
Abstract User Interfaces for Mobile Processes

Sonja Zaplata, Ante Vilenica, Dirk Bade, Christian P. Kunze

Distributed Systems and Information Systems,
Computer Science Department, University of Hamburg,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract. An important focus of recent business process management systems
is on the distributed, self-contained and even disconnected execution of proc-
esses involving mobile devices. Such an execution context leads to the class of
mobile processes which are able to migrate between mobile and stationary de-
vices in order to share functionalities and resources provided by the entire (mo-
bile) environment. However, both the description and the execution of tasks
which involve interactions of mobile users still require the executing device
and its context to be known in advance in order to come up with a suitable user
interface. Since this seems not appropriate for such decentralized and highly
dynamic mobile processes, this work focuses on the integration of manual tasks
on the respective ad-hoc creation of user interfaces at runtime. As an important
prerequisite for that, this paper first presents an abstract and modality-
independent interaction model to support the development and execution of
user-centric mobile processes. Furthermore, the paper describes a prototype
implementation for a corresponding system infrastructure component based on
a service-oriented execution module, and, finally, shows its integration into the
DEMAC (Distributed Environment for Mobility-Aware Computing) middle-
ware.

1 Introduction

Current mobile applications and middleware platforms are evolving into a main
driving factor for pervasive systems. Main advantages of such environments include
the use of context information for increased awareness of highly dynamic vicinities
and adapting to those accordingly. Since the use of mobile devices spreads increas-
ingly, such context-aware systems also become increasingly interesting for the execu-
tion of distributed business processes (e.g. [4, 9]). In difference to traditional ap-
proaches in this field, the concept of mobile processes [5] focuses on the cooperation
among devices in a mobile vicinity. A mobile process therefore represents a goal-
oriented composition of services which can migrate to other (mobile or stationary)
devices in order to share the functionality provided by these nodes. Figure 1 shows an
(abstract) mobile process migrating between three devices in dependence of the dis-
covered context. As long as the process engine of a device is able to bind local or
remote services to the activities of the process instance, it is responsible for its execu-
tion. However, in cases of failures or lack of respective resources the engine has to
find other devices in order to transfer the remaining process, its state and control flow
to one of them. Due to the opportunity to execute the mobile process in different

execution contexts, this strategy avoids bottlenecks resulting from missing resources
and thereby increases the probability of a successful execution [6].

Within a mobile process, activities containing (automated) applications are inte-
grated in a single process description holding the relevant data and the current status
of the process instance. The activities within such a process are identified by abstract
service classes to refer to applications and services in a technology-independent way.
This is necessary since the type of services and applications provided in the actual
execution environment cannot be determined at design time − but results from the
available resources and technologies during runtime. Furthermore, a mobile process
can involve arbitrary tasks and heterogeneous devices − and therefore also different
contexts which cannot be foreseen in advance [5,6]. Examples for such contexts are
different service qualities, different network connections, and different device charac-
teristics such as processing power, memory capacity or display size and resolution.

Depending on the type of the mobile device, also a particular set of interaction
modalities is supported. Devices such as built-in car navigation systems mostly sup-
port voice output only, whereas a simple pager can only present short text messages.
Other devices such as PDAs and notebooks use combined modalities (e.g. for a
video-conference), and finally input-only devices such as RFID-readers are not able
to present output data by themselves but have to be connected to additional hardware
(e.g. a monitor). Due to this heterogeneity, there is also a great variety of possible
user interfaces, so interactive tasks still have to be developed platform-dependent
with a priori knowledge about the specific device and its current context.

Because of these circumstances, mobile processes are so far only realized to exe-
cute automated services. But, primary due to the fact that users carry mobile devices
in order to interact with them, manual tasks and interactive applications play a very
important role. Relevant applications for mobile processes include user notification,
confirmation of activities, or the manual handling of errors occurring during process
execution. A supporting middleware platform therefore also needs an abstract, modal-
ity- and platform-independent user interface model and an interaction execution
module to (automatically) tailor the user interface to a specific platform at runtime.
Accordingly, this paper analyses the integration of user interactions to enable the
development of user-centric mobile processes.

The following sections of the paper summarize relevant requirements and analyse
whether existing approaches can be applied to the identified problems. After a brief

Mobile Process Status: Mobile Process Status: Mobile Process Status:

local context local context local context

www

Figure 1 Context-based Cooperation: Mobile Process Execution [6]

review of existing systems (section 3), section 4 presents the developed approach for
an abstract interface model. Section 5 evaluates this approach by reporting on the
development, the integration, and the scenario-based application of such user inter-
faces. Finally, section 6 concludes the paper with a summary and a brief outline of
future work.

2 User Interactions for Mobile Processes: Requirement Analysis

The main goal of mobile processes is to support an autonomous cooperation to
share mobile resources between mobile and stationary devices. As many of such
processes are running in the background, an appropriate interaction module needs to
emerge explicitly in case a new user interaction is required. Consequently, the inter-
face description has to be specified within the mobile process in order to be able to
migrate from one device to another − abstracting from particular interaction modali-
ties, platforms, contexts and other device properties [5]. The descriptions must thus
be capable of being integrated into existing process description languages and allow
for data exchange with superordinated data flow constructs to enable control flow
decisions based on data entered or automatically processed in previous (automated or
manual) activities.

Since for such mobile processes all participating devices are determined at run-
time, the type and the characteristics of the device which will actually execute the
interactive activity cannot be predicted in advance. This means, the specific user
interaction cannot be customized to the executing device, but rather depends on the
resources available in the mobile vicinity. An adequate modality- and platform-
independent approach for the specification of such user interfaces therefore leads to
increased requirements resulting from the heterogeneity as well as from the limita-
tions of mobile systems, e.g. restricted capacity of memory, computing power and
electricity [6, 12]. Consequently, the interaction model should ideally abstract from
specific interaction modalities, such that the most adequate one can be picked at run-
time. However, in individual cases, a specific interface modality is preferred or even
has to be fixed (e.g. viewing a picture is impossible without visual output). This
means that not only the user interaction is dependent on the mobile device but also
the selection of an appropriate mobile participant depends on the required interaction
modality.

Finally, due to limited connectivity and relatively high costs of mobile data trans-
fer, the process interaction model should support disconnected execution. This means
that the execution environment must be able to process interface descriptions without
a durable connection to a central server or to any other device. At the same time,
both the description and the processing module have to be designed considering
memory capacity limitations of mobile devices. Because of this trade-off, an approach
should ideally respect both flexibility and dynamism requirements. This means, it
should be possible to integrate user interactios within the mobile process in order to
allow disconnected operation as well as to externalize task descriptions in order to
load them at runtime, e.g. in case the mobile device has not enough capacity to store
large data or it needs up-to-date information.

3 Existing Approaches

A number of research efforts have already addressed some of the requirements for
realising system environments related to this work. This section briefly reviews some
of these activities and analyses their respective influence, feasibility and drawbacks to
be considered in an enhanced approach for mobile processes.

For the overall architecture of a mobile process management system, one of the
key questions is whether to use a thin or a fat client solution. Several workflow sys-
tems exist for either of these architectures, most of them also considering user interac-
tions. To present a user interface, thin client approaches most commonly use a locally
installed internet browser to exchange information with servers in the backend using
stateless HTTP or WAP protocols. Most popular technologies involve HTML/WML,
XForms, Adobe Flash or Java Applets to describe visual interaction elements. Fur-
thermore, Ajax (Asynchronous JavaScript and XML) is used (e.g. in Google Gears)
to provide a richer user experience as this technology allows to partially update the
user interface by asynchronously fetching new information from a server in response
to interaction events. Nevertheless - because of the inherent characteristic of decen-
tralised mobile processes - such approaches which require a centralised infrastructure
have several drawbacks in general:
• Thin clients require a stable network connection to exchange information with

servers, which, however, is often neither possible nor preferable (e.g. consider-
ing costs or energy consumption).

• Interaction possibilities are constrained to the elements of HTML or WML as
mobile devices cannot be assumed to support browser technologies like Flash
or Java applets.

• Application development is more difficult as the responsibility for managing
user sessions and dealing with unreliable network connections shifts from the
client to the server side.

In contrast to that, a fat client does not necessarily need to be connected to a
server all the time. Instead, the whole application as well as its data is stored directly
on the device, user input is processed locally and a network connection is only used
to communicate results or to receive new tasks. Even fully decentralized operation is
possible as data may directly be exchanged between multiple (mobile) devices. This
way, applications may run independently of a network connection and sessions may
be stored directly on the local device. Once a network connection is available, results
may be sent back to a server or to other clients for further processing. The notion of a
rich client takes the idea of a fat client yet another step further, as a rich client is not
only designed for one dedicated task, but allows arbitrary tasks to be executed. This is
often accomplished by an open, plug-in oriented and hence extensible architecture.
Moreover, such architecture promotes the adaptation for different user requirements
and device capabilities.

There are several corresponding fat/rich client workflow engines available. For
example, the architecture presented by Pajunen [9] describes a fully service-based
workflow engine, running on mobile devices. For interaction, HTML pages and
forms are used and the user’s input is wrapped in SOAP messages and forwarded to a
local WS-BPEL workflow engine managing the control flow of the process. As an-

other example, the Active Forms [10] runtime environment addresses the integration
of arbitrary applications into an XHTML- or mobile forms-based user interface. User
tasks are described using WS-BPEL and executed by a lightweight workflow engine
to orchestrate user interactions spanning multiple applications. However, several
major drawbacks can be identified for these solutions in general:
• Web-based markup languages for rendering user interfaces such as XHTML,

VoiceXML, etc. constraint interaction possibilities to a specific modality and
do not allow arbitrary combinations.

• Business process execution languages which require static endpoint references
(e.g. WS-BPEL) are inappropriate for inter-device processes in dynamic
(mobile) environments as service providers need to be known in advance.

• Common extensions for user interfaces in process execution languages (e.g.
BPEL4People [1], or WS-HumanTask [2]) mostly concentrate on the specifica-
tion of manual human-oriented tasks, but lack the possibility to describe a user
interface in detail.

In summary, existing approaches either require a centralized infrastructure and/or
lack the possibility of processing a rich description language for interactive processes.
Considering languages for this purpose, approaches can be classified into abstract
and model-based descriptions. The User Interface Modelling Language (UIML) [8],
for example, is a representative of the abstract description family. UIML allows de-
fining interface elements in an abstract – device independent – way, but lacks a map-
ping to concrete presentation components as well as the integration of control flow
logic. As another example, the Extensible User Interface Language (XUL) [3] is not –
in contrast to UIML – transformed to a specific language, but interpreted at runtime.
It is used by Mozilla’s application suite to create user interfaces and is interpreted by
the Gecko Rendering Engine at runtime. But as XUL can only describe graphical user
interfaces, it is bound to the visual modality.

A further abstraction level is introduced by the class of model-based interface ap-
proaches. A popular example is the ConcurTaskTree (CTT) model [11] which speci-
fies hierarchically ordered user tasks organized in a tree structure. The tree's root
represents the overall task of the user in a platform-independent way, e.g. a confirma-
tion task. The leaves of the tree structure represent the interaction components of the
user interface which are necessary to fulfil this task, e.g. presenting the text to be
confirmed and collecting the user's input. Although CTT thus allows designing de-
pendencies between interface presentations, it lacks sufficient support to model data
and control flow. For instance, it cannot be specified that the output of an interface
should be dependent on the data values entered in a previous interface. Furthermore it
is not possible to specify non-functional requirements to determine a particular be-
haviour of a user interface. However, CTT considers the heterogeneity of platforms
and allows specifying multimodal interaction methods, which proves to be most suit-
able to form the basis of an abstract interface language for mobile processes. The
enhanced approach based on CTT is therefore presented in the following.

4 A CCT-based Interface Model for Mobile Processes

The most important function of a user interface is to present information and to
capture the input of the user. Therefore, user interaction components can be charac-
terized as (data) containers, having a set of input data which can be accessed by the
user via one or more interaction modalities, and having a set of output data, which
can be referenced as the result of the user interaction. The proposed abstract descrip-
tion language to model user interactions is therefore defined as an XML-Schema
consisting of three main artifacts: One represents the description of the user's task and
the respective interface specification. The other two artifacts are needed to specify the
control flow and the data flow allowing the integration into existing process descrip-
tion languages.

In order to deal with the heterogeneity of mobile devices and to enable an efficient
development of user interfaces, an instance of such a user interface description is
developed only once and is automatically transformed into an arbitrary number of
platform-dependent representations at runtime (cp. figure 2), taking into account the
specific capabilities of each platform and also the current context of the user.

1 Platform-independent

User Interface Description
(abstract)

n Platform-dependent
User Interface Presentations
(system/modality-specific)

...Automatic
Transformation

Windows
MobileTM

JavaTM

SymbianTM

<Process>

<InteractionActivity>

<Presentation>

1...n

<Interactor> 1...n

1

<UserInteractionDetails> 1

<UserInteractionType> 1

<Selection>

<Edit>

<Control>

1

1...n

or

or

Figure 2 Schematic Diagram of the Platform-

independent Model
Figure 3 Artefacts of the Abstract

 User Interface Model

4.1 Abstract Interaction Components for User Interfaces

Resulting from the analysis of existing approaches as presented in section 3, ab-
stract interaction components are based on CTT. The interaction components them-
selves have been adopted, but have been redesigned in order to ease and enrich the
platform-independent description. Furthermore, the model was enhanced to express
non-functional requirements as well as stylesheets to define a specific modality-
dependent representation if needed. The hierarchy of the abstract interaction compo-
nents is depicted in figure 3. Herein, Presentation denotes a single user interface,
which consists of a number of interaction components called Interactors. An Interac-
tor represents the root element of an abstract interaction component and could for
instance be mapped to a TextField using the visual modality or a Prompt using the
audio modality. The concrete functionality of an Interactor is specified by its child
elements, which are grouped by the UserInteractionType into the basic user interface
elements Selection, Edit and Control. The Selection element is responsible for data

elements that can only be selected but not edited, whereas Edit also allows data ma-
nipulation. The Control element is used to navigate within user interfaces or to acti-
vate actions, e.g. it can be used to switch between different Presentations. Key con-
cept within the abstract description of interaction components is the use of descriptive
attributes. These attributes characterize the intended behaviour of an element in a
platform-independent way, e.g. a Selection can be defined as a SingleSelection
(meaning only one item can be selected) or as a MultipleSelection (allowing the selec-
tion of an arbitrary number of items). Furthermore, the expected cardinality of items
can be specified to enable the most appropriate representation, e.g. a SingleSelection
with a high cardinality may be transformed to a ChoiceGroup realized as a Popup
using the visual modality whereas it may be transformed to a number of dialogs using
the audio modality. Furthermore, the abstract description may contain a preferred
modality and a fallback, if the modality is not available on the mobile device (not
depicted).

4.2 Control Flow and Data Flow Components

As mentioned above, the platform-independent model also contains artefacts to
describe the control flow and data flow between several user interfaces. With this
approach, the proposed model is able to support a micro as well as a macro perspec-
tive on user interactions, so called User Interaction Processes.

User Interaction Process

InteractionActivity A (InteractionStartActivity=true)

Presentation P1 Presentation P2 Presentation P3 Presentation P4

InteractionActivity B (InteractionStartActivity=false)

Presentation P5 Presentation P6 Presentation P7

InteractionActivity C
(InteractionStartActivity=false)

Presentation P8 Presentation P9

Legend

 Sequence
 Split

Activity A1 Activity A2 Activity A3

Interaction Activity

Presentation P1 Presentation P2 Presentation P3

Main Process

GlobalParameters
Direction=IN

GlobalParameters
Direction=OUT

User Interaction (Sub-) Process

Figure 4 Micro Perspective on

User Interactions
Figure 5 Macro Perspective on

User Interactions

The former perspective describes a situation where the interaction process is used

as a separate stand-alone service and therefore has to maintain the control flow and
data flow itself. Figure 4 depicts such a stand-alone interaction service, which itself
consists of a few subprocesses, called InteractionActivities, being connected via stan-
dard control flow elements such as Sequence, Loop or Split (cp. [13]). It is character-
istic for the micro perspective that the service does not depend on other components
to process the data and control flow. In contrast to this, the macro perspective charac-
terizes a situation where control flow and data flow is (mainly) maintained by a su-
perordinate process. Thus, the interaction process is only called when user interaction
is needed. This perspective is depicted in figure 5 where Activity A2 of the main proc-
ess calls a user interaction (sub)-process. Selected parameters are passed to the sub-
process and (the same or other parameters) are expected to be returned. Using the
macro perspective with multiple Presentations requires a more powerful interaction

processing module, but avoids to interrupt the interaction processing in case of sev-
eral follow-up interfaces as usual for more complex interactions. Alternatively, the
interaction can consist of a single Presentation only, so that the control flow is re-
turned to the parent process after each interface presentation. This variant allows the
realization of more simple interaction processing modules (only responsible for single
interface interpretation and representation) and is therefore also suitable for less pow-
erful devices. Being able to support these two perspectives enables developers to
tailor interaction processes to specific applications by deciding which functionality
should reside inside the interaction process and which functionality should be pro-
vided by the superordinated process. This flexibility therefore also allows a combina-
tion of user interactions and automated services.

5 User Interface Development, Integration and Realisation

To evaluate the developed interaction model, this section gives a brief overview
of its overall applicability. Therefore, support for the development process using an
existing tool is presented first, followed by the integration into the DEMAC middle-
ware and the execution of a selected example application. Finally, experiences with
the prototype realisation as well as usability aspects are discussed.

5.1 Modelling Abstract User Interfaces with TERESA

As mentioned above, the proposed model for abstract user interfaces is based on
CTT, which can be graphically modelled by the toolkit TERESA [7]. In order to
enable graphic modelling and to support and speed up the development of abstract
user interfaces, a transformation service for TERESA has been developed. The pro-
posed development process is depicted in figure 6. It starts with the interface model-
ling using TERESA (step 1), which generates two output files (AUI.xml and
CTT.xml). These files are then inserted into the developed service (step 2) which
automatically transforms the designed model into an enhanced abstract user interface
description (step 3). Since the intermediary service performs this transformation
automatically, it allows the developer to use TERESA as a graphical development
tool to design abstract user interfaces for mobile processes, making it unnecessary to
learn the syntax of the abstract description language.

Step 1: Abstract User Interface
Modelling with TERESA

Step 2: Transformation
Service

Step 3: Abstract User Interface
Description (Pseudo-Code)

Process Name="Registration"
AbstractInterfaceDescription

Presentation
Name="Confirmation"
Interactor ID="UserName"
Direction="InOut"

UserInteractionDetails
Description="Please confirm
user identified as:"

UserInteractionType
EditType="Info"
Object Name="UserNameValue"
Type="String" Value="$Name"
...

AUI.xml

CTT.xml

Figure 6: Development of Abstract User Interfaces

5.2 Integration with the DEMAC Process Management System

Mobile processes can be executed by a distributed execution engine such as real-
ized in the DEMAC (Distributed Environment for Mobility-Aware Computing) project
(cp. [5,6]). The respective mobile process management system uses the XPDL-based
meta-description language DPDL (DEMAC Process Description Language) to de-
scribe the sequence of activities as well as the user's and application's non-functional
demands (cp. [5,13]). Figure 7 shows the most relevant elements of the DPDL meta-
model, consisting of native XPDL elements and enhancements for process migration,
e.g. abovementioned non-functional requirements (modelled as Strategies). As shown
in the figure, the abstract interface descriptions can be attached to the workflow rele-
vant data without changing the structure of the process description language but
inheriting existing constructs. The module which interprets the interface description is
installed as an ordinary application. Thus, whenever user interaction becomes neces-
sary, the application is called by the processes' control flow and presents the required
user interface. In conjunction with the definition of non-functional requirements, this
architecture also allows executing user-prioritised modalities automatically.

Control Flow
Element

Workflow
Process

1

Strategy

ApplicationWorkflow
Relevant DataParticipant

* *

11 1

*

1

XPDL/DPDL metamodel

Integration of interface components

uses uses

selects

Interface
Description

Interaction
Application

System and
Environmental

Data

Application
Input/Output

Data

*

references

Core
Engine

Base Execution
Engine

External
Application

Extension
Module

Extension
Module

Extension
Module

Receive and forward process descriptions
considering nonfunctional criteria

Interprete process descriptions
and execute processes

Fixed integration of interaction
service for devices being more
powerful

Loosely coupled integration of
(external) interaction service

Interaction service can be
loaded on demand

Figure 7 Integration of Interface Compo-

nents into XPDL-derived Language
Figure 8 Schematic Diagram of the DEMAC

Workflow Engine (cp. [5])

To support a large range of mobile devices with different capabilities, the corre-

sponding mobile process execution engine is structured modularly. A core engine
module supports the migration of processes and a base execution engine is responsi-
ble for executing the control flow of the mobile process and to bind functional ser-
vices to the processes' activities (cp. figure 8). The interaction module can either be
installed as a fixed part of the process engine, as an extension module or as an exter-
nal service component which is only activated in case a user interaction is needed,
e.g. to save memory space. Due to this loose coupling strategy, the interaction module
can easily be switched off, exchanged and e.g. substituted by a module for another
interaction modality if applicable. However, due to its abstract structure and its inde-
pendence from superordinated control flow mechanisms and process management
systems, the interface description can also be applied to other process description
languages such as WS-BPEL or native XPDL and their corresponding execution
modules.

5.3 Example Application Implementation

As motivated in section 1, there are several application areas for user interactions
within mobile processes. Most relevantly, unidirectional interactions (presenting
either output or input interfaces) and bidirectional interactions (combining output and
input interfaces) can be integrated and combined to realize directives, notifications or
confirmations addressed to the mobile user.

Print
travelling

documents

Confirm
travel request

 Register for
conference

 Name
 RegistrationCode

Until 12:00

 Name
 Abstract Interface
 Description

 Approval

 Attention:
 Please confirm
 accreditation for
 user identified as

 Peter Smith

 Accept Reject

$Name

Accept Reject

Printable document

User In
teractio

n

www

Approval
="Accept"

Process Name=RegistrationProcess
DataFields:
 Name (String)="John Smith"
 Approval (String)="[Accept|Reject]"
 AbstractInterfaceDescription (String)=

 "Presentation Name="Confirmation"
 Interactor ID="UserName" Direction="InOut"
 UserInteractionDetails
 Description="Please confirm accreditation
 for user identified as:"
 UserInteractionType EditType="Info"
 Object Name="UserNameValue" Type="String"
 Value="$Name"
 Interactor ID="Decision" Direction="InOut"
 UserInteractionDetails
 UserInteractionType
 Selection Type="SingleSelection"
 Object Name="Options" Type="String[]"
 Value="$Approval""

Activity ID="Register for conference"
 InputParameters: Name
 OutputParameters: RegistrationCode
Activity ID="Confirm travel request"
 InputParameters: Name, AbstractInterfaceDescription
 OutputParameters: Approval
Activity ID="Print travelling documents"
 OutputParameters: PrintableDocument

Figure 9 Example: Mobile Process with Em-
bedded User Interaction

Listing 1 Pseudo-code Representation of
Abstract Interface Description Example

A simple mobile process example containing a bidirectional user interaction is de-

picted in figure 9: A mobile researcher wants to register for a conference. As he cur-
rently does not have an internet connection to directly access the registration service
and registration has to be done until a specified deadline, he initiates a mobile process
to potentially use the resources of other devices in his vicinity to get his accreditation
in time. Assumed that his request has been confirmed by the researcher's supervisor,
the resulting travelling documents can be obtained in printable format (e.g. PDF). The
graphical representation of the mobile process (figure 9) shows two service invoca-
tions (Register for conference, Print travelling documents) and a manual activity
(Confirm travelling request). Attached to the activities, the required context (Internet
access, special person, printer), non-functional parameters (the deadline condition) as
well as the input and output data of each task are shown. As to see, the abstract inter-
face is embedded inside the mobile processes' data container, holding the description
of the elements and attributes to build an appropriate interface at runtime. Listing 1
shows a selected part of the mobile process containing the abstract interface descrip-
tion of the Confirm travel request activity as modelled with TERESA (cp. section
5.1).

For the actual execution, there are now several possibilities: Still assuming the re-
searcher's mobile device is not able to handle the registration request, the process
migrates to another (more capable) device and calls the registration service. Follow-

ing, as mobile processes allow the specification of concrete participants (persons,
devices or generic roles), the required person to execute the upcoming task is se-
lected. The mobile process could therefore either migrate to the supervisor's device
and present the confirmation task locally or - if applicable - invoke the respective
interaction module from remote. Using the abstract description of the user interface,
the interaction module decides about the modality in dependence of the current con-
text. If, e.g. the supervisor is currently within a meeting, the confirmation is presented
as a textual dialog. However, if she is driving a vehicle, audio output and automatic
speech recognition are applied. Furthermore, if the interaction activity requires a
particular interface modality or has to consider other non-functional aspects (e.g.
display resolution) the DEMAC core engine searches for an adequate device to in-
voke this task, e.g. preferring the supervisor's notebook instead of her mobile phone.

5.4 Prototypical Implementation and Usability Evaluation

The interaction module receives and interprets the abstract interface description
and transforms it into a device-specific representation. Except for its standard inter-
faces for integrating the process management system it can be realized as a device-
specific component involving arbitrary sub-modules, e.g. to provide different interac-
tion modalities. The prototypical implementation used in the DEMAC project is de-
veloped for conventional PDAs (using J2ME's CDC Personal Profile and visual mo-
dality only) and for modern sub-notebooks (using Java Standard Edition with voice
output and automatic speech recognition). Without support for mobile processes, the
interaction module can additionally be used as a standalone application for mobile
phones, using the J2ME CLDC MIDP 2.0 profile (cp. [12]).

The respective mapping decision as well as the transformation process is transpar-
ent to the user. However, resulting from the scarcity of resources in mobile environ-
ments, the usability of the automatically generated interfaces mostly depends on the
complexity of the desired artefacts and the capabilities of the platform actually used.
Simple output interactions (e.g. directives or notifications) can be presented in a very
consistent way over both modalities by presenting either a textual info screen or by
using synthesised voice reading the message to be presented. Nevertheless, more
complicated interface descriptions which require the user's input are sometimes af-
fected by a vendor-specific interpretation of concrete interaction objects. Therefore,
at least visual user interfaces differ slightly from device to device. With respect to the
layout of output components this is not a usability problem, whereas the vendor-
specific mapping of navigation keys and menu placements in some cases hinders an
intuitive navigation (e.g. using left and right buttons for back- and forward naviga-
tion). Considering the audio modality, usability is strongly influenced by the quality
of speech recognition software and hardware (e.g. microphones). For instance, within
the realised example bad recordings or insufficient interpretations of spoken words
sometimes lead to wrong decisions in the confirmation activity. However, the fall-
back to the (more unambiguous) visual modality helps to deal with such problems in
a reliable way.

6 Conclusion and Future Work

This paper introduces an abstract model to describe modality-independent user in-
terfaces for mobile processes, enabling user interactions even for distributed tasks
which involve several heterogeneous devices. Depending on the actual context and on
the characteristics of the respective mobile device detected at runtime, the most ap-
propriate way of interaction can thus be chosen dynamically. Moreover, the possibil-
ity to describe human tasks in a very abstract way relieves process designers from
considering the system-specific behaviour of each executing device and its possible
context.

In order to avoid problems caused by the cooperation of multiple heterogeneous
devices using different modalities, future work will address the processing of data
resulting from a user's input. A platform-independent representation of a user's input
data may be necessary to ensure this information can be reused as output data in fol-
low-up activities on devices with different modalities. In addition, use cases contain-
ing cross-modality interactions shall be analysed to further evaluate and advance the
approach.

References

[1] Agrawal et al., BPEL4People Specification 1.0, Active Endpoints, Adobe Systems, BEA
Systems, IBM, Oracle, SAP, 2007.
[2] Agrawal et al.: WS-HumanTask Specification 1.0, Active Endpoints, Adobe Systems, BEA
Systems, IBM, Oracle, SAP, 2007.
[3] Goodger, Hickson, Hyatt, Waterson: XML User Interface Language (XUL) 1.0, Specifica-
tion, http://www.mozilla.org/projects/xul/xul.html, Mozilla Foundation, 2007.
[4] Hackmann, Haitjema, Gill, Roman: Sliver: A BPEL Workflow Process Execution Engine
for Mobile Devices, in: Proceedings of 4th International Conference on Service Oriented
Computing (ICSOC), pages 503-508, Springer Verlag, 2006.
[5] Kunze, Zaplata, Lamersdorf: Mobile Processes: Enhancing Cooperation in Distributed
Mobile Environments, in: Journal of Computers, 2(1):1-11, 2007
[6] Kunze, Zaplata, Turjalei, Lamersdorf: Enabling Context-based Cooperation: A Generic
Context Model and Management System, in: Business Information Systems (BIS), 2008.
[7] Mori, Paterno, Santoro: Design and Development of Multidevice User Interfaces through
Multiple Logical Descriptions. In: IEEE Transactions on Software Engineering 30(8): 507–
520, 2004.
[8] OASIS: User Interface Modelling Language (UIML), Specification, Organization for the
Advancement of Structured Information Standards, 2007.
[9] Pajunen, Chande: Developing Workflow Engine for Mobile Devices, in: Proceedings of the
11th Enterprise Distributed Object Computing Conference (EDOC), 2007.
[10] Pajunen, Chande: ActiveForms: A Runtime for Mobile Application Forms, in: Proceed-
ings of the International Conference on the Management of Mobile Business, page 9, IEEE
Computer Society, 2007.
[11] Paterno: Model-based Design and Evaluation of Interactive Applications, Springer-Verlag,
2007
[12] Satyanarayanan: Fundamental Challenges in Mobile Computing, in: Proceedings of the
15th ACM Symposium on Principles of Distributed Computing, 1996.
[13] WfMC: XML Process Definition Language, Version 2.0. Specification, Workflow Man-
agement Coalition, 2005.

