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ABSTRACT
The data quality dimension completeness quantifies the ex-
tent to which information on a real-world application is rep-
resented in a database. The intensional completeness mea-
sure density can be considered at different levels of gran-
ularity. With respect to attribute values, current density
metrics are undefined for values which represent partial in-
formation. Thus, for data models using such concepts these
metrics are not suitable and a representative measuring of
completeness is not possible. In order to correct this flaw,
we redefine the metrics of density at the attribute value level
w.r.t. partial information which can be represented by clas-
sical subsets of the corresponding attribute domains. Since
these redefinitions enable a more accurate and more exact
quality measuring of data values, quality based activities
and decisions can be more effective in the future.

1. INTRODUCTION
In the relational data model only the null value null is

available for modeling incomplete information. As a con-
sequence, current metrics of data completeness w.r.t. at-
tribute values consider only two cases: A data value rep-
resents complete information on an existing real-world phe-
nomenon (specified value) or not (null). In real-life appli-
cations incomplete information on object properties (for ex-
ample the age of a person) is not so rare and can appear
in different degrees. For a lossless storing of partial infor-
mation more powerful representation concepts than a single
null value are required. Therefore, in the last two decades,
several extensions of the relational data model have been
proposed: fuzzy models ([11] et al.), probabilistic models ([2]
et al.) and models based on other concepts ([3], [6], [9] et
al.). In order to measure the increased completeness which
can be achieved from using one of these models, current
completeness metrics have to be adapted to attribute values
representing any degree of information (partial or complete).

In general, we distinguish between information on the ex-
istence and information on the occurrence of an object prop-
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erty1. While existence can be either known or unknown,
information on occurrence has a larger range. The goal of
this paper is to adapt completeness metrics to attribute val-
ues which represent partial information on existence and/or
occurrence. With respect to partial information on occur-
rences, we focus on such information that can be represented
by a classical subset of the corresponding attribute domain
(also known as disjunctive- or OR-set ([5], [6])). Treatments
for concepts of possibility and probability distributions will
be subjects in future work.

In order to demonstrate the necessity of the metrics de-
fined in this paper, we consider a sample database storing
personal data. During data storage, the age of a person John
Doe is only partially known (between 25 and 30 years). In a
relational database, this information can only be stored by
the tuple t1=(John,Doe,null). In contrast, by using one of
the extended models a lossless storing of the partial informa-
tion is possible (t2=(John,Doe,[25,30])). It is obvious that
the attribute value t2.Age represents more information than
t1.Age and hence is more complete. However, t2.Age con-
tains less information than the specified value t3.Age of the
tuple t3=(John,Doe,28). Thus, the completeness of t2.Age
has to be between the completeness of t1.Age and the com-
pleteness of t3.Age. As a consequence, special metrics for
measuring completeness of values representing partial infor-
mation are required.

We think, besides completeness measuring in the context
of quality assessment or quality improvement activities, the
redefined metrics can be used in different application ar-
eas. For instance, in order to quantify the information loss
resulting from a data anonymization. This in turn helps to
balance between the two contrary goals de-identification and
practical usefulness of the anonymized data.

The paper is structured as follows: Section 2 examines
related work and presents current metrics of data complete-
ness especially of data density. In Section 3 the different
degrees of information which can be available on an object
property are analyzed and classified into six representing
information classes. In Section 4 we define new density
metrics for attribute values representing information of the
previously defined classes w.r.t. four different kinds of at-
tribute domains: countable and finite (e.g. the color of a
car), countable and indefinite (e.g. the age of a car), un-
countable and bounded (e.g. the fulness of the petrol tank
in percentage) and last but not least uncountable and un-
bounded (e.g. the mileage of a car). In order to demonstrate

1The occurrence is the value of an existing object property
(e.g. the occurrence of ’QDB 2009’s venue’ is ’Lyon’).



the newly defined metrics we present an example of calcu-
lating densities in Section 5. Usually attribute domains do
not exactly represent the scope of the corresponding object
property (e.g. no car is driven a million miles). Thus, be-
sides simple metadata (e.g. the attributes’ domains them-
selves) additional information on the corresponding applica-
tion domain can be used to increase the significance of the
resulting completeness values. Two kinds of such informa-
tion, namely domain restricting knowledge and probability
distributions on attribute domains, are shortly discussed in
Section 6. A final conclusion summarizes the paper and
gives an outlook on future work.

2. RELATED WORK
Metrics of data completeness are considered in different

works (Scannapieco ([10]), Naumann ([8]), Motro ([7]) et
al.), but none of them regard the existence of partial infor-
mation at the level of attribute values.

Naumann defines completeness from an extensional (data
coverage) and an intensional (data density) point of view.
While the coverage of a relation is the ratio of all stored to
all actually existing entities of the modeled entity type, data
density is the completeness of the stored entities and can be
considered at different granularities (e.g. relation, tuple and
attribute value).

Since only the intensional completeness is affected by the
capability of representing partial information in attribute
values, in the following we exclusively relate to the inten-
sional completeness measure density. In the relational data
model an attribute value is either a single element of the
corresponding domain (specified value) or the null value null
which represents the case that no information is available.
Consequently, the density of an attribute value is either 1
(specified value) or 0 (null). The density of a tuple or a re-
lation is the average density of its attribute values or tuples
respectively. In order to adjust completeness on individual
application domains, for tuple density each attribute A can
be rated by a weight-value wA ∈ [0, 1]. Given a single rela-
tion R = (A1, ..., An) the density of a tuple t ∈ R and the
density of R are defined as follows:

d(t) =

∑
i=[1,n] wAid(t.Ai)∑

i=[1,n] wAi

(1) d(R) =

∑
t∈R d(t)

|R| (2)

With respect to partial information the density of an at-
tribute value has to be defined as a value in the range [0, 1]
instead only 0 or 1. The densities of tuples and relations
can be calculated as usual.

3. INFORMATION CLASSIFICATION
In general, information on an object property can be di-

vided into two categories which can be considered indepen-
dently to a large extent: Information on the existence (IE)
and information on the occurrence (IO) of this property.
The existence of a property is either known or not. Thus
information of this kind can be separated into two classes.
In contrast, information on occurrence cannot be catego-
rized in discrete classes, but is within a continuous range
between the total ignorance (no information on the occur-
rence is available) and the total knowledge (the occurrence
is exactly known). The whole spectrum of information is
shown in Figure 1.
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Figure 1: spectrum of information

If we divide the continuous range of occurrence informa-
tion into three areas, two for the extremes totally unknown
and totally known and one for the range between them (par-
tially known), six combinations of information on existence
and information on occurrence (in the following denoted as
information classes) are possible:

1. no information: Since neither information on existence
nor information on occurrence is available, this class
represents total ignorance.

2. no existence but partial occurrence information: Some-
times, it is not known if an object property exists or
not, but if the property is existent, some partial infor-
mation on its occurrence is available. For example, it
is unknown if John has a phone, but his adress (Ham-
burg) is well known. Thus, if he has a phone at least
the dialing code (040) of the phone number is known.

3. no existence but complete occurrence information: As
for the elements of class 2, it is not known whether the
corresponding property is applicable for the considered
object or not. However if it is applicable, than its
occurrence information is well known (see the example
of the driver license in Section 5).

4. existence but no occurrence information: In many cases,
it is known, that an object property exists, but its oc-
currence is totally unknown (e.g. the unknown age of
a person).

5. existence and partial occurrence information: The mem-
bers of this class contain the information that the ob-
ject property exists, but on its occurrence only partial
information is available (e.g. the age of a person is
known to be between 20 and 30 years).

6. all information: In this case, all information (existence
as well as occurrence) is known. This applies, if either
it is known that the property exists and exact infor-
mation on its occurrence is available (e.g. the age of
a person is exactly known as 25 years) or it is known
that the property does not exist (e.g. a person has no
driver license). In the latter case, it is obvious that no
occurrence exists, too.

Since information on existence and information on occur-
rence cannot be compared without any measure, this set
of classes is only partial ordered (see the Hasse diagram in
Figure 2).
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Figure 2: Hasse diagram of information classes 1-6

In order to represent the different kinds of partial infor-
mation in some works null values ([1], [3] et al.) are used.
In general, if we neglect reasons for information absences all
kinds of null values which are defined in previous works can
be assigned to one of these information classes (e.g. since
from the null value ”not allowed to be read” no informa-
tion can be derived, this null value has to be assigned to
information class 1).

4. DENSITY OF ATTRIBUTE VALUES
As pointed out in the previous section, we distinguish in-

formation on existence and information on occurrence. As
a logical consequence an attribute value’s density can also
be decomposed into two parts, one density for the existence
information (dE) and one density for the occurrence infor-
mation (dO).

Since the relative importance of existence information com-
pared to occurrence information depends on the correspond-
ing application domain, the two weight values wE ∈ [0, 1]
and wO = 1 − wE are introduced and can be variably de-
fined for the individual attributes. For example, since every
person has an age, for the attribute Age the existence in-
formation is implicated by the attribute’s semantics and the
existence is weighted by wE = 0. In some domains, nonex-
istence can be modeled by a single domain element (e.g. no
salary is represented by the value 0). In this cases, a separate
consideration of existence information is needless and can
be avoided by setting wE = 0. Furthermore, for the middle
name of a person information on existence is relative worth-
less without any information on occurrence. Consequently,
for the corresponding attribute a weight-value wO >> wE

has to be chosen. In contrast, w.r.t. the driver license, often
it is more important to know, if an employee is allowed to
drive a car than the information on what kind of car he is
allowed to drive (wE >> wO).

In general, the introduction of these two weight-values
enables an application domain depending ordering of the six
information classes proposed in the last section. Hereafter,
the density of an attribute value v is defined as:

d(v) = wE · dE(v) + wO · dO(v) (3)

4.1 Density of Existence Information
The density dE quantifies whether the value contains in-

formation on the existence of the corresponding object prop-
erty or not. Since the existence of a property can either be
known or unknown, the density dE can only be 1 (if exis-
tence is known) or 0 (if not). The first case concerns the
information classes 4-6 and the second one the classes 1-3.

dE(v) =

{
1 existence information is available

0 else

4.2 Density of Occurrence Information
The density dO quantifies to what extent the value con-

tains information on the occurrence of the corresponding
object property. As already mentioned, in contrast to the
bivalent existence information, the occurrence information
is within the continuous range between the two extremes
totally unknown and totally known. From attribute val-
ues which represent information of the classes 3 and 6 com-
plete knowledge on the property’s occurrence can be derived.
Thus, these values are at the one end of the scale (totally
known) and have the density dO = 1. In contrast, attribute
values which represent information from the classes 1 and
4 are at the other end of the scale (totally unknown) and
have a density dO = 0. All the other values (values which
represent partial occurrence information) are between these
two extremes and have a density dO ∈ (0, 1).

Usually, the partial information represented by an at-
tribute value v can be used to reduce the corresponding
attribute domain DA to a subset containing all elements
which are still a possible occurrence of the corresponding
property. In the following this subset is denoted as the par-
tial set SV ⊆ DA. In the extreme cases, the partial set is
either equal to the domain (SV = DA, totally unknown)
or consists of just one element (|SV | = 1, totally known)2.
All elements of the partial set are considered to be equally
plausible to be the true occurrence. Thus, for simplifica-
tion purposes, information on correlations between single
elements (e.g. different probabilities) are neglected at the
moment (see future goals in Section 7).

In order to satisfy the metric requirements of interval
scale and interpretability ([4]), the simplest metric dO(v) =
1/|SV | is not really a choice. A more adequate metric can
be achieved, if the size of the partial set is related to the
corresponding attribute domain’s size. The more elements
of the domain were already be excluded, the smaller is the
partial set and the higher is the resulting density. In general,
the domains of the individual attributes can be divided in
four categories, each described in one of the following sub-
sections.

4.2.1 Countable and Finite Domains
A set S is countable, if there exists a bijective mapping of

S to the set of the natural numbers N. In contrast to N the
domains of this category are finite. For countable sets, the
cardinality |S| of a set S is defined as its total number of
elements. Using the cardinality, an appropriate metric for
the density dO of an attribute value v can be achieved from
the ratio of the number of elements which already have been
excluded (|DA| − |SV |) to the total number of domain ele-
ments which have to be totally excluded (|DA| − 1) in order
to get a single element. Since the density of an attribute
value that represents a nonexistent object property (no oc-
currence exists and SV is an empty set) has to be the value
1, additionally the minimum operator has to be applied.

dO(v) = min(1,
|DA| − |SV |
|DA| − 1

) (4)

Since a feasible domain contains at least two elements (de-
nominator is not 0), an invalid result can be excluded. Due
to SV ⊆ DA, the resulting ratio is always in the range [0, 1]
and hence dO is normalized. Furthermore, the metric of

2or 0 elements if the property does not exist.



equation 4 is interval scaled and interpretable: The density
dO is 1/2, if the number of already excluded elements is
equal to the number of elements which have to be further
excluded in order to get a specified value. Besides normal-
ization, interpretability and interval scale all other metric
requirements listed in [4] are also satisfied.

4.2.2 Countable and Infinite Domains
The power of a countable and infinite set S (e.g. S = Q)

is equal to the power of N. Since the metric of equation 4
converges to 0 if |DA| and |SV | converges to infinity, for a
countable and infinite domain this metric is not useable.

Interpretability and interval scale require a consideration
of the cardinality of both, the partial set as well as the at-
tribute’s domain. In this context, a specification of an ad-
equate metric w.r.t. a domain which contains an infinite
number of elements is impossible.

However, in most cases, the scope of the corresponding ap-
plication domain is actually not infinite. Thus, the number
of domain elements can be mostly restricted to a finite subset
without any quality loss. In order to get adequate bound-
aries (e.g. no person is older than 130 years or taller than
2.40 m) those restrictions have to be defined by domain ex-
perts. If such an expert is not available, database statistics
can be used. The minimal/maximal value of the associated
attribute stored in the database can act as a lower/upper
bound. The better the stored attribute values represent the
actual scope of the modeled application domain the more ef-
fective such an approach is. Therefore, domain restrictions
by statistical values are most practicable, if the correspond-
ing attributes contain a sufficient number of values which
are wide spread on the associated application domains (for
example in the range 6-20 for the age of schoolchildren).

In the following, a restriction on the interval [l, u] (lower
bound l and upper bound u) reduces a countable and infinite
set S to the countable and finite set:

S[l,u] = {e|e ∈ S ∧ e ∈ [l, u]} (5)

For avoiding a needless information loss, existing bounds of
the two sets DA and SV have to be incorporated into the
composition of l and u. For that purpose, the two opera-
tions minL() and maxL() are required:

minL(S) =

{
∞, min(S)→ −∞
min(S), else

(6)

maxL(S) =

{
−∞, max(S)→∞
max(S), else

(7)

Given min(R(A)) and max(R(A)) as the minimal- and max-
imal value stored in the attribute A of the relation R, the
two bounds l and u are calculated as:

l = min(min(R(A)), minL(SV ), minL(DA))

u = max(max(R(A)), maxL(SV ), maxL(DA))

Using these restricitions, the density dO results in:

dO(v) = min(1,
|D[l,u]

A | − |S[l,u]
V |

|D[l,u]
A | − 1

) (8)

In general, the larger the restricted scope, the lower is the
fault caused by the boundary. Since distortions cannot be
completely avoided, the existence of infinite domains should

be limited at a minimum by adequate restrictions defined
during database design (e.g. CHECK age < 130).

4.2.3 Uncountable and Bounded Domains
With respect to domains of databases, uncountable sets

are mostly ordered (the set of the complex numbers is un-
countable and non-ordered, but is also not a typical database
domain). An uncountable and bounded domain is an un-
countable set with a lower and an upper bound (e.g. {e|e ∈
R ∧ e ∈ [0, 10]}).

Since a continuous and uncountable set S = [Smin, Smax]
contains an infinite number of elements, its cardinality is
defined as the distance between the minimal and maximal
element of the interval (|S| = Smax − Smin). The cardi-
nality of an uncontinuous and uncountable set (e.g. {e|e ∈
{[0, 2] ∪ [4, 5]}}) results from the sum of the cardinalities of
its disjunct and continuous subsets.

|S| =
n∑

i=1

|Si| where (∀i, j ∈ [1, n]) : Si ∩ Sj = ∅ ∧
n⋃

i=1

Si = S

In the simplest case, the partial set as well as the at-
tribute’s domain contain only uncountable subsets and the
density dO can be calculated as3:

dO(v) =
|DA| − |SV |
|DA|

(9)

Since the cardinality of an interval [a, a] is 0, for a specified
value the density dO = 1 results. Does the set SV contain
countable subsets, the metric of equation 9 becomes un-
representative and specific approximations have to be used.
Nevertheless, this aspect is out of the scope of this paper
and will be considered by further research.

4.2.4 Uncountable and Unbounded Domains
If an uncountable set is unbounded, its cardinality con-

verges to infinity. Thus, as for countable and infinite do-
mains, a restriction is required. By using the same concept
of boundary composition as for countable domains, the den-
sity dO results in:

dO(v) =
|D[l,u]

A | − |S[l,u]
V |

|D[l,u]
A |

(10)

5. DEMONSTRATING EXAMPLE
In order to demonstrate the density metrics defined in the

last section we consider a part of the relation employee of
a company’s database (see Table 1 and 2). In the relation,
the first name (attribute FName), the surname (SName),
the age (Age), the class of driver license (DLicense) and the
salary per hour (Salary) are stored. Furthermore, for reasons
of safety, each employee has to take part on an annual first
aid test. The results (in percentage) from the latest test are
stored in the attribute FirstAid.

The attribute Age is defined in the integer domain and
hence is countable and infinite. The domain of the attribute
DLicense is a self defined domain (countable and finite)
consisting of three elements: the possible driver license
classes A, B and C. The attributes FirstAid and Salary are

3Since an empty set has the cardinality 0, for information
on nonexistence the density dO = 1 correctly results without
using the minimum operator.



FName:String SName:String Age:Int DLicense:D4 FirstAid:D5 Salary:Real
wE = 0 wE = 0 wE = 0 wE = 0.7 wE = 0.2 wE = 0

... ... ... ... ... ...
t1 Ralph Marshall 17 nE 76.67 pk1

t2 Tyler Corman pk2 A npk1 21.78
t3 Lisa Torres 31 npk2 57.13 27.41
t4 Dave Conroy uk nek1 null 41.53

... ... ... ... ... ...

Table 1: a part of the relation emplyoee

D5 = Real CHECK FirstAid
BETWEEN 0 AND 100

D4 = {A, B, C} pk1 = {[8, 12] ∪ [15, 17]}
pk2 = [20, 30] npk1 = [0, 37.5]

npk2 = {A, B} nek1 = {A}

Table 2: domains and null values

defined in the domain of the real numbers (uncountable).
Whereas the domain of the attribute Salary is unbounded,
the domain of the attribute FirstAid is restricted to the in-
terval [0, 100].

Some newly hired employees have not yet passed a first
aid test. Thus, for some employees no test results exist.
In general, information on the test result are quite more
important than information on its existence (wE = 0.2).
Since a nonexistent salary can be represented by the value
0, the weighting wE is 0 for this attribute.

In order to store the different degrees of information (ex-
istence as well as occurrence) in the database the null value
concept is used. We take the same five null value semantics
as known from [1] and [3], and add a sixth null for repre-
senting the case, that existence information is unknown and
occurrence information is completely known (class 3). Thus,
beside the specified value, the null values no information
(null), maybe existent and partially known (npk), maybe ex-
istent and known (nek), existent but unknown (uk), existent
and partially known (pk) and not existent (nE) are defined
for the information classes 1-6 in exact this order.

Since some information is incomplete, a couple of attribute
values correspond to some of these null values. A special
case of incomplete information relates to the class of driver
license of tuple t4. Actually, this person has a driver license
of class A, but in the last months, he had a car accident
and the license has been confiscated by the police. The re-
sponsible secretary does not know, if the confiscation was
just for a month or longer. Thus, at the last time of data
update, it was not clear, whether this employee has a driver
license or not, but if he has one, then this license is definitely
of class A.

The densities of the attribute values which contain one of
the two null values null and uk is always 0 or wE respec-
tively. The densities of the other attribute values which do
not contain a specified value is calculated as follows:

• Since for this attribute value all information is known
(nE ⇒ SV = ∅), the density of t1.DLicense results in:

d(t1.DLicense) = 0.7 · 1 + 0.3 ·min(1,
3− 0

2
) = 1

• The salary of the employee Marshall (t1) is only par-
tially known (pk1 = {[8, 12] ∪ [15, 17]}). By defini-
tion, the domain of the salary is unbounded, but do-
main experts know, that there exists a minimum salary
min(Salary) = 5.00, which is required by law, as well
as an in-house salary cap max(Salary) = 50.00. Using
these boundaries, the density of t1.Salary results in:

d(t1.Salary) = 0 + 1 · |R
[5,50]| − |{[8, 12] ∪ [15, 17]}|

|R[5,50]|

=
45− 6

45
= 0.87

• The employee Cormann (t2) has recently started a
practical work in the company. The responsible secre-
tary does not know if he was already a trainee when
the last first aid test took place. Thus, it is uncertain
if for this person a test result exists, but it is known
that in the last test, no newbie had more than 37.5
percentage (npk1 = [0, 37.5]). Since the corresponding
domain is an uncountable and bounded set, the metric
defined in 9 has to be used for calculating the density:

d(t2.FirstAid) = 0.2 · 1 + 0.8 · 100− 37.5

100
= 0.625

• The age of employee Cormann (t2) is also only partially
known (pk2 = [20, 30]). The corresponding domain is a
countable and infinite set. Thus, before calculating the
density the domain has to be restricted to a bounded
subset. If we assume that no domain expert is avail-
able, but the database statistic supplies the minimal
(16) and the maximal (64) value of this attribute, the
density is calculated as:

d(t2.Age) = 0 + 1 ·min(1,
|Z[16,64]| − |[20, 30]|
|Z[16,64]| − 1

)

= min(1,
49− 11

48
) = 0.79

• It is not known whether employee Torres (t3) has a
driver license or not, but it is known that she is def-
initely not allowed to drive a truck (license class C)
(⇒ npk2 = {A, B}). Therefore, the density of the
attribute value t3.DLicense results in:

d(t3.DLicense) = 0.7 · 0 + 0.3 ·min(1,
3− 2

3− 1
) = 0.15

• As mentioned above, it is unknown if employee Conroy
(t4) currently has a driver license, but if he has one,
its class is exactly known (nek1 = {A}). Thus, the
density of the corresponding attribute value results in:

d(t4.DLicense) = 0.7 · 0 + 0.3 ·min(1,
3− 1

3− 1
) = 0.3

If we assume, that all attributes have an equal importance
((∀A ∈ {FName, SName, ..., Salary}) : wA = 1/6), the den-
sities of the individual tupels result in:

d(t1) = 0.98 d(t2) = 0.90 d(t3) = 0.86 d(t4) = 0.55

Consequently, the density of the subrelation employee’=
{t1, t2, t3, t4} is:

d(employee’ ) =
0.98 + 0.90 + 0.86 + 0.55

4
= 0.82



6. FURTHER REMARKS
Besides information that can be derived from metadata

(e.g. the number of domain elements) additional informa-
tion, for example resulting from the knowledge of domain
experts, can be used to enhance the significance of the cal-
culated quality values. Although further kinds of informa-
tion may exist, in the following we only focus on so called
domain restricting knowledge and probability distributions.

6.1 Domain Restricting Knowledge
In many cases, attribute domains do not exactly repre-

sent the possible occurrences of the modeled entity types.
For example, the home country of a person is defined as a
string, but not every string does refer to an existing country.
Thus, additional information can be used to restrict the cor-
responding domain to a large extent. At the moment, the
UNO listed 193 sovereign states. Thus, if we assume that a
string is coded in ASCII (94 printable characters) and the
length of a string is restricted on 50 characters, the num-
ber of possible occurrences for the values of an attribute
HomeCountry which is defined in the domain String can be
significantly decreased from 9450 = 4.53 · 1098 to 193.

6.2 Probability Distributions
Usually, in many applications the frequencies of the in-

dividual domain elements are not equal and some elements
occur more often than other ones (e.g. there exist more 40
years old persons than persons which are 120 years old).
To represent this imbalance, probability distributions can
be defined on the corresponding domains. If information
on such a distribution is available, instead of the partial
set’s cardinality, the probabilities of its elements can be used
for calculating the density. For example, given a probabil-
ity density function fA(x) on the uncountable domain DA

(P (DA) = 1), for a value v representing the interval [a, b],
the density dO can be defined as:

dO(v) =
P (DA)− P (SV )

P (DA)
= 1−

∫ b

a

fA(x)dx (11)

Since in uncountable domains the probability of a single do-
main element e is P (e) = 0, for a known occurrence still
the density dO = 1 results. In probability distributions
on countable sets, a single element can have a probability
greater than 0. Thus, w.r.t. countable domains the proba-
bility of a partial set can be lower than the probability of a
single element. Since a value representing a single element
has the maximal density, the fundamental principle of this
approach meaning that the probability and the density are
always inversely proportional to each other can be violated.
This is a problem which cannot be solved easily and requires
further considerations.

7. CONCLUSION
Existing metrics for data completeness at the attribute

value level are only defined for two kinds of values: specified
values which represent complete information and the null
value null which represents no information on the modeled
object property. Since there is a wide range of partial infor-
mation whose completeness lies between these two extremes,
metrics for attribute value completeness have to be adapted
to concepts representing such cases.

In order to realize such an adaption, we have adopted Nau-
mann’s concept of decomposing completeness into coverage

and density and have extended the density at the attribute
value level w.r.t. different kinds of partial information. To
satisfy several requirements for an adequate quality metric,
the partial information has to be related to the correspond-
ing attribute domain. Therefore, we have considered the
partial information as a domain subset and have defined
the density of an attribute value as the ratio of the num-
ber of domain elements which are already excluded to the
number of domain elements which have to be totally ex-
cluded to get a specified value. Usually, attribute domains
are either countable and finite, countable and infinite, un-
countable and bounded or uncountable and unbounded. In
this paper, all four cases have been regarded and we have
proposed a possible solution for each of them.

For simplification, we only have considered partial infor-
mation which can be represented by classical subsets (dis-
junctive sets) of the corresponding domains. Nevertheless,
there exist further concepts for modeling incomplete infor-
mation like possibility (fuzzy databases) or probability dis-
tributions (probabilistic databases). Thus, in order to en-
able the measurement of completeness in such databases, the
basic approach proposed in this paper has to be extended.
Furthermore, we have mentioned the problems which arise
when relating countable partial sets to uncountable domains.
This is also a problem that has to be tackled in future work.
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