employed for

43 The phase-speci�c tools have been excluded from the evaluation due to the low number
of representatives in each phase.



37

version management. In case that agent-oriented tools build on established
object oriented IDEs like eclipse, orthogonal support for those features is
directly available via plugins for the IDEs. The aggregated results of the
evaluation, which intentionally abstract away from the concrete tool repre-
sentatives, are depicted in Figure 12. It is shown how many tools of each
category (modeling tools vs. IDEs) support a given task.

Fig. 12 Tool evaluation

Looking at the modeling tools, it can be seen that, in general, stronger sup-
port exists for tasks of the design phase, whereas only a few tools tackle tasks
from the preceding requirements phase. The basic features for creating and
editing requirements artifacts is supported by 5 of 10 tools. Further primary
tasks are rarely supported in the requirements phase, i.e. only one represen-
tative handles the initial elicitation of requirements and consistency checking
of requirements artifacts. Regarding the ancillary tasks, also only marginal
tool support could be revealed. Two representatives allow the generation of
design artifacts and one representative tackles cross-checking with generated
artifacts. None of the tools addressed refactoring aspects. A similar support
structure can be identi�ed also at the design phase. Creating and editing of
design artifacts is available by nearly all tools (8/10) and also the consistency
checking of artifacts is supported by nearly half of the tools (4/10). When
looking at the ancillary tasks, it can be seen that 5/10 tools include forward
engineering features. Though, in most cases, only simple code generation fa-
cilities are available, which can produce initial code skeletons from design
artifacts. Advanced features like reverse or round-trip engineering have not



38

been introduced in any tool. Cross-checking and refactoring have not been
addressed at all.

An agent-oriented IDE would ideally support all tasks from the imple-
mentation, testing and deployment phases. Among the IDEs, nearly all rep-
resentatives (10 of 11) o�er functionality for creating/editing implementation
artifacts (i.e. agent code) as well as debugging running agent applications (i.e.
the performing task in the testing phase). This reveals that tool developers
consider programming and debugging agents as the most important tasks of
agent developers. On the other hand, the systematic creation of repeatable
test cases is only supported by 2 representatives. A considerable amount of
support is also available in the deployment phase, for the creation of deploy-
ment descriptors (7/11) as well as actually deploying agents to an existing
infrastructure (5/11). The fact that deployment features are considered im-
portant by tool developers reinforces the signi�cance of agents as a technology
for distributed computing. Among the primary tasks, consistency checking
is the least supported. Only 2 representatives o�er some consistency analy-
sis features for agent programs. Ancillary tasks are also seldom supported.
In the implementation phase, only four tools o�er code generation features,
two support refactoring and one tool allows the generation of documenta-
tion. In the testing and deployment phases, ancillary features are mostly not
addressed at all. Only one tool o�ers the forward generation of deployment
descriptors from agent models.

Summing up this coarse evaluation of the state of tool support for agent-
oriented development it can be noted that at least for the important tasks
considerable support is available by most current development tools. This
means the the most common development tasks are adequately supported
by tools, regardless which speci�c agent language or methodology is chosen
by the developer. On the other hand, no single tool is able to support all
tasks. Especially in the area of the (probably less important) ancillary tasks,
agent-oriented tools have considerable potential for improvement. As an ex-
ample: even the most powerful agent-oriented IDEs only support at most 7
of possible 20 tasks in the implementation, testing and design phases. For
comparison, a short analysis of state-of-the-art OO IDEs, such as eclipse or
IntelliJ IDEA, indicates that these support up to 12-15 tasks out of the box
and even more when using additional plugins. One notable feature in this area
is refactoring, which becomes more and more important, the larger the de-
veloped applications grow. Therefore, improving agent-oriented tool support
in this direction could be crucial for adequately supporting larger software
projects.



39

8 Conclusion

This chapter has the purpose the give a systematic overview about the exist-
ing agent-oriented development tool landscape. Therefore, �rst the tasks of
sofware development tools have been collected and categorized along the two
dimensions: development phases and task importance. It has been identi�ed
as crucial that tools of all phases should enable the creation and editing as
well as consistency checking of development artifacts. In addition, it is helpful
when tools also cope with ancillary tasks like cross-checking, forward/reverse
engineering and refactoring and also crosscutting tasks like repository man-
agement. Based on the existing surveys three major categories of tools have
been identi�ed: modeling tools, IDEs and phase-speci�c tools. For each of
the categories the speci�c requirements have been described, an overview of
existing tools has been given and �nally one speci�c representative has been
selected and described in greater detail.

The evaluation of the current agent tool landscape allows some general
observations to be made. First, all development phases and all tasks are to
some extent tool-supported, meaning that a variety of di�erent tools are avail-
able for all possible use cases. Nonetheless, most of these tools su�er from
the strong heterogeneity of the multi-agent systems �eld. This heterogeneity
often leads to very speci�c approaches suitable only for one speci�c agent
approach, e.g. a design tool for BDI agents only. Furthermore, the number
of available tools is quite low compared to mainstream object-oriented solu-
tions. In order to further improve the overall tool support it is necessary that
at least the following future trends emerge. First, a general agreement on
core concepts and a consolidation of the agent platforms would help concen-
trating on successful development branches. Second, tool support is generally
dependent on the industry uptake of agent technology as a whole, because
research institutions normally do not have enough resources for providing
industry-grade tools, which typically demand high investments in terms of
man-month of work (cf. the e�orts for building an object-oriented IDE like
eclipse).

The survey reveals that tool-support of agent technology is still a bit
behind the currently available support in the predominant object-oriented
paradigm. Nevertheless, the recent years have shown signi�cant improvements
in this respect. The analysis of the AgentLink directory highlights that some
convergence has already happened in the area of agent platforms. The in-
creasing maturity of agent platforms allows development e�orts to also focus
on secondary items like tool support. Moreover, agent-oriented tool support
also pro�ts from the fact that object-oriented tools have become more and
more �exible and therefore many agent tools are not built from scratch but
instead adapt existing object-oriented tools to agent-speci�c requirements.
One reason for object-oriented tools becoming more �exible can be seen in
the desire of supporting other post object-oriented technologies like model-
driven development and web services. These technologies shift the focus to



40

abstract modeling or the interaction of system components. Therefore, these
technologies are conceptually much closer to the agent paradigm, which may
foster an integration and convergence with agent concepts and tools in the
future.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance
Veri�cation of Agent Interaction: a Logic-Based Tool. In: R. Trappl (ed.) Proceeding
of the 7th European Meeting on Cybernetics and Systems Research, Track AT2AI-4:
From Agent Theory to Agent Implementation (AT2AI 2004), pp. 570�575. Austrian
Society for Cybernetic Studies (2004)

2. Bartsch, K., Robey, M., Ivins, J., Lam, C.: Consistency checking between use case
scenarios and uml sequence diagrams. In: M. Hamza (ed.) Proceedings of the IASTED
International Conference on Software Engineering (SE 2004), pp. 92�103. ACTA Press
(2004)

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - A Java Agent Development
Framework. In: R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-
Agent Programming: Languages, Platforms and Applications, pp. 125�147. Springer
(2005)

4. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons (2007)

5. Bitting, E., Carter, J., Ghorbani, A.: Multiagent system development kits: An evalu-
ation. In: In Proceedings of the 1st Annual Conference on Communication Networks
and Services Research (CNSR 2003), pp. 80�92. CNSR Project (2003)

6. Boehm, B.W.: A spiral model of software development and enhancement. IEEE En-
gineering Management Review 23 4, 69�81 (1995)

7. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for uml. In: M. Aksit,
M. Mezini, R. Unland (eds.) Proceedings of the 4th International Conference on Ob-
jects, Components, Architectures, Services, and Applications for a Networked World
(Net.ObjectDays 2002), pp. 366�377. Springer (2003)

8. Bordini, R., Braubach, L., Dastani, M., El Fallah Seghrouchni, A., Gomez-Sanz, J.,
Leite, J., O�Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and
platforms for multi-agent systems. Informatica 30, 33�44 (2006)

9. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer (2005)

10. Bordini, R., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-Oriented
Programming. In: R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.)
Multi-Agent Programming: Languages, Platforms and Applications, pp. 3�37. Springer
(2005)

11. Braubach, L.: Architekturen und Methoden zur Entwicklung verteilter agentenorien-
tierter Softwaresysteme. Ph.D. thesis, Universität Hamburg (2007)

12. Braubach, L., Pokahr, A., Bade, D., Krempels, K.H., Lamersdorf, W.: Deployment of
Distributed Multi-Agent Systems. In: M.P. Gleizes, A. Omicini, F. Zambonelli (eds.)
Proceedings of the 5th International Workshop on Engineering Societies in the Agents
World (ESAW 2004), pp. 261�276. Springer (2005)

13. Braubach, L., Pokahr, A., Lamersdorf, W.: Tools and Standards. In: S. Kirn, O. Herzog,
P. Lockemann, O. Spaniol (eds.) Multiagent Systems. Intelligent Applications and
Flexible Solutions, pp. 503�530. Springer (2006)

14. Braubach, L., Pokahr, A., Lamersdorf, W.: A universal criteria catalog for evaluation
of heterogeneous agent development artifacts. International Journal of Agent-Oriented
Software Engineering (IJAOSE) (2009). To appear



41

15. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. Ph.D. thesis, University College Dublin (2001)

16. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:
B. Henderson-Sellers, P. Giorgini (eds.) Agent-Oriented Methodologies, pp. 79�106.
Idea group publishing (2005)

17. Cowan, D., Griss, M., Burg, B.: Bluejade - A service for managing software agents.
Tech. Rep. HPL-2001-296R1, Hewlett Packard Laboratories (2002)

18. Dassen, J., Sprinkhuizen-Kuyper, I.: Debugging c and c++ code in a unix environment.
The Object Oriented Programming Web (OOPWeb.com) (1999)

19. Dastani, M.: 2apl: a practical agent programming language. International Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS), Special Issue on Compu-
tational Logic-based Agents 16(3), 214�248

20. DeLoach, S., Wood, M., Sparkman, C.: Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering 11(3), 231�258 (2001)

21. Dix, J., Zhang, Y.: IMPACT: Multi-Agent Framework with Declarative Semantics. In:
R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent Program-
ming: Languages, Platforms and Applications, pp. 69�94. Springer (2005)

22. Dröschel, W., Wiemers, M.: Das V-Modell 97 - Der Standard für die Entwicklung von
IT-Systemen mit Anleitung für den Praxiseinsatz. Oldenbourg (1999)

23. Eiter, T., Mascardi, V.: Comparing environments for developing software agents. The
European Journal on Arti�cial Intelligence (AI Communications) pp. 169�197 (2002)

24. Fonseca, S.P., Griss, M.L., Letsinger, R.: Agent behavior architectures - A MAS frame-
work comparison. Tech. Rep. HPL-2001-332, Hewlett Packard Laboratories (2002)

25. Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: Agent-based
telematic services and telecom applications. Commun. ACM 44(4), 43�48 (2001).
DOI http://doi.acm.org/10.1145/367211.367251

26. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology. In:
F. Bergenti, M.P. Gleizes, F. Zambonelli (eds.) Methodologies and Software Engineer-
ing For Agent Systems, pp. 89�106. Kluwer Academic Publishers (2004)

27. Gomez-Sanz, J., Pavon, J.: Agent oriented software engineering with ingenias. In:
3rd International Central and Eastern European Conference on Multi-Agent Systems
(CEEMAS 2003), pp. 394�403. Springer Verlag (2003)

28. Gorodetsky, V., Karsaev, O., Samoylov, V., Konushy, V., Mankov, E., Malyshev, A.:
Multi Agent System Development Kit. In: R. Unland, M. Calisti, M. Klusch (eds.)
Software Agent-Based Applications, Platforms and Development Kits, pp. 143�168.
Birkhäuser (2005)

29. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem. In:
Proceedings of the 1st International Conference on Requirements Engineering (ICRE
1994), pp. 94�101. IEEE (1994)

30. Grundy, J., Hosking, J.: Software tools. In: J. Marcin (ed.) The Software Engineering
Encyclopedia. Wiley (2001)

31. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea group
publishing (2005)

32. International Organization for Standadization (ISO): Ergonomics ofHuman-
System Interaction-Part 110:DialoguePrinciples, ISO9241-110:2006 edn. (2006)

33. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley (1992)

34. Laird, J., Rosenbloom, P.: The evolution of the Soar cognitive architecture. In:
D. Steier, T. Mitchell (eds.) Mind Matters: A Tribute to Allen Newell, pp. 1�50.
Lawrence Erlbaum Associates (1996)

35. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings of the 9th International Joint Conference on Requirements Engineering
(RE 2001), pp. 249�263. IEEE Press (2001)



42

36. Mangina, E.: Review of Software Products for Multi-Agent Systems. Tech.
rep., AgentLink (2002). URL http://www.agentlink.org/resources/
software-report.html

37. Mitkas, P.A., Kehagias, D., Symeonidis, A.L., Athanasiadis, I.N.: A framework for
constructing multi-agent applications and training intelligent agents. In: P. Giorgini,
J. Müller, J. Odell (eds.) Proceedings of the 4th International Workshop on Agent-
Oriented Software Engineering IV (AOSE 2003), pp. 96�109. Springer (2003)

38. Morley, D., Myers, K.: The spark agent framework. In: Proceedings of the 3rd Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), pp. 714�721. IEEE Computer Society (2004)

39. Nwana, H., Ndumu, D., Lee, L., Collis, J.: Zeus: a toolkit and approach for building
distributed multi-agent systems. In: Proceedings of the 3rd annual conference on
Autonomous Agents (AGENTS 1999), pp. 360�361. ACM Press (1999)

40. Object Management Group (OMG): Deployment and Con�guration of Component-
based Distributed Applications Speci�cation, version 4.0 edn. (2003). URL http:
//www.omg.org/cgi-bin/doc?formal/06-04-02

41. Object Management Group (OMG): Uni�ed Modeling Language: Superstructure,
version 2.0 edn. (2005). URL http://www.omg.org/cgi-bin/doc?formal/
05-07-04

42. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. In: G. Wagner,
Y. Lesperance, E. Yu (eds.) Proceedings of the 2nd International Bi-Conference Work-
shop Agent-Oriented Information Systems Workshop (AOIS@AAAI 2000), pp. 3�17
(2000)

43. Padgham, L., Thangarajah, J., Winiko�, M.: Tool support for agent development using
the prometheus methodology. In: Proceedings of the 5th International Conference on
Quality Software (QSIC 2005), pp. 383�388. IEEE Computer Society (2005)

44. Padgham, L., Thangarajah, J., Winiko�, M.: The prometheus design tool ? a confer-
ence management system case study. In: M. Luck, L. Padgham (eds.) Agent Oriented
Software Engineering VIII, LNCS, vol. 4951, pp. 197�211. Springer (2008). 8th Inter-
national Workshop, AOSE 2007, Honolulu, HI, USA, May 14, 2007, Revised Selected
Papers

45. Padgham, L., Winiko�, M.: Developing Intelligent Agent Systems: A Practical Guide.
John Wiley & Sons (2004)

46. Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with ingenias. In:
V. Marík, J. Müller, M. Pechoucek (eds.) Multi-Agent Systems and Applications III,
3rd International Central and Eastern European Conference on Multi-Agent Systems,
(CEEMAS 2003), pp. 394�403. Springer (2003)

47. Pokahr, A.: Programmiersprachen und Werkzeuge zur Entwicklung verteilter agen-
tenorientierter Softwaresysteme. Ph.D. thesis, Universität Hamburg (2007)

48. Pokahr, A., Braubach, L., Lamersdorf, W.: Agenten: Technologie für den mainstream?
In: it - Information Technology, pp. 300�307. Oldenbourg Verlag (2005)

49. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent Program-
ming: Languages, Platforms and Applications, pp. 149�174. Springer (2005)

50. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In: W.V. de Velde, J. Perram (eds.) Proceedings of the 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW 1996), pp. 42�55.
Springer (1996)

51. Rausch, A.: Componentware - Methodik des evolutionären Architekturentwurfs. Her-
bert Utz Verlag (2004)

52. Rausch, A., Broy, M., Bergner, K.: Das V-Modell XT. Grundlagen, Methodik und
Anwendungen. Springer (2006)

53. Reticular Systems: AgentBuilder User's Guide, version 1.3 edn. (2000). http://www.
agentbuilder.com/



43

54. Rimassa, G., Greenwood, D., Kernland, M.E.: The Living Systems Technology Suite:
An Autonomous Middleware for Autonomic Computing. In: In Proceedings of the
International Conference on Autonomic and Autonomous Systems (ICAS 2006) (2006)

55. Robbins, J., Hilbert, D., Redmiles, D.: Software architecture critics in argo. In: Pro-
ceedings of the 3rd international conference on Intelligent user interfaces (IUI 1998),
pp. 141�144. ACM Press (1998)

56. Serenko, A., Detlor, B.: Agent Toolkits: A General Overview of the Market and an
Assessment of Instructor Satisfaction with Utilizing Toolkits in the Classroom. Tech.
Rep. Working Paper #455, Michael G. DeGroote School of Business, McMaster Uni-
versity (2002)

57. Shoham, Y.: Agent-oriented programming. Arti�cial Intelligence 60(1), 51�92 (1993)
58. Sturm, A., Shehory, O.: A Comparative Evaluation of Agent-Oriented Methodologies.

In: F. Bergenti, M.P. Gleizes, F. Zambonelli (eds.) Methodologies and Software Engi-
neering For Agent Systems, pp. 127�149. Kluwer Academic Publishers (2004)

59. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies.
In: P. Giorgini, B. Henderson-Sellers, M. Winiko� (eds.) Agent-Oriented Information
Systems (AOIS 2003), pp. 94�109. Springer (2004)

60. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of bdi
agents. In: Proceedings of the 4th International Workshop on Programming Multia-
gent Systems: languages, frameworks, techniques and tools (ProMAS 2006). Springer
(2006). (to appear)

61. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.M.: Refactoring uml models. In:
M. Gogolla, C. Kobryn (eds.) The Uni�ed Modeling Language, Modeling Languages,
Concepts, and Tools (UML 2001), pp. 134�148. Springer (2001)

62. Szekely, P.: Retrospective and challenges for model-based interface development. In:
F. Bodart, J. Vanderdonckt (eds.) Design, Speci�cation and Veri�cation of Interactive
Systems (DSV-IS 1996), pp. 1�27. Springer (1996)

63. Thangarajah, J., Padgham, L., M.Winiko�: Prometheus design tool. In: F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. Singh, M. Wooldridge (eds.) 4rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
pp. 127�128. ACM (2005)

64. Tryllian Solutions B.V: The Developer's Guide, release 3.0 edn. (2005). URL http:
//www.tryllian.com

65. Unland, R., Calisti, M., Klusch, M.: Software Agent-Based Applications, Platforms
and Development Kits. Birkhäuser (2005)

66. Whitestein Technologies: Agent Modeling Language, Language Speci�cation, Version
0.9 edn. (2004)

67. Whitestein Technologies: Agent-Oriented Development Methodology for LS/TS, A
Comprehensive Overview, LS/TS Release 2.0.0 edn. (2006)

68. Whitestein Technologies: Core Agent Layer Concept, LS/TS Release 2.0.0 edn. (2006)
69. Whitestein Technologies: Message Dispatching Agent Logic Concept, LS/TS Release

2.0.0 edn. (2006)
70. Whitestein Technologies: Multi-Agent Reasoning based on Goal-oriented Execution,

LS/TS Release 2.0.0 edn. (2006)
71. Winiko�, M.: JACK Intelligent Agents: An Industrial Strength Platform. In: R. Bor-

dini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent Programming:
Languages, Platforms and Applications, pp. 175�193. Springer (2005)

72. Winiko�, M., Padgham, L.: The Prometheus Methodology. In: F. Bergenti, M.P.
Gleizes, F. Zambonelli (eds.) Methodologies and Software Engineering For Agent Sys-
tems, pp. 217�234. Kluwer Academic Publishers (2004)

73. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3), 285�312
(2000)



44

74. Yu, E.: Towards modelling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE 1997), pp. 226�235. IEEE Press (1997)



Index 45

Index

Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the de�nition; numbers in roman
refer to the pages where the entry is used.

2APL, 16, 23

ADEM, 16
ADK, 10
Agent Academy, 35
Agent oriented IDEs, 22

agent platforms, 11
AgentFactory, 23, 35
AgentLink, 10
agentTool, 30
AML, 31
AOP, 16, 23
ASCML, 35
AUML, 14, 30

BDI, 23

criteria catalog, 2

debugging, 32

deployment phase, 34

design phase, 29

development process, 2
development tasks, 3, 7

eclipse, 20, 32, 38

GAIA, 14

i*, 17, 27
IDEs, 2, 20, 32, 36
IMPACT, 10, 23
implementation phase, 31

INGENIAS, 16
integration, 8

control, 8

data, 8
process, 8

IntelliJ IDEA, 20, 38

JACK, 10, 16, 19, 23
JADE, 10, 17, 33
Jadex, 33
Jason, 23, 35
jEdit, 32
JIAC, 23

KAOS, 17, 27

LS/TS, 33
LS/TS Developer,

23, 24, 35
LS/TS Modeler, 16, 24, 31

MASE, 17
methodology, 2, 14
modeling tools, 36

NetBeans, 20

PASSI, 17
PDT, 16, 17, 30
phase model, 2
Prometheus, 16
Protégé, 32

requirements anal-
ysis phase, 27

SOAR, 17
SPARK, 23

TAOM4e, 17, 30

tasks, 3
ancillary tasks, 5
consistency

checking, 6
coordination, 7
creation and

editing, 6
cross-checking, 6
crosscutting tasks, 5
forward en-

gineering, 6
primary tasks, 5
refactoring, 6
repository man-

agement, 7
reverse engineering, 6

testing phase, 32

tool evaluation, 36
tool survey, 2
tools, 1

agent oriented, 9
debugging tools, 7
design tools, 7, 11
IDEs, 7, 11
modelling tools, 13
software tools, 7
testing tools, 7
development tools, 2

traceability, 28

UMBC Agent Web, 11
UML, 30, 31

V-model, 4

ZEUS, 10


