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ABSTRACT
Sensor networks as well as RFID systems are among the
hyped technologies nowadays. A lot of research efforts have
been spent to develop standards, middlewares and applica-
tions. The industry already made large investments to fos-
ter the adoption of these technologies, consequently push-
ing the development, and already deployed the resulting
technologies in different domains. However, the addressed
technologies are still very young, best practices as well as
standards are expected to frequently change, as new de-
mands arise when using the technologies in our everyday
life. Because of this, middleware systems are expected to
undergo frequent redesigns as well, requiring well suited de-
sign paradigms to avoid a software engineering nightmare.
We therefore propose an agent-based middleware for sensor
networks and RFID systems. This middleware will meet the
challenges for having a robust, adaptable and flexible mid-
dleware, which is moreover easily extensible to cope with
expected re-engineerings and changes while maintaining a
clear and elaborate design.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.11 [Software
Engineering]: Architectures; H.4.0 [Information Sys-
tems Applications]: General

General Terms
Sensor Networks, RFID, Middleware

Keywords
Sensor Networks, RFID, Software Agents, Middleware

1. INTRODUCTION
One of the most important milestones towards reaching Mark
Weiser’s vision of Ubiquitous Computing is the ability for
computing systems to be aware of their environment. For
this purpose, computing systems are being augmented with

lots of different kinds of sensors to monitor certain states
of affairs in their environment. Wireless Sensor Networks
(WSN) and Radio Frequency Identification (RFID) are among
the most promising research areas as WSN allow monitoring
the physical environment and RFID technology enables the
tracking of physical objects therein.

Although a lot of research efforts have been made to pro-
mote these technologies, the industry as well as the con-
sumer sector are still in an early stage of adoption. High
investments, few standards, and missing killer applications
are some of the reasons for dilatory deployment. But the
hardware evolves, costs of sensors, tags, readers, etc. rapidly
decrease and several alliances and organizations are continu-
ously publishing new standards so that strategic investments
as proposed by Gartner [15] may finally become profitable.

Regardless the initial difficulties, several pioneering projects
in the area of WSN and RFID systems have already been
realized. But until now, most current projects are developed
for a specific purpose. They do not interoperate and are nei-
ther generically designed to fit other purposes nor do they
adhere to existing standards. But once WSN and RFID be-
come widespread (and possibly converge in the future [25])
more experiences with the technologies are gained and the
need for well designed infrastructure components will be-
come evident as standards are expected to be frequently
revisioned and new standards will arise.

These circumstances are very challenging from a software en-
gineering point of view and we address this issue by propos-
ing a unified middleware infrastructure for WSN and RFID
based on software agents. Software agents are autonomous
entities often employed for the development of complex and
distributed systems [4]. They are capable of sensing their
environment, may reactively or proactively act therein and
thus adapt to changes and they are able to communicate and
cooperate. The paradigm of agent-oriented software engi-
neering therefore allows to build interoperable and reusable
software components enabling a robust, flexible and extensi-
ble infrastructure [4, 16]. Regarding the unpredictable evo-
lution of WSN and RFID systems, this paradigm is thus
ideally suited to cope with the aforementioned challenges.

In the next section we will briefly introduce the basic tech-
nologies and highlight their progress in standardization. Af-
terwards, Section 3 discusses the challenges for engineering



future sensor network middlewares in the scope of expected
changes and identifies some non-functional design goals to
meet these challenges. In Section 4 our proposal for an
agent-based middleware obeying these design goals is pre-
sented and subsequently discussed in Section 5. Finally, we
present some related work in Section 6 and conclude with
our prospects of future work in Section 7.

2. FUNDAMENTALS
In this section WSN, RFID, agent and middleware basics
are introduced to gain a common understanding of the chal-
lenges and concepts described in further sections.

2.1 Wireless Sensor Networks
Wireless Sensor Networks (WSN) are a means for monitor-
ing certain attributes of the physical world (used e.g. in
environmental, health and home applications) [2, 24]. Such
networks consist of a multitude of autonomous nodes, each
equipped with sensors, a processing unit and communication
capabilities. Once the nodes are deployed in a certain region
they start to sense their environment and build up a kind
of ad-hoc network with their neighboring nodes. In most
WSN one or more base stations can be found, to which the
percepts of each node are transmitted using multi-hop rout-
ing. For this purpose the nodes cooperate with each other
by forwarding percepts of other nodes. Due to the limited
resources of the nodes by means of energy as well as process-
ing and communication capabilities, research in the area of
WSN mostly concentrates on how to efficiently manage and
distribute the information [25].

2.2 RFID
Although RFID systems also aim at monitoring the physical
world, their primary use is the identification and tracking of
real-world objects [22]. For this purpose objects, e.g. as-
sets, are required to have a unique digital identity. This is
provided by tags, which are comparable to a barcode, but
may be read by specialized readers without a line of sight
and in bulk over a distance ranging from several centimeters
to a hundred meter (depending on the tag). The identity
stored on a tag is often referred to as an Electronic Prod-
uct Code (EPC) and can be used to link the identity with
further information about the object stored somewhere in a
network. Several application domains already make use of
RFID technology, e.g. manufacturing control, asset track-
ing, warehouse and fleet management [24, 21] and concepts
for several other domains are already being developed.

RFID systems are similar to WSN in the sense that data is
read by specialized sensors (i.e. RFID reader) and can also
be written back to tags in some cases. Hence, we also have
streams of raw data which need to be processed and trans-
formed to higher level events. And indeed, it is expected
that RFID and WSN technologies will further converge in
the future [25].

2.3 Software Agents
There is no definition of software agents in literature that is
generally agreed upon. A basic definition states that soft-
ware agents are able to perceive their environment through
sensors and act upon it through effectors. As this defini-
tion is applicable to a multitude of software components one

would not necessarily call an agent, other definitions specify
certain characteristics an agent must have. Regarding these,
an agent must be autonomous meaning the ability to pro-
cess a task with as few guidance by its principal as possible.
Moreover, an agent should be able to react to changes in its
environment, but also to proactively follow its design goals.
Additionally, agents must have the capability to cooperate
by means of exchanging messages and must be able to adapt
their behavior according to changes in the environment [16].

These definitions and characteristics lead to a very abstract
view of what an agent actually is. From a software engineer-
ing perspective, agents are similar to objects, but a little bit
more abstract. They can be seen as software components,
developed to exhibit the above mentioned characteristics.
And these agents are normally executed on a special mid-
dleware, called agent platform, which manages the lifecycle
of agents and offers additional infrastructure services like a
message transport system and a directory service. We will
further enhance this brief introduction in the subsequent sec-
tions, once the context allows an explanation by example.

2.4 Middleware
Middleware in general shall shield the application layer from
the details of lower layers in a way that applications can
transparently use different shapes of services without the
need to know any implementation details. Any changes in
the lower layers hence do not affect the applications, but only
the middleware. In most cases a middleware also provides
a set of additional commonly used services for a specific
purpose, so that applications do not need to implement the
necessary functionality themselves.

Different middleware architectures have already been pro-
posed for WSN as well as for RFID systems and even some
for a combination of both technologies [5, 10, 14, 17, 22,
25, 26]. Regarding WSN, the term middleware often refers
to a software layer residing between the application layer
and the lower level hardware-oriented layers of sensors. It’s
main purpose is to support the development, maintenance,
deployment and execution of sensing-based applications [24,
21], particularly focusing on power and topology manage-
ment, data aggregation, transmission protocols, etc. inside
a sensor network [1]. But a holistic view on WSN and tra-
ditional networks is often not provided, i.e. the connection
to infrastructure networks is hardly considered by the mid-
dleware [21, 25, 29]. It is important to point out that our
proposal coexists with current WSN middlewares as we are
focusing on the post-processing of sensor data beyond the
sensor network border.

In contrast to WSN, RFID middleware concentrates on ef-
ficiently processing and constructing meaningful events. In
this case, the term ’meaningful’ plays an important role, as
the focus of an RFID middleware is not only on distributing
data to a specific base station (as in WSN), but on process-
ing and enriching data with contextual information on its
way up the processing hierarchy. RFID tags themselves are
mostly not capable of processing the data stored on the tag.
Instead they are given just enough resources to communi-
cate with a reader [22]. As a consequence, readers are the
bottom-most layer of common RFID middleware and sim-
ply push data the RFID stack upwards, where the data is



filtered, aggregated, translated, enriched, etc. before mean-
ingful Application Level Events (ALE) can finally be sent to
applications for further processing [22].

2.5 Standards
Standardization issues play a major role in the adoption of
technologies. Software and hardware developers want to be
sure that their work gains acceptance by customers and will
not be outdated within the near future. Also the customers
need to feel confident that their investments in a technol-
ogy are future-proof and are globally used in order to fa-
cilitate the cross-enterprise exchange of information. And
finally, standards are the basis for competitive marketplaces
where different system components may be traded, and con-
sequently interoperability needs to be assured [8].

WSN is not widely deployed yet and one does not know
whether the reasons are a lack of interest by the industry or
a lack of standards. There are few standardization efforts
for WSN and these are mostly concentrating on processing
and communication mechanisms inside the network [1, 25,
29] (e.g. IEEE 1451, ZigBee). Existing standards often rely
on standards borrowed from other areas and just add minor
changes to adopt them to the special WSN characteristics.
But to the best of our knowledge there are no standards for
the interface between the data acquisition network (the sen-
sor network itself) and the data distribution network (the
backend responsible for post-processing the data), which is
in our context the most interesting part. As a result, merg-
ing the data of different sensor networks in higher hierarchy
levels of processing often relies on proprietary solutions [25].

Regarding RFID technology standardization has made a good
progress. Driven by large interest and large investments
multiple standards arose during the last years. Besides the
International Organization for Standardization (ISO) also
EPCglobal, a consortium of several companies and univer-
sities, is engaged in the process. EPCglobal published sev-
eral standards for data representation and interfaces, among
which the Architecture Framework [8] is in our context the
most important one as it specifies a set of interfaces and
roles within an RFID middleware. The main goal of these
tasks is to gather, filter, enrich and transform raw sensor
data in a way that application level events (ALE) can be
forwarded to interested parties. But as this abstract archi-
tecture framework does not specify a real system architec-
ture, several concrete architectures taking the infrastructure
roles into account have been proposed [5, 10, 22, 26].

Implementing a concrete architecture, for WSN as well as
for RFID systems, can be quite challenging, because both
technologies are quite young and in some aspects still in an
early stage of development. And it gets even more challeng-
ing when considering a unified middleware for both WSN
and RFID [25]. In the following section we will therefore
outline some of the difficulties in realizing such a middle-
ware and list some requirements for future engineering of
middlewares for sensor networks in general.

3. ENGINEERING CHALLENGES
Regardless the unpredictable future of RFID and sensor net-
works, universities as well as several companies are develop-
ing infrastructures and applications taking the already ex-

isting standards of the according technologies into account
and using proprietary solutions if necessary.

Although a lot of standards have already been published
for such infrastructures, there are still problems adhering
to them. Reasons for this are threefold: First, there ex-
ist different standards for different infrastructures. This
seems conclusive, but sensor networks in general (includ-
ing RFID systems) have a least common denominator (e.g.
post-processing of percept data) [25], which is not accounted
for by the standards. Second, standards for specific aspects
of an infrastructure are missing due to the lack of appro-
priate use cases [8]. As most technologies in these areas
are quite young and rarely used, there are few experiences
and hence new standards are not proposed until the require-
ments are fixed. Third, WSN and RFID technologies may
further converge in the future [25] and standards will have
to be redeveloped or merged in order not to get lost in stan-
dardization.

For these reasons, we expect the standards to be subject of
frequent changes within the next years. Hence, the devel-
opment of an infrastructure adhering to the standards (and
possibly being compatible to the ’old’ ones) may become a
software engineering nightmare, because the process of soft-
ware development needs to be iterated over and over again
as new demands and standards arise. These development cy-
cles require a flexible and extensible software architecture,
otherwise substantial redesigns will become inevitable. In
the following we will thus discuss a set of non-functional de-
sign goals for future sensor network middlewares, which take
the above mentioned challenges into account.

3.1 Design Goals
One has to distinguish between functional and non-functional
design goals. While functional goals define ’what’ a system
shall do, non-functional goals specify ’how’ a system is sup-
posed to be (i.e. quality goals). In order to be prepared
for future sensor network developments, we identified some
non-functional design goals, specifying evolution qualities,
that are of special importance for new generation system
architectures (an overview of functional goals can be found
e.g. in [1, 10, 22, 23, 26]). Most of these should be obvious
and sensor middleware should naturally adhere to them, but
in practice this is often not the case.

Robustness and Adaptivity A middleware for sensor net-
works will need to be robust not in the sense that only
the data acquisition network but also the backend, the
data distribution network, needs to be tolerant towards
failures. This requirement is accompanied with the
need to be able to adapt to changing conditions, es-
pecially if different participators account for specific
services in a network. Therefore a loose coupling of
components and the possibility to dynamically choose
an appropriate service at runtime is necessary.

Flexibility Someday, handling sensor data will not only be
a matter of companies with global-scale processing net-
works, but will also be managed by individuals within
local networks. A middleware must thus be flexible in
a way that it must be deployable in different scales,
i.e. certain functions an individual does not necessar-
ily needs may be omitted for the sake of simplicity and



more sophisticated functions as required by enterprises
must be easy to integrate. From a software engineer-
ing perspective, the functions must also be easily ex-
changeable as requirements and standards change.

Scalability More and more assets will be equipped with
RFID tags, more sensor networks be deployed and
eventually the data from all of these be joined in global-
scale networks. Therefore, a middleware needs to be
able to process single percepts as well as thousands or
millions percepts.

Extensibility If sensor networks and RFID systems be-
come widely deployed, new use cases accompanied by
new requirements will arise. A middleware architec-
ture must thus be extensible and the extensions should
not necessarily require the applications built upon that
middleware to change, but instead new applications
should be able to directly use the extensions.

Having the above mentioned goals in mind, we propose an
agent-based system architecture for WSN and RFID sys-
tems. In the following we will present the architecture and
afterwards discuss our approach with respect to these goals.

4. AGENT-BASED MIDDLEWARE
To face the above mentioned challenges a flexible and adapt-
able architecture with loosely coupled components is re-
quired. Therefore, we propose a middleware infrastructure
based on software agents for processing event streams orig-
inating from different kinds of sources (e.g. WSN, RFID
reader or any other source). To ease understanding we will
first present a motivating example and refer to that example
in the subsequent sections.

4.1 Motivating Example
A trading company expects to receive a pallet with TV
devices. The pallet is shipped within a smart container,
equipped with several sensors measuring and logging accel-
eration, humidity and temperature throughout the whole
transport. Once the container is received by the local ware-
house, the pallet shall be unpacked and the devices be loaded
directly onto a truck to deliver them to the customers, but
only in case the sensor values logged during the transport
do not exceed a specific limit. In this case, the trading com-
pany needs to send a mechanic into the warehouse to check
if the devices are damaged.

To be informed about the state of delivery, the trading com-
pany registers several event triggers with the warehouses
sensor network middleware. States of interest are: a) The
pallet does not arrive in time b) the pallet arrived, but sen-
sor values imply a possible damage and c) the pallet arrived
in time and devices are going to be loaded onto the truck.

4.2 Overview
Inspired by common event driven architectures [7] and ex-
isting RFID systems [5, 10, 22, 26] we also follow a three-
layered system architecture comprising the Application Layer,
an intermediate Network Layer and finally the Network Edge.
The latter connects to the event sources (e.g. WSN base sta-
tion, RFID reader, etc.) and is responsible for infrastructure
management as well as low-level event filtering. The Net-
work Layer’s primary role is the higher-level processing of

events and the creation of Application Level Events (ALE)
as required by the Application Layer. In our architecture the
Application Layer requires no mandatory base components,
hence even resource-constraint devices may make use of the
subordinated Network Layer’s functionality. Moreover, as
our middleware shall be independent of specific kinds of
event sources, the sources are not part of the architecture,
but one can imagine the sources to reside in an additional
layer below the Network Edge (as found in [5, 22, 28]). A
detailed introduction of each layer is given in the following.

4.3 Application Layer
The Application Layer (also referred to as the Network Core,
cp. [22]) represents the highest layer in the middleware
stack. This layer only offers additional services for moni-
toring and debugging functionalities. It hence contains no
mandatory components as to even allow applications run-
ning on resource-constrained devices (e.g. mobile phones)
to be part of the infrastructure. This layer can be seen as a
logical entity as it is not a core in physical means, but may be
distributed over several physical locations. It is even possi-
ble to have multiple cores, e.g. each organization has its own
core, but all of them are operating on the same middleware
layers below. In fact, the relationship between Application
Layer and Network Layer is an n:m relationship, as it is
also possible to have one Application Layer, operating on
multiple Network Layers.

Fig. 1 depicts the components residing in this layer as well
as the actions a developer has to accomplish in order to con-
nect the Application Layer respectively an application with
the Network Layer. The overall goal is to receive mean-
ingful Application Level Events (ALE) from the Network
Layer once one or more specific low-level events occur. For
this purpose a developer first has to create an event filter
for filtering out events of interest. As the event filter is
processed by a complex event processing engine (e.g. Esper
[9]) in the Network Layer, also complex patterns (allowing
content-based filtering in contrast to current standards [25])
as well as causal and temporal relationships may be detected
in a stream of events [18].

Different
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deploy filter and workflow

generate simulation data
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Figure 1: Application Layer

In a second step, the developer may choose how an event
passing the filter shall be processed by the lower layers.
In RFID systems for example, events may be aggregated,
grouped, translated and enriched with additional context
information. For this purpose, the Network Layer offers a
yellow page service which may be queried by the developer



to find and orchestrate the service agents she needs in or-
der to create a tailored ALE. Such an orchestration is sim-
ilar to a business process orchestration, in which activities,
their processing endpoints and additional parameters may
be specified. For example, one may create such a workflow
by specifying that events shall be first translated from rep-
resentation A into representation B and then be enriched by
querying a certain context service (e.g. an EPC information
service). In case the service agents registered with the yel-
low page service do not match the needs, a developer may
also choose to provide its own service agent for a dedicated
task, for example to translate an event into the company’s
proprietary representation.

After creating the workflow (representing the service agent
orchestration) and the corresponding event filter, these need
to be registered at the High-Level Event Filter (cf. next sec-
tion) of the Network Layer. As the Network Layer may
already be a productive system, testing and debugging the
filter as well as the workflow without interfering others may
be a problem. For this reason, developers may use the Event
Generator as well as the Monitoring & Reporting compo-
nents, to create suitable simulation data and monitor the
service agents executing their tasks.

In our example scenario the trading company wants to be in-
formed once one of three possible delivery states is achieved.
Therefore, three different event filters need to be created.
Additionally, at least one workflow description has to be
specified, instructing the middleware how the events shall
be processed. This way, the trading company may provide
e.g. its own aggregation function to be executed on sensor
data, specify to call specific external services (e.g. call a
mechanic to check the devices) to be executed depending on
the aggregated values and enrich an event with additional
context data helping the mechanic to bring the right tools.
Once event filters and the workflow have been deployed, the
company may simulate different scenarios to assure the right
operations are performed by using the Event Generator and
monitoring the processing of generated events.

4.4 Network Layer
The Network Layer is responsible for mapping low-level events
received from the Network Edge to Application Level Events
(ALE) that are finally forwarded to the Application Layer.
Several tasks may be performed at this stage (cf. [22]):

• Events may be aggregated (e.g. just counted), grouped
(e.g. build event sets with respect to a specified at-
tribute) or translated (e.g. change content encoding).

• Additional information based on the event source or a
specific event attribute (e.g. EPC) may be retrieved
from external sources, e.g. an Object Naming Service
(ONS) and an EPC Information Service (EPCIS) [8].
This task may involve multiple service invocations (e.g.
ID resolution, context retrieval, ontology lookup, etc.).

• Every event source may allow to propagate data com-
ing from applications towards a specific sensor. This
way applications are able e.g. to write into the memory
of an RFID tag or to send instructions to a WSN.

• An application may also specify that an external agent
has to be called once a specific condition occurs. This

way the processing chain may be easily extended to
include arbitrary services.

As already mentioned in Section 3, these tasks may be ex-
tended in future middleware generations. Additionally, the
interfaces, as standardized by e.g. EPCglobal, may be changed
according to further demands [8]. To deal with these circum-
stances, we propose to encapsulate every task in a dedicated
agent type (see Fig. 2). Once an interface changes or new
roles are introduced, the corresponding agent types simply
need to be refactored or newly created. For backwards com-
patibility one may decide to additionally keep the ’old’ agent
working. In order to execute the activities of a workflow (se-
quentially or in parallel) agents coordinate among each other
by exchanging messages in a standardized communication
manner.
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Figure 2: Network Layer

For an application to be informed about specific events, it
has to subscribe at the High-Level Event Filter (HLEF)
providing a (possibly complex) event pattern as well as a
workflow description, containing orchestration instructions
for the above mentioned service agents (cf. Section 4.3).
Events coming from the Network Edge (cf. Section 4.5)
are processed by a complex event processing engine in the
HLEF and filtered with respect to the registered high-level
filters. Once a low-level event passes the filter (meaning
an application subscribed for that event) a so called Per-
ceptAgent (PA) is instantiated and further on responsible
for coordinating the processing of the workflow correspond-
ing to that event. Note, that for a single low-level event,
multiple PAs may be instantiated (one for each registered
high-level filter). Processing the workflow means sending a
message containing event information to a service agent as
specified in the workflow and wait for an answer. Process-
ing is finished once either all involved service agents notified
the PA of completion or if the event is subject for being ag-
gregated or grouped. In this case, superordinated dedicated
Aggregation- and GroupAgents (not depicted) take over the
responsibility for the event.

If a service agent specified in the workflow does not accept
a task or does not respond within a specified time interval,
the PA may decide to ask the yellow page service (called
Directory Facilitator) in order to find another agent instance
capable of execution. This way dynamic binding and hence
adaptation to network failures may be achieved. Once a
workflow is completed, an ALE is created and finally sent to
the Application Layer for further processing.



Data may not only be read from lower layers, WSN as well as
RFID systems also allow to write data. For example, an ap-
plication may want to send processing instructions, queries,
or a new power management configuration to a node inside
a WSN or data, e.g. values coming from a sensor network,
shall be stored into the memory of an RFID tag. In the case
of writing data, two problems arise: 1) how to address a sin-
gle sensor or tag from an application and 2) what happens
if a sensor or tag is currently not in range so that writing
temporarily fails? Regarding the first problem, an applica-
tion shall never address entities in the lowest layer directly,
as details of the concrete addressing scheme must be known
by the application. Therefore, the middleware needs to ab-
stract from low-level addressing details and must provide a
mapping between an abstract and a concrete addressing. In
our architecture this is achieved by the PAs and the PA Life-
cycleManager (PALM). An application may send messages
to the PALM addressing a PA using a standardized scheme.
The PALM in turn creates a new PA instance, which caches
the data as long as the corresponding sensor or tag is sensed
again, implying that it is also in writing distance and then
dispatches the writing request to an appropriate Connector
(cf. Section 4.5) in the Network Edge, responsible for writ-
ing to a tag or sensor. This way, also the second problem
stated above may be solved. Similar approaches also exist
in other projects, but the involved component roles as well
as the naming are slightly different (cf. virtual counterpart
[20], virtual sensor [1], virtual tag [10]).

Coming back to our example scenario: as already described,
the trading company needs to register event filters and a
workflow description with the HLEF. Once the container is
being unloaded, the sensor log-files are read and correspond-
ing low-level events from the Network Edge are forwarded
to the HLEF. The complex event processing engine, when
trying to match a registered filter against a stream of events,
caches the relevant sensor data by itself, so that addition-
ally storing the data in the warehouse is not necessary (al-
though reasonable). After reading the sensor logs, an RFID
reader scans all tags that are attached to the TV devices and
subsequently generates appropriate events, which are again
forwarded to the HLEF. Depending on the sensor data ei-
ther the trading companies event filter for possibly damaged
devices or the event filter indicating that everything is fine
matches (the third event filter triggers after a specific time
interval only if no corresponding TV devices are sensed).
As a consequence, the PALM is informed, looking into its
repository if corresponding PAs (with pending write instruc-
tions) exist, and finally instantiates a (new) PA. The PAs
are provided with the trading company’s workflow and coor-
dinate the execution of activities by sending messages to the
corresponding service agents. After being notified that all
agents completed their work, data necessary for construct-
ing an ALE is gathered and the ALE is finally forwarded to
the trading company’s application.

4.5 Network Edge
The Network Edge (depicted in Fig. 3), as the name in-
dicates, separates the non-IP from the IP segment of the
system. Event sources transmit event streams or batches to
protocol-specific Connectors and further on to a Low Level
Event Filter (LLEF) before they are finally forwarded to the
Network Layer’s HLEF.
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Event Log

to/from

Network LayerInfrastructure
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Figure 3: Network Edge

The Connectors are responsible for bridging the protocol
gap, as the middleware components communicate over stan-
dard Internet protocols, but this must not necessarily hold
for sensor networks, RFID readers or other event sources.
In the case of RFID for example, low-level protocols for the
communication between tags and readers have been specified
by EPCglobal, but for the communication between readers
and the Network Edge only data formats are standardized.
Hence in practice readers communicate using a multitude of
interfaces, e.g. Bluetooth, (W)LAN, IrDA or serial RS-232.
As a consequence, one or more Connectors (depending on
the provided data format) for each technology are required.

Once a Connector receives an event from an event source,
contents are extracted and passed further on to the LLEF.
This filter corresponds to an event filter as found e.g. in
RFID systems and is used to filter out duplicates and in-
complete, malformed or unknown events (but it has to be
pointed out that the LLEF is no substitute for the filter inte-
grated into RFID reading devices, as these work on an even
lower layer). Events passing this stage are handed over to
the HLEF residing in the Network Layer (cf. Section 4.4).
An Infrastructure Management component is used to con-
figure sensors as well as the event filter. At this layer we
do not necessarily employ agents as the components effec-
tively processing events in this stage are already in use by
several other projects (e.g. Fosstrack [3]) and may simply
be reused. Although it is possible to additionally wrap the
functionality by agents to achieve a coherent addressing.

In our example scenario, the data from the container’s sen-
sor logs are read by a specific base station and passed on
to a Connector. This Connector in turn forwards the data
to the LLEF. Depending on the configuration of the filter,
some sensor information may be discarded as it is of no in-
terest. The remaining data is further transmitted to the
HLEF. Once the container is unpacked, the TV devices are
read by an RFID reader and the information is again passed
on to the Connector and further up the stack to be finally
processed by the HLEF.

5. DISCUSSION
In Section 3 we discussed challenges for future middleware
systems and identified some non-functional design goals. In
this section we now want to highlight how our proposed sys-
tem architecture meets these design goals and where possible
problems may arise.



We followed the paradigm of agent-oriented software engi-
neering, which is well suited and approved for developing
complex software systems in distributed and dynamic envi-
ronments [4]. Among the reasons are that agents are au-
tonomous, which means they are able to decide for them-
selves what they want to achieve, and they are capable of
sensing their environment and hence able to adapt their be-
havior to changing conditions [16]. If for example an agent
called an external service, but does not get any answer, it
may decide for itself to follow different behavioral strategies,
e.g. wait, call service once again or look for another ser-
vice. In our architecture, robustness is achieved by using a
yellow-page service for finding required service agents hence
the failure of one agent can be compensated by requesting
another instance at runtime and moreover by service agents
being stateless (a new instance for every event-subscription
pair is created) failures do not necessarily affect subsequent
processings. Adaptation to network and load changes may
be achieved by dynamically choosing processing nodes on
which appropriate service agents reside or by migrating mo-
bile service agents onto these nodes.

Moreover, agents are able to communicate and cooperate,
which allows to divide a complex task into multiple simple
tasks being executed by individual agents (cf. our service
agents in the Network Layer). Communication is done by ex-
changing messages, which may be processed asynchronously,
therefore tasks may easily be executed in parallel. Standard-
ized infrastructure components for agent platforms, e.g. a
yellow page service, may be used to achieve loose coupling as
an agent may decide at runtime with whom to communicate
based on its current senses. This also fosters the possibility
to easily extend our middleware by simply introducing new
agents, replacing or cooperating with existing ones. Addi-
tionally, agent-oriented programming is even more abstract
than e.g. the object-orientation, allowing developers to fo-
cus on functionality instead of dealing with low-level details
like communication and threading issues for example. All
these arguments argue for agent-oriented software engineer-
ing achieving the Flexibility & Extensibility design goals.

Of course performance issues have to be discussed when
processing thousands or millions of events [5]. And by us-
ing agents and message-based communication an additional
overhead has to be considered. But in general agent-based
software scales very well as the agents may be easily dis-
tributed among several hosts and by using yellow page ser-
vices loose coupling and hence a dynamic binding can be
achieved. Our middleware is currently implemented using
the Jadex V2 agent system [19] which ships with a high-
performance agent platform and is capable of executing very
lightweight micro agents. Additionally, Jadex also allows
BDI (Belief-Desire-Intention) agents to be executed, which
may be of interest for designing more complex agents with
reasoning capabilities for special tasks (e.g. intelligent adap-
tive routing). For these reasons we argue that agent-based
applications naturally scale very well thus achieving the Scal-
ability design goal.

6. RELATED WORK
In the past, different middleware platforms have been pro-
posed for RFID systems, sensor networks and combinations
of both. The EPCglobal consortium has published sev-

eral standards for the processing of RFID data, including
the EPCglobal Architecture Framework [8]. As this frame-
work only proposes abstract standards, several projects aim
at building concrete system architectures adhering to these
standards, among these are for example [10, 20, 22, 26].

But the examples lack a flexible design making an adoption
of the overall architecture to new demands and standards
quite laborious. Moreover, they concentrate on RFID data
only and in most cases do not allow multiple applications
and organizations to take part in the event processing. To
the best of our knowledge, few projects use agent technology
as part of the system architecture. For example [27] are
using software agents for a manufacturing control system.
They embed the functionality of an RFID middleware to a
large extent into a single monolithic agent, which is directly
interfaced by applications. Another middleware approach
using agent technology is [6], which focuses on mobile agents
for gaining load balancing in RFID systems.

Although standardization of WSN technology has not made
substantial progress, several works propose middleware ar-
chitectures or guidelines and design issues for the develop-
ment of such architectures [14, 17, 21, 29, 30]. Some works
even make use of software agents [11, 13]. But all approaches
mostly concentrate on the ongoings within the sensor net-
work (e.g. data aggregation, routing, etc.) and do not ac-
count for the post-processing of sensor data in the backend,
which we are focusing on. Sung et al. predict a convergence
of RFID and WSN technologies in the future as RFID tags
will become more powerful and hence gain the ability of au-
tonomous communication and processing [25]. Additionally,
isolated systems may be interconnected in the course of time
realizing the vision of the Real World Web [15]. Therefore,
some research efforts have already been spent in developing
an integrated middleware for both WSN and RFID systems
[12, 17, 25, 28] as well as for global scale systems (e.g. [1]).
As a consequence, a middleware needs to be flexible and
generic to abstract from incoming concrete events and out-
going sensor instructions on the one hand, and also should
be extensible to easily allow incorporation of new function-
ality in the future as new demands arise. In our opinion and
to the best of our knowledge, none of the systems satisfies
these requirements.

All architectural proposals in common lack a future-proof
design, rely on centralized infrastructures and/or make use
of monolithic building blocks. They mostly concentrate on
the state-of-the-art in standardization and apply proprietary
solutions if necessary. But as new standards will arise and
existing ones be changed, system architectures are confronted
with frequent and substantial redesigns and refactorings,
putting the architectures to the test.

7. CONCLUSION AND FUTURE WORK
In this paper we argued that the design of future middle-
ware architectures for sensor networks and RFID systems is
challenging due to the underlying standards being subject
to frequent changes. As a consequence we identified a set
of non-functional design goals, which should be considered
when developing such middlewares.



By using software agents for engineering the middleware we
expect to be able to deal with frequent architectural changes
as agents are a means for designing complex software in dy-
namic and distributed environments. Additionally, agents
are from a software engineering perspective the natural an-
swer to scalability, reliability, extensibility and adaptability
issues - key concerns for the distributed processing of event
streams.

We proposed a three-layered, event-driven architecture fol-
lowing the state of the art middleware designs, in which
agents are the main actors responsible for processing the
events. From an application’s point of view, the processing
of events is in this case simply an orchestration of service
agents, which collaborate in order to create tailored Appli-
cation Level Events for the application.

Our prospects for future work are basically finishing the im-
plementation of our proposed architecture to prove its feasi-
bility. Within that scope we will develop exemplary applica-
tions of different scale addressing certain aspects of the mid-
dleware. Looking further into the future, standardization
progresses as well as the evolution of existing middlewares
will be closely followed in order to adapt our architecture to
changing conditions and demands.
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