
S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

31867-7134 © GITO mbH

Available online at www.enterprise-systems.net

AIS Transactions on Enterprise Systems 1 (2009) 2, 3-12

Abstract

Use of web services also on mobile devices
becomes increasingly relevant. However, realizing
such mobile web services based on the standard
protocol stack is often inappropriate for resource-
restricted mobile devices in dynamic networks.
On the other hand, using specialized alternative
protocols restricts compatibility with traditional
service applications. Thus, existing approaches
often do not allow to integrate heterogeneous
service instances dynamically, as it is, e.g.,
required for executing mobile service-based
business processes.

In order to adequately support such more
complex and dynamic applications, this paper
presents a lean and flexible system architecture
which supports both mobile web service consumers
and providers by allowing to integrate multiple
protocols depending on their capabilities and to
dynamically access suitable service instances at
runtime. As a proof of concept, the paper shows
an exemplary combination of practically relevant
protocols for resource-limited devices based on
WSDL, ASN.1 and overlay transport and presents
its integration in a prototype scenario for supporting
decentralized mobile business processes.

1. Introduction

Mobile web services currently form one of
the most promising approaches to apply well-
established service-oriented concepts to mobile

environments. Especially the emergence of
respective mobile middleware systems leads to
a rather ubiquitous availability of information
and enables new personalized and context-based
services for private consumers as well as for
business applications. Considering the provision
and consumption of such service functionality in
stationary networks, web services have proved to
be a successful integration technology. Based on the
standardized Web Service Description Language
(WSDL), the message encoding format SOAP
and the Hypertext Transfer Protocol (HTTP) as
specified by the W3C [4], a web service typically
defines an interface between two or more software
applications. As web services are self-describing
and enable the development of loosely-coupled
distributed applications, they are - in general -
also very well suited to integrate mobile service
providers and consumers. Nowadays, standard
web service technologies can be applied to several
mobile devices almost without any problems, e.g.
considering notebooks or the newest generation of
mobile phones using relatively reliable wireless
networks such as WLAN or UMTS. However,
the conventional web service communication
framework is mostly inappropriate for small
mobile devices in decentralized networks,
e.g. for wireless sensors or active RFID tags,
which still have very restricted resources with
respect to computing power, memory capacity
and communication bandwidth (cp. [1]). Several
drawbacks of standard web service protocols have
already been investigated in previous research

Realizing Mobile Web
Services for Dynamic
Applications*

Dipl.-Inf. Sonja Zaplata, B.Sc.-Inf. Viktor Dreiling and Prof.
Dr. Winfried Lamersdorf

* The research leading to these results has received funding from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement 215483 (S-Cube).

4 AIS Transactions on Enterprise Systems 1 (2009) Vol. 2

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

works: As the most important point, the textual
representation of XML-based descriptions as used in
WSDL and SOAP leads to a low information density
and thus to an inefficient use of communication
bandwidth. As another example, the synchronicity of
HTTP results in intolerance to network failures and
excludes typical mobile network technologies such
as Bluetooth or IrDa. Concerning the discovery of
mobile services, centralized systems such as UDDI
(Universal Description, Discovery and Integration)
can hardly be applied in decentralized networks and
prove to be inefficient in systems with changing
network addresses (cp. [3, 14]).

The emergence of manifold and more decentralized
applications have therefore triggered the development
of alternative web service protocols dealing with some
of the before mentioned problems. Being specific to a
concrete network or addressing particular drawbacks
such as messaging overhead, these protocols focus on
the requirements of resource-limited mobile systems
and respectively use less complex communication
protocols and description languages (e.g. [2, 17]).
Such alternative protocols enable mobile devices to
consume specially adapted web services running on
stationary servers, e.g. in order to outsource business
logic or tasks which are computationally intensive.
Since mobile devices are also able to provide web
services themselves, also novel applications such as
sharing resources and functionality in mobile ad-hoc
networks can be realized. For example, a built-in
car navigation system could be used to transfer
the current position to a local mobile phone using
Bluetooth. Nevertheless, it could also be accessed
from remote (e.g. by a desktop PC) to find a stolen
car by using a standard HTTP connection. Other
application areas involve the provision of context
information about the user or its device, or act as a
replacement of physical things, e.g. by simulating a
wallet by an automatic payment service [3].

Besides such specialized monolithic applications,
(mobile) web services can also be part of more
complex and dynamic applications, such as, e.g.
business processes running on mobile devices (e.g.
[8, 13]). Due to the prevailing diversity of protocols
in the area of mobile web services, most of such
distributed applications use rather abstract descriptions
of services, avoiding to specify concrete protocols,
network addresses and other specific technological
details. In contrary to stand-alone applications, the
execution of mobile business processes therefore
requires a dynamic discovery, selection and binding
of available services and thus requires to support
more than one specific protocol. At the same time the
processes’ functionality is provided as an aggregated

service itself. This means that there is a need for a
dynamic mobile web service architecture embracing
functionality for service consumption as well as
for service provision, considering heterogeneous
devices, networks and protocols.

Addressing such challenges, the following section
analyzes existing work in the area of mobile web
services and identifies research gaps with respect to
dynamism, flexibility and interoperability of mobile
service providers and consumers. To overcome
the identified restrictions, section 3 introduces a
lightweight architecture to both use and provide web
services based on arbitrary protocols, as well as to
publish, find and bind such services dynamically.
Section 4 presents an example combination of
protocols suitable for smaller and medium mobile
devices. The prototypical implementation is
evaluated in section 5, integrating the proposed
architecture and its reference configuration into an
existing mobile process execution system. The paper
concludes with a brief summary and an outlook on
future work.

2. Existing and Related Work

Due to the large amount of work in the area
of web services and mobile computing, this
section abstracts from individual approaches, but
classifies them with respect to the strategies used
to provide and use web services in heterogeneous
mobile environments. Thus in general, respective
previous and ongoing research can be distinguished
into three main areas: Application and adaptation
of standard web service technology; integration
of alternative protocols, description languages
and registries; and use of additional mediator
components.

2.1. Adaptation of Standard Web Service
 Technology

As introduced above, in some cases standard
web service technologies (i.e. WSDL, SOAP,
HTTP and UDDI) can directly be applied to
mobile systems (as e.g. shown by [15]) – assumed
that these are relatively powerful, use reliable
network connections and are able to provide
adequate addressing mechanisms. Smaller and
more restricted mobile systems however often
omit dynamic components which need a large
amount of resources or which cannot be realized
due to decentralized infrastructures. Two examples
are summarized in the following:
• Considering the consumer side, web services

can be bound statically as a fixed part of the

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

51867-7134 © GITO mbH

mobile application. This relieves mobile devices
from service discovery and from generating
and integrating web service proxies at runtime.
However, this simple approach is very inflexible
as services cannot be exchanged at runtime and
thus it does not support applications which
require to pick service instances dynamically.

• Mobile service providers can optionally abstain
from publishing their services in a registry and
assume that potential service consumers are
aware of the services’ existence and syntax.
Obviously, this strategy is rather restrictive as
service providers can hardly expand the number
of users if the service cannot be discovered
dynamically.

2.2. Alternative Protocols, Description
 Languages and Registries

As standard web service protocols do not
adequately meet the needs of resource-restricted
mobile computing infrastructures, alternative
technologies have evolved. These address –
among others – the overhead of XML in service
descriptions and messages, the synchronicity of
communication and the centralization of registry
information. Examples to exchange (in part or in
total) the standard combination of HTTP, SOAP,
WSDL and UDDI are sketched in the following:
• Universal (e.g. ZIP) or XML-specific (e.g.

XMILL) compression mechanisms can
efficiently be used to minimize the size of
XML messages (e.g. [17]). Nevertheless such
algorithms are quite resource-intensive as they
require a relatively large amount of computing
power to encode and decode the messages.

• To reduce complexity in another way, the use of
XML can be avoided by alternative description
languages, such as JSON (JavaScript Object
Notation) or ASN.1 (Abstract Syntax Notation
Number One) (cp. [12]).

• A more appropriate asynchronous
communication can be realized by using
alternative protocols such as SMTP and POP/
IMAP, decoupling sender and receiver and
thus allowing disconnected operation of web
services (cp. [18]).

• The overhead of HTTP can alternatively be
eliminated by performing message exchange
over TCP or UDP directly (cp. [18]).

• Registries for decentralized infrastructures
allow service providers to describe their
services locally (e.g. WS-Inspection) or to save
service information in a distributed way (e.g.
Konark presented by [9]).

• The emergence of advanced addressing
mechanisms such as MobileIP will probably
facilitate the access of mobile (web service)
resources.

2.3. Mobile Web Service Architectures and
 Use of Mediator Components

While the use of traditional web service technologies
does not consider specific characteristics of mobile
computing systems, the restriction to specialized
alternative approaches leads to an incompatibility
with traditional web service applications. Therefore,
current research considers the challenges arising
from the diversification of above mentioned
technologies and protocols. Primarily, approaches
which are similar or related to this work focus on the
use of additional mediator components. The most
important examples are presented below:
• In order to address the exclusion of local services

and personal area networks, proxy components
can be applied both to service consumers
and providers. As an example, the approach
presented by [2], presents an architecture which
allows web service invocation over Bluetooth
by wrapping SOAP messages to bind them to
the Bluetooth transport protocol. More general
approaches establish an overlay network to
completely abstract from technological details of
the underlying transport layer (e.g. [6]).

• To consider limitations of mobile systems
and allow proprietary protocols, a mediation
framework can act as a broker between the mobile
device and stationary web service providers or
consumers (e.g. [5, 7]). In this case, the mediator is
responsible for the transformation and the routing
of web service messages. Furthermore, peer-to-
peer mediator approaches have also successfully
been applied to mobile service providers and
consumers [16]. However, if mediators are not
accessible, this component represents a hazardous
single point of failure in centralized as well as in
decentralized infrastructures.

• To integrate alternative transmission protocols
dynamically, the preferred message representation
can be subject of negotiation. As an example,
the Handheld Flexible Representation (HHFR)
[14] optionally determines which part of a
SOAP message is omitted when invoking a
service. The approach is characterized by a very
flexible architecture and is able to adapt to the
requirements of mobile devices dynamically.
Considering the repeated invocation of the same
service, the following data exchange can be
reduced considerably. In case of single service

6 AIS Transactions on Enterprise Systems 1 (2009) Vol. 2

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

invocations, however, the negotiation itself causes
a considerable overhead.

2.4. Requirements Summary
As an interim result, it seems that there is no

perfect combination of traditional and alternative
technologies, but that the use of a specific
approach is determined by the capabilities of the
mobile system and its applications. Although web
services have originally been intended to integrate
heterogeneous resources, the diversification of
protocols resulting from necessary adaptations leads
to another integration problem. On the one hand,
heterogeneous capabilities and characteristics of
mobile devices with respect to network connection
and protocol support have to be considered. On
the other hand, interoperability with traditional
applications and industry standards should be
preserved. Finally, dynamic applications such
as ad-hoc mobile business processes require the
executing mobile device to adapt to available
service instances and protocols at runtime – a system
software characteristic which is hardly supported
by current mobile web service architectures.

These observations lead to the need of a flexible
web service architecture which is able to adapt to
the prevailing technology at runtime – provided the
respective (mobile) device is able to support one or
more (to some extent) established protocols. The
next section therefore presents the basic idea of a
flexible web service architecture for such dynamic
mobile applications.

3. A Flexible Mobile Service
 Architecture

As presented in the previous section, developers
of mobile web service providers and mobile web
service clients can select from a large range of
protocols and technologies to adjust their application
to the requirements and capabilities of the mobile
device. To enable a customized design of mobile
web service applications, to allow interoperability
with more than one service consumer or provider
and to access services dynamically, this section
presents an adaptable web service architecture for
mobile devices.

Figure 1 shows a coarse overview of the
decentralized mobile service-oriented architecture.
It consists of one or more (possibly mobile) service
providers and consumers which both integrate an
individual local registry. In case of the service
provider, the registry holds and manages the service
descriptions of the service instances provided by the

mobile device itself. For the service consumer, the
registry is responsible to search for required services
by exchanging information with the registries
of service providers in the local environment.
Because the local registry only acts as a proxy to its
environment, also centralized stationary registries
(e.g. UDDI) or distributed decentralized registries
(e.g. Konark by [9]) can participate if they are
in communication range of the mobile service
requester.

The detailed architecture for mobile web service
consumers and providers is characterized by a
modular design. The resulting basic architecture for
both roles is depicted in figure 2. Due to potential
resource restrictions, basic functionality such as
communication, message handling and service
registration is shared by consumer and provider
components. Functionality exclusive to service
providers involves a lightweight service runtime
environment which manages respective service
instances. Exclusive to the client side, a proxy
generator is responsible for generating and assigning
local proxies to invoke a mobile web service. The
proxy represents a local interface of the remote
service, handles the work of mapping parameters
to the elements of the description language and
prepares the respective message contents to be send
over the network.

Depending on the capabilities of the mobile
system and on the requirements of the application(s),
this abstract architecture can be instantiated with one
or more adapters realizing a concrete technology.
Alternative technologies can be assigned to service
description, to message encoding and to transport
protocols. For example, to be compatible to industry
standards, services can be described using a WSDL
adapter for the local registry and for proxy generation,
the message handling can use SOAP format and
finally, the communication component can include
an HTTP adapter to send the message. To be
compatible to resource-restricted mobile devices,
alternative configurations can be realized, e.g. as the
combination of WSDL, ASN.1 and overlay network
transport which is presented in section 4.

The overall procedure of providing and consuming
web services is realized as follows: First, the service
provider publishes its services to the local registry
(Step 1 in figure 1 and 2). As the deployment of
adapters and services is performed at design-time,
each published service can be associated with one or
more descriptions determined by the configuration
of supported protocols.

Potential service consumers are now able to find
these services by performing an abstract service

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

71867-7134 © GITO mbH

request to their local registry (step 2). The abstract
service request contains the search parameters of the
respective application, e.g. the required functionality
of the service and optionally non-functional criteria.
The consumer’s registry first checks if the required
service can be accessed locally, e.g. in case the service
is provided by the device itself. Otherwise it forwards
the request to other devices in its environment
making use of the type(s) of encoding format and

communication protocol it supports
(step 3). The environment of the
device is therefore determined by the
capabilities of the communication
adapter, e.g. resources on the Internet
can be accessed via HTTP, whereas
local networks can only be accessed
via alternative communication
protocols. The resulting request
now involves at least the identifier
of the service’s functionality
(e.g. a simple Uniform Resource
Identifier (URI), a Universally
Unique Identifier (UUID) or a link
to external semantic resources such

as an Resource Description Framework (RDF)
document) and optionally a list of supported or
preferred protocols (cp. figure 3.).

The potential service provider receives the
incoming service request and – assumed it has at least
one suitable adapter – forwards it to the registry which
picks an adequate format to return the description
of the requested service instance (step 4). As the
description is received by the consumer, it is forwarded

(Mobile)
Service Provider

(Mobile)
Service Consumer

Local Registry

1.
 P

ub
lis

h
S

er
vi

ce

Local Registry

2.
 R

eq
ue

st
 S

er
vi

ce

3. Request Service
Description

6. Invoke Service

4. Return Service
Description

5.
 F

or
w

ar
d

S
er

vi
ce

D

es
cr

ip
tio

n

P
ro

vi
de

r A
rc

hi
te

ct
ur

e

C
on

su
m

er
 A

rc
hi

te
ct

ur
e

7. Service Response

Figure 1: Overview of the mobile service architecture

Registry

- Manage service descriptions
- Send service queries
- Return service descriptions

Runtime Environment

- Execute services

Service Instance

- Provide service interface
- Provide service functionality

Communication

- Receive messages
- Send messages

Message Handling

- Generate messages
- Parse messages

Communication
Adapter 1

Communication
Adapter 2

Encoding Format
Adapter 1

Encoding Format
Adapter 2

Description Language
Adapter 1

Description Language
Adapter 2

Proxy Generator

- Generate proxies dynamically
 or select static proxy

Proxy

- Provide (local) service
 interface

Description Language
Adapter 1

Description Language
Adapter 2

3., 4., 6., 7.
Physical Data

Transfer 4. Service Provider:
Incoming Service

Description Request

5. Provide Proxy

6. Service
Invocation

7. Service
 Response

Transport
Layer

Application
Layer

Service Provider:
1. Publish Service

Service Consumer:
2. Request Service

 7. Service Response

6. Service
 Invocation

7. Service
Response

5. Forward Service
Description

3., 4., 6., 7.
Message
Exchange

6. Service
 Invocation

7. Service
Sesponse

Components of
Service Consumers

Components of
Service Providers

Shared Components

Service Consumer:
 6. Invoke Service

3. Service Consumer:
Request Service

Description

4. Service Provider:
Send Service

Description

Optional
Proxy

Repository

Figure 2: Mobile service architecture component model

8 AIS Transactions on Enterprise Systems 1 (2009) Vol. 2

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

to the proxy generator (step 5). Depending on the
implementation, the proxy can either be picked from
a proxy repository holding a number of static proxies
or can be generated automatically according to the
received service description. The service consumer is
now able to invoke the service by calling the provided
proxy object (step 6). The proxy uses the message
format and communication protocol as specified in
the service description to send the required input
parameters, and if any, receives the service’s return
values (step 7). If the service is going to be invoked
again later, the proxy can optionally be added to the
proxy repository.

To address scalability, the presented architecture
supports complex applications acting as service
providers and service consumers at the same time as
well as both roles individually. As the role-specific
components are completely optional, unneeded
provider/consumer functionality can be omitted to
save resources. Furthermore, the type and number of
adapter components can be tailored to the capacity
and performance of the mobile device. However, if
the number of adapters is rather small or the applied
protocols are too exotic, the compatibility will be
restricted to special application areas and therefore
influence the number of suitable service consumers
or providers.

4. An Example Confi guration for
 Mobile Web Services

Since actual web service standards WSDL, SOAP
and HTTP do not meet the requirements of mobile
systems particularly well, alternative technologies
for the realization of mobile web services can be
considered. This section presents a proposal on
technologies that can be integrated into the presented
architecture to realize web services on more resource-

restricted mobile devices. The configuration reduces
the overhead of the message description by using
a non-XML description language and provides
mechanisms for compensation of connection resets
by creating an overlay network between the mobile
participants. However, this configuration only shows
one example of several (arbitrary) combinations
which can be composed depending on the mobile
devices’ actual capabilities. Other combinations and
their interplay can be found in section 5.

2.4. Service Description
The example configuration presented here uses

WSDL 2.0 to be compatible to established web
service based systems and only differs in the use
of an alternative message description language
and an alternative transport protocol. WSDL
allows the integration of both alternative message
description languages and transport protocols
without violating the WSDL standards of W3C
(cp. [4]). Listing 1 shows an example of a WSDL
binding that contains the URIs associated with
the alternative technologies used in this example
configuration.

<wsdl:binding
 name=“ExampleConfi guration“
 interface=“TestServiceInterface“
 type=“http://vsis−www.informatik.uni−hamburg.de/
 projects/demac/asn1der“
 protocol= http://vsis−www.informatik.uni−
 hamburg.de/projects/demac/overlay“>
 <wsdl:operation ref=“testOperation“/>
</wsdl:binding>

Listing 1: WSDL Binding

4.2. Encoding Format
The example configuration uses ASN.1 and

DER encoding to describe the communication

Local Registry

D

es
cr

ip
tio

n
La

ng
ua

ge

A
da

pt
er

 1

D

es
cr

ip
tio

n
La

ng
ua

ge

A
da

pt
er

 2

1. Search for
appropriate service

2b. Forward
description

3. Apply appropriate adapter to produce
requested description

Identifier of service's
functionality, e.g. URI

Service query

Supported or
preferred protocols

Supported or
preferred protocols

Supported or
preferred protocols

Service description

Language-specific
service description,

e.g. WSDL document

4. Return specific
service description

2a. Search
cache

Directory

Cache

Figure 3. Service discovery: receiving a remote service request

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

91867-7134 © GITO mbH

messages containing the payload and the protocol
data. The approach is based on the specifications
X.694 [11], X.690 [10] and X.892 [12] of ITU-
T and, in comparison to XML-SOAP, results in
a reduced description overhead, which has also
been shown in [12].

The basic idea of the message exchange is to
use a predefined set of data types which are known
to all participants (X.694 and X.892) followed
by a binary encoding of the values according to
their types (e.g. UTF8 encoding of strings) and a
substitution of the data types by binary constants
which are – due to the standardization – also
known to other participants (X.690).

Listing 2 shows an example of an XML schema
describing the structure of a message, whereas
listing 3 shows the respective ASN.1 instance.
Listing 4 shows the resulting DER encoding of
this instance representing the actual payload of a
communication message. As to see, the encoded
value only contains information about the structure
of the original complex value, the values of the
elements it consists of and their types, but it does
not contain additional identifiers.

<xsd:complexType name=“integerSequence“>
 <xsd:sequence>
 <xsd:element name=“elem1“ type=“xsd:integer“/>
 <xsd:element name=“elem2“ type=“xsd:integer“/>
 </xsd:sequence>
</xsd:complexType>

Listing 2. Message structure defi ned in XML
Schema

integerSequence SEQUENCE ::=
{ elem1 2,
 elem2 3 }

Listing 3. Message structure defi ned in ASN.1

The complete message is encoded similarly to
the presented example. The X.892 specification of
ITU-T describes the structure of an ASN.1 SOAP
message and defines the obligatory fields. Among
other attributes, each instance representing the
payload of the message has an ID attribute to
denote the schema of the instance, particularly its
URI (namespace) and its name. Since provider
and client possess the WSDL document of the
web service, both can understand the information
that is encoded as an ID, assign the identifiers to
the values and interpret the messages correctly.

Listing 4. DER encoding of the example message

4.3. Communication Protocol
The communication interface can be realized

by one of the individual alternative protocols
presented in section 2, e.g. TCP/IP, Bluetooth or
IrDA. To also show the applicability for more
complex solutions, the communication adapter
used in the example configuration abstracts from
specific transport protocols, but relies on a peer-
to-peer overlay network with its own addressing
scheme and an asynchronous message transport
(as e.g. proposed in [6]). To detect other devices
in the environment, participating devices use their
communication adapter to send short broadcast
messages in periodic intervals. Within these
messages, they encode their UUID – a identifier
that is universally unique for every device. When
a device receives such a message, it saves the
UUID and its source address. This information
is updated or complemented in case the same
UUID is received with a different source address.
As a result, the participating devices have basic
up-to-date information about other devices in the
(local) environment and the current protocols and
addresses that can be used to contact them.

In order to communicate with a particular
device, the sender selects an address associated
with the UUID of the receiver. This (virtual)
address is then translated into a concrete protocol
specific address and the message is sent using the
respective protocols and endpoint information.
If the device is reachable by different protocols,
more than one address can be associated with
a UUID. The participants are therefore able to
select the most appropriate protocol – or change
the communication interface in case a connection
is temporarily interrupted.

00110000 (binary constant associated with a sequen-
ce)

00000110 length of the binary representation of that
sequence, i.e. number of octets, 6 in this
example)

00000010 (binary constant associated with an integer,
i.e. elem1)

00000001 (length of the binary representation of that
integer)

00000010 (value 2)
00000010 (binary constant associated with an integer,

i.e. elem2)
00000001 (length of the binary representation of that

integer)
00000010 *value 3)

10 AIS Transactions on Enterprise Systems 1 (2009) Vol. 2

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

5. Prototype Implementation and Use
 Case Scenario

In order to demonstrate the feasibility of the
approach, the flexible architecture and its example
configuration have been prototypically implemented
and integrated into the DEMAC (Distributed
Environment for Mobility Aware Computing)
project. DEMAC realizes the idea of mobile
(business) processes migrating several stationary
and mobile devices in order to share their resources
and functionality (cp. [13]). A typical application
scenario for such processes is e.g. the context-
based collection and processing of information
in mobile environments, involving data from
wireless sensors, mobile users or traditional web
service resources. Since devices which are able to
execute mobile processes can be considered to be
relatively powerful (e.g. notebooks or PDAs), the
presented architecture can be used to aggregate a
set of protocols in order to integrate web services
from several heterogeneous devices and networks.
As required service functionality is specified in a
technology-independent way, the process execution
engine can use the presented architecture to search
for adequate service instances and integrate them at
runtime.

The resulting use case scenario is depicted in
figure 4. The described example configuration has
been applied to a wireless sensor (device 1) which
provides temperature data. The application of the
example configuration using ASN.1 reduces the size
of communication messages considerably (cp. also
last row in figure 5) and achieves even better results
if the number of long identifiers that occur in the
message payload is getting larger. The ASN.1 type
library is implemented as a small set of structures
which can be combined to create a complete message.
The instance of each structure calls the encoding
procedure responsible for the associated ASN.1 type
and saves its result into a collective output container.
Thus the messages do not have to be parsed, but can
be encoded directly by passing the respective values
to the encoder. In consequence, the implementation
is very fast and efficient and can be considered to
be quite suitable even for latest technologies such as
e.g. active RFID tags which have a very restricted
communication bandwidth.

The standard web service configuration is provided
by a stationary server (device 2) transforming the
temperature data into another representation (e.g.
Celsius to Fahrenheit). Device 3 is responsible
to execute the mobile process integrating both of
these functionalities as a simple sequential service

composition. Using adapters for the presented
reference configuration addressing small mobile
devices (cp. section 4) and adapters for the standard
set of web service technologies (i.e. WSDL, SOAP
and HTTP), the executing mobile device is able to
access the wireless sensor as well as the traditional
stationary web service. It is further able to dynamically
generate the respective proxies and thus involve the
required functionality to fulfill the mobile processes’
activities at runtime. The integrated services are
re-offered as a composed service functionality
using either the example configuration, the standard
web service technologies or even another mix of
protocols, as exemplary represented by another
web service consumer (device 4). However, if
the set of supported protocols does not match any
other configuration (as indicated by device 5) the
required services cannot be accessed. Due to its
mobility, the incompatible device is however still
able to potentially find adequate services in another
environment.

The number and size of the messages exchanged to
execute the presented scenario are depicted in figure
5. To allow a proper comparison of message sizes,
all services used in the test share a similar message
structure (i.e. a request-response message exchange
pattern with one input and one output parameter)
as well as a similar service description (in WSDL).
The italic font indicates that the respective value is
variable and results from the parameters used in the
test scenario.

The experimental evaluation of the prototype shows
that the load of finding the proper configuration only
affects devices which are able to cope with different
protocols and adapters - and thus can be regarded
to be more powerful. If more than one adapter for
communication is available, the device can start
service discovery with its preferred protocol and fall
back to other protocols in case there is no positive
response. For instance, in the worst case, device 3
would have to send the service discovery message
over all of its three communication protocols. It
is obvious that the more adapters are available on
a mobile device, the higher is the probability of
finding an adequate service. Less powerful devices
will simply ignore the messages which cannot be
interpreted and only respond to those which will lead
to a correct service invocation. The configuration
of adapters and thus protocols can be installed
in a way which fits the device’s capabilities and
performance best, leading to an reduced message
description overhead as exemplary shown by the
total message size of device 1 in the last row of
figure 5: The message overhead is only 138 Bytes,

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

111867-7134 © GITO mbH

which constitutes only 8.25 percent of the respective
traditional technology (e.g. the message size of
device 2: 1672 Bytes).

6. Conclusion and Future Work

Due to the heterogeneity of current mobile
systems, it seems that there is no generally applicable
combination of web service technologies, but that
the use of a specific approach is determined by
the capabilities of the specific mobile device. For
enabling also more complex and dynamic applications
such as ad-hoc mobile business processes, this paper
proposes a flexible mobile web service architecture
which supports accessing the functionality of multiple
heterogeneous devices. By use of a customized
configuration of protocols and technologies,
this architecture can be tailored according to the
requirements of the respective (mobile) application
and its users, allowing to preserve interoperability
with industry standards while also respecting the
restrictions of resource-limited devices.

However, as also to see in figure 5, the exchange
of WSDL descriptions takes a significant amount

of the overall data transfer. As recommended, a
possible solution is to integrate alternative description
languages, such as e.g. JSON which reduces the
overhead of XML of about 20 percent. If this is
still unsatisfying, the presented architecture could
be enhanced to optionally provide compression
mechanisms for service descriptions and service
invocation messages. Furthermore, mobile service
requesters capable of carrying multiple adapters may
(in the worst case) produce unnecessary messages
which could be inadequate for networks with a
small bandwidth. This problem can be addressed
by an increased network-awareness, enabling the
mobile service requester to prioritize more lightweight
protocols. Future work therefore involves the
integration of context information to adapt not only to
the capabilities of mobile devices but also to specific
network characteristics.

Literature

[1] F. Adelstein, S. K. Gupta, G. Richard III, and
L. Schwiebert. Fundamentals of Mobile and Pervasive
Computing. McGraw-Hil, 2005.

Device Number
in scenario

Device

Role Type

Communication
Protocol HTTP TCP HTTP TCP

Header Size
(Bytes) 123 (+20) 20 123 (+20) 20

Messages for
Service
Discovery

Service
Queries
received

Descriptions
sent
(WSDL)

Service
Queries
received

Descriptions
sent
(WSDL)

Service
Queries
received

Descriptions
sent
(WSDL)

Service
Queries
performed

Descriptions
received
(WSDL)

Service
Queries
performed

Descriptions
received
(WSDL)

Message
Exchange for
Service
Discovery

1 1 1 1 1 1 max. 3 1 1 1

Message Size
(Bytes) 86 1547 86 1547 86 1547 max. 258 1547 86 1547

Service Message
Description
Language

Service Message
Type

Request Response Request Response Request Response Request Response Request Response

Service Message
Size (Bytes) 114 24 914 758 114 24 914 758 114 24

Message
Exchange for
Service
Execution

Received: 1 Sent: 1 Received: 1 Sent: 1 Sent: 1
Received: 1

Sent: 1
Received: 1

Sent: 1 Received: 1 Sent: 1 Received: 1

Total Message
Size for Service
Execution (Bytes)

ASN.1

138 1672 1948 138

ASN.1 SOAP ASN.1 SOAP

Mobile service provider Stationary service provider Mobile service consumer and provider Mobile service consumer

3 4

Sun SPOT
Wireless Sensor

Intel Pentium 4
Desktop PC

ASUS Eee PC 1000H
Netbook

Nokia 6131 NFC
Cell Phone

3,2 GHz

1 GB RAM

1 2

Overlay Network HTTP Overlay Network

86 (+20) 123 (+20) 86 (+20)

Properties
(Processor, RAM)

229 MHz

26 MB RAM1 GB RAM

1,6 GHz180 MHz

512 KB RAM

Figure 5: Overview of message exchange and size within the scenario request

12 AIS Transactions on Enterprise Systems 1 (2009) Vol. 2

S. Zaplata et. al.: Realizing Mobile Web Services for Dynamic Applications

[2] V. Auletta, C. Blundo, E. D. Cristofaro, and
G. Raimato. A Lightweight Framework for Web
Services Invocation over Bluetooth. In Proceedings of
the IEEE Int. Conf. on Web Services (ICWS06), pages
331–338. IEEE Computer Society, 2006.

[3] S. Berger, S. McFaddin, C. Narayanaswami, and
M. Raghunath. Web Services on Mobile Devices
– Implementation and Experience. IEEE Workshop on
Mobile Computing Systems and Applications, 0:100,
2003.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard. Web Services
Architecture. Technical report, W3C, 2004.

[5] C. Chong, H.-N. Chua, and C.-S. Lee. Towards
flexible mobile payment via mediator-based service
model. In Proceedings of the 8th Int. Conf. on
Electronic Commerce (ICEC06), pages 295–301.
ACM, 2006.

[6] D. Doval and D. O’Mahony. Overlay Networks:
A Scalable Alternative for P2P. IEEE Internet
Computing, 7(4):79–82, 2003.

[7] P. Farley and M. Capp. Mobile Web Services. BT
Technology Journal, 23(3):202–213, 2005.

[8] G. Hackmann, M. Haitjema, C. D. Gill, and G.-C.
Roman. Sliver: A BPEL Workflow Process Execution
Engine for Mobile Devices. In Int. Conf. on Service-
Oriented Computing (ICSOC 2006), volume 4294,
pages 503–508. Springer, 2006.

[9] S. Helal, N. Desai, V. Verma, and C. Lee. Konark
– A Service Discovery and Delivery Protocol for Ad-
hoc Networks. volume 3, pages 2107–2113. IEEE
Computer Society, 2003.

[10] ITU-T. ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER).
Technical report, International Telecommunication
Union, 2002.

[11] ITU-T. ASN.1 Encoding Rules: Mapping W3C XML
Schema Definitions into ASN.1. Technical report,
International Telecommunication Union, 2004.

[12] ITU-T. Generic Applications of ASN.1: Fast
Web Services. Technical report, International
Telecommunication Union, 2004.

[13] C. P. Kunze, S. Zaplata, M. Turjalei, and
W. Lamersdorf. Enabling Context-based Cooperation:
A Generic Context Model and Management System. In
Business Information Systems (BIS 2008). Springer,
2008.

[14] S. Oh. Web Service Architecture for Mobile
Computing. PhD thesis, Indiana University,
Indianapolis, USA, 2006.

[15] S. N. Srirama, M. Jarke, and W. Prinz. Mobile Web
Service Provisioning. In Proceedings of the AICT and
ICIW 2006, page 120. IEEE Computer Society, 2006.

[16] S. N. Srirama, M. Jarke, and W. Prinz. Mobile Web
Services Mediation Framework. In Proceedings of the
2nd Workshop on Middleware for Service Oriented
Computing (MW4SOC07), pages 6–11. ACM, 2007.

[17] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and
J. Schiller. Performance Considerations for Mobile
Web Services. Elsevier Computer Communications
Journal, 27:1097–1105, 2004.

[18] C. Werner, C. Buschmann, and T. Jacker. Enhanced
Transport Bindings for Efficient SOAP Messaging. In
Proceedings of the IEEE Int. Conf. on Web Services
(ICWS05), pages 193–200. IEEE Computer Society,
2005.

Dipl.-Inf. Sonja Zaplata
Distributed Systems and Information Systems
Computer Science Department, University of
Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-Mail: zaplata@informatik.uni-hamburg.de
Phone: +494042883-2327

Sonja Zaplata studied Business Administration
and Informatics. Currently, she is a Ph.D.
candidate and works as a research assistant in the
Computer Science Department at the University
of Hamburg.

B.Sc.-Inf. Viktor Dreiling
Distributed Systems and Information Systems
Computer Science Department, University of
Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-Mail: 5dreilin@informatik.uni-hamburg.de
Phone: +494042883-2339

Viktor Dreiling studied Informatics and is
currently working on his Master‘s degree at
the University of Hamburg. His research and
development activities focus on distributed and
database systems.

Prof. Dr. Winfried Lamersdorf
Distributed Systems and Information Systems
Computer Science Department, University of
Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-Mail: lamersdorf@informatik.uni-hamburg.de
Phone: +494042883-2421

After some years of research in IBM, Winfried
Lamersdorf is Professor at Hamburg University
and responsible for distributed systems. He is
also co-chair of IFIP WG 6.11 and co-founder of
the I3E conference series.

