
Electronic Communications of the EASST
Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2009
(WowKiVS 2009)

Systematically Engineering Self-Organizing Systems:
The SodekoVS Approach

Jan Sudeikat, Lars Braubach, Alexander Pokahr,
Wolfgang Renz and Winfried Lamersdorf

12 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Systematically Engineering Self-Organizing Systems:
The SodekoVS Approach

Jan Sudeikat1, Lars Braubach2, Alexander Pokahr2,
Wolfgang Renz1 and Winfried Lamersdorf2

1 sudeikat; renz @informatik.haw-hamburg.de
Multimedia Systems Laboratory,

Hamburg University of Applied Sciences, Germany

2 braubach; pokahr; lamersd@informatik.uni-hamburg.de
Distributed Systems and Information Systems,

Computer Science Department, University of Hamburg, Germany

Abstract: Self–organizing systems promise new software quality attributes that
are very hard to obtain using standard software engineering approaches. In ac-
cordance with the visions of e.g. autonomic computing and organic computing,
self–organizing systems promote self-adaptability as one major property helping to
realize software that can manage itself at runtime. In this respect, self-adaptability
can be seen as a necessary foundation for realizing e.g. self* properties such as self–
configuration or self–protection. However, the systematic development of systems
exhibiting such properties challenges current development practices. The SodekoVS
project addresses the challenge to purposefully engineer adaptivity by proposing a
new approach that considers the system architecture as well as the software develop-
ment methodology as integral intertwined aspects for system construction. Follow-
ing the proposed process, self-organizing dynamics, inspired by biological, physi-
cal and social systems, can be integrated into applications by composing modules
that distribute feedback control structures among system entities. These composi-
tions support hierarchical as well as completely decentralized solutions without a
single point of failure. This novel development conception is supported by a refer-
ence architecture, a tailored programming model as well as a library of ready to use
self–organizing patterns. The key challenges, recent research activities, application
scenarios as well as intermediate results are discussed.

Keywords: Distributed Systems, Self–Organization, Decentralized Coordination

1 Introduction

Innovative application scenarios are often very demanding with respect to the desired features
the systems should exhibit. Examples include groups of small low-cost satellites that are able to
perform a mission in concert,1 underground urban transport systems consisting of many small

1 e.g. the NASA Autonomous NanoTechnology Swarm (ANTS) / Prospecting Asteroid Mission (PAM) project:
http://ants.gsfc.nasa.gov/pam.html

1 / 12 Volume 17 (2009)

mailto:sudeikat; renz @informatik.haw-hamburg.de
mailto:braubach; pokahr; lamersd@informatik.uni-hamburg.de

Systematically Engineering Self-Organizing Systems

autonomous vehicles, each responsible for reaching an individual target area2 and the monitoring
and automatic reconfiguration of server farms in case of changing environments (e.g. [KLT+08]).
One requirement here is that, because single entities of the systems may fail at any point in time,
e.g. a satellite runs out of energy or a server has a hardware failure, it is of vital importance that
those breakdowns do not harm the overall system functionality.

All mentioned examples have in common that they assume a decentralized infrastructure con-
sisting of a multitude of autonomous entities which have to interact in order to perform the
intended functionalities. This high number of entities as well as the demand for autonomous be-
haviour in combination with coordinated actions requires novel software concepts. In addition,
the ability to systematically construct these kinds of systems is also an important aspect, which
is not well-supported until now.

In the new DFG-funded research project ”Selbstorganisation durch Dezentrale Koordination
in Verteilten Systemen”3 (SodekoVS) the aforementioned problems will be tackled by utilizing
nature-inspired design paradigms. These provide coordination strategies to equip software ar-
chitectures with adaptability and robustness, based on decentralized self-organization principles.
The project mainly aims at making these strategies software technically applicable. Basis for this
exploitation are a newly conceived generic reference architecture as well as an adapted devel-
opment methodology for the systematic construction of such systems. The project shares parts
of its vision with research directions like autonomic and organic computing, and tries to employ
ideas from these areas wherever possible. Nonetheless, the focus of this project is more on the
engineering area and thus more concerned with bringing together standard software-engineering
approaches with nature-inspired paradigms and allow for exploiting them in a generic reusable
way.

This paper is structured as follows. In the next section we discuss the concept of self–
organization and motivate the utilization of this concept as a tool to engineer system adaptivity.
In the following section 3, the imminent research challenges are presented that have to be ad-
dressed to enable the purposeful engineering of self–organizing processes. Application scenarios
(section 4) are outlined before we conclude and give prospects for future work.

2 Self–Organization in Software

The systematic utilization of self–organizing dynamics represents an important prerequisite for
being able to construct challenging applications and equip them with the ability to manage them-
selves, allowing for desired properties like adaptability and robustness. Here, we will introduce
the notion of self-organization and outline the current state of support for its software technical
exploitation.

2.1 Self–Management via Self–Organization

The term self–management has been coined to describe software systems that exhibit adaptivity,
i.e. that adjust their configuration at run–time [MWJ+07]. This view follows the black–box
definition of adaptivity by [Zad63] that characterizes adaptivity as the ability to respond to inputs

2 e.g. the CargoCap Project: http://www.cargocap.de/
3 Self–Organisation by Decentralized Coordination in Distributed Systems

Proc. WowKiVS 2009 2 / 12

ECEASST

with appropriate outputs, where the appropriateness of responses is subject to system observers.
The establishment of self–management requires the introduction of control loops. Systems

are to be monitored, the appropriateness of perceived states is to be evaluated and actions are
to be selected and enacted that adjust the systems configuration. Several research efforts, most
prominently the autonomic [HM08] and organic [SOR07] computing initiatives, have estab-
lished frameworks4, design patterns [SOR07] and architectures [RMB+06] that facilitate the
creation of managing elements that automate these activities, i.e. establish closed control loops.

The term self–organization originates from the description of physical, biological and social
phenomena, where global structures arise from the local interactions of individuals (e.g. par-
ticles, cells, agents, etc.) [SGK06]. Self–organizing system operate completely decentralized,
self-actuate the rise of structures and behave adaptive while being subject to perturbations. These
phenomena can be observed when system elements act autonomously and their activities influ-
ence each other mutually. These influences enable decentralized coordination by distributed con-
trol loops. A canonical example is the so–called Ising-Model5 that explains ferro–magnetization
as a cooperative effect of micro–magnets, so–called spins. The magnetization of these influence
each other and when individual spins are able to adjust their heading, these align to a coherent
magnet field. Self–organization is distinct from emergence, which describes the establishment
of higher level artifacts that are irreducible to the constituent system entities. Self–organization
is often a prerequisite to emergent properties, but a distinct concept [DH04].

Self–Organized phenomena are a threat and at the same time an opportunity for the develop-
ment of adaptive applications. Self–organization threatens todays applications as it may be intro-
duced unintendedly, e.g. discussed in [Mog05]. It is non–trivial to foresee the mutual, transient
influences among autonomous, distributed entities that may lead to cooperative effects. Influ-
ences can be caused by direct perceptions or indirect dependences, i.e. due to shared resources.
While superior management entities can be used to dampen these effects, approaches to consider
and plan for self–organized phenomena are indispensable. The purposeful utilization of self–
organization is an active field of research [SGK06] and has been proven useful as software design
paradigm for self-managing systems in several application domains [PB04, NT04, SR08a].

The utilization of this paradigm promises to weave adaptive properties into applications, i.e.
to inherently manifest adaptive properties. By controlling the collective adjustment of compo-
nent configurations, the coherent adjustment of the system itself can be conceived. This design
approach is attractive as it allows to distribute problem solving computations among system en-
tities. The absence of dedicated managing entities fosters achieving robustness, scalability and
failure recovery. However, developers need to be aware that self–organized mechanisms often
only provide near–optimum solutions and can be outperformed by centralized managers that
have complete knowledge. The distribution of problem solving power also requires background
processing in the coordinated elements.

2.2 Developing Self–Organizing Systems

Developers of self–organizing applications face the dilemma how to design the the constituent
entities (micro-level) in order to establish the intended system–wide properties (macro-level).
4 e.g. the Autonomic Computing Toolkit: http://www.ibm.com/developerworks/autonomic/overview.html
5 e.g. see http://ccl.northwestern.edu/netlogo/models/Ising for an example simulation model

3 / 12 Volume 17 (2009)

Systematically Engineering Self-Organizing Systems

Prominent tools for the development of self–organizing applications are field–tested coordination
strategies and simulation–based bottom–up development procedures, e.g. reviewed in [SR08a].
These provide practical guidance on how to conceive and revise non–linearly coordinated system
properties.

Strategies for the coordination of autonomous entities typically take inspiration from natu-
ral, e.g. physical, biological or social, self–organizing systems that serve as design metaphors
(e.g. catalogued in [MMTZ06]). Following these designs, entities (agents) communicate via
so–called Decentralized Coordination Mechanisms (DCM) [DH06a]. For example, the trail for-
mation of ant during ant foraging can serve as design inspiration and is realized by distributing
digital pheromones [PB04]. The nature–inspired metaphors provide reusable patterns of control
loops [SR08a, SR07b] that can be realized by allowing entities to collectively adjust their local
behaviors. Individual adjustments are based on information flows among entities. Decentralized
coordination mechanisms guide their realization by direct or environment–mediated interactions
that provide dynamics for spreading and decaying information. E.g. digital pheromones evapo-
rate, therefore allowing old, i.e. not reinforced, information to die out.

The behavior of self–organizing applications arises from the coaction of individuals. There-
fore, it cannot be directly inferred from the designs of the individual components but it is neces-
sary to observe the effects of the sum of agent interactions [Edm04]. Simulation–based develop-
ment procedures support the utilization of self–organizing applications that treat development as
a sequence of experiments [Edm04].

2.3 Existing Obstacles for Using Self–Organization in Software Systems

The construction of self–organizing applications challenges current development practices. The
decision to utilize self–organizing dynamics has impact on the the development procedure and
the application structure. The available design patterns primarily serve as design inspirations, and
expert knowledge is required to map these ideas to application domains. In order to anticipate the
effects of changes within an element type on the globally rising structure, system simulations are
required. Simulations need to be conducted repeatedly to ensure that the intended mechanism /
metaphor combinations are capable to exhibit the intended dynamics as well as to quantitatively
tune implementation parameters [Edm04]. The results are therefore often highly customized
algorithms that cannot easily be reused, i.e. adjusted to further application domains.

The systematic design of decentralized self–organizing systems is scarcely supported. The
derivation of guidelines and heuristics for the utilization, selection and combination of coordina-
tion strategies [PB04] is impaired by a lack of practical modeling approaches and the diversity
of available coordination strategies and corresponding simulation / implementation frameworks.
Moving towards the purposeful engineering of self–organized dynamics requires to provide self–
organizing dynamics as modeling and implementation concepts, to allow their systematic treat-
ment, reuse and exchange, by non–expert development teams.

3 SodekoVS: Toward Engineering Self–Organization

The SodekoVS project aims at providing self–organizing processes as reusable elements that
developers can systematically integrate into their application designs. The utilization of self–

Proc. WowKiVS 2009 4 / 12

ECEASST

organization in software engineering is addressed by providing a reference architecture that of-
fers a conceptual framework for the configuration and integration of self-organizing processes
(cf. section 3.1). The integration is guided by adjusting methodical development procedures
(cf. section 3.2). Following this conception, coordination mechanisms are made available as
middleware services (cf. section 3.1.1). A minimal-intrusive programming model (cf. section
3.1.2) allows developers to configure and integrate representations of nature-inspired coordi-
nation strategies in their applications. The systematic utilization of these development tools
requires support to design, i.e. model, select, combine and refine self-organizing dynamics (cf.
section 3.2.1), and to simulate qualitatively, at early development stages, as well as quantita-
tively, the resulting application prototypes (cf. section 3.2.2).

3.1 Architectural Challenges

The aim of the reference architecture is to provide a conceptual framework for the integration
of miscellaneous coordination strategies into application designs. It guides the interplay of ap-
plication dependent component functionalities and their coordination and therefore prepares a
constructive approach to the utilization of self–organization. This coherent environment for the
definition and implementation of self–organized coordination provides a framework to the as-
sessment, comparison and combination of different self–organizing mechanisms. In addition,
the architecture is devised to support the systematic development of self–adaptive applications
(cf. section 3.2). The architectural conception makes minimal assumptions on the elements that
are to be coordinated and therefore allows to supplement also specialized management architec-
tures, like controller hierarchies from autonomic computing (e.g. [SOR07, RMB+06]).

3.1.1 Providing Self–Organizing Dynamics as Software Components

The diversity of coordination strategies, description formats and implementation / simulation
frameworks complicates the treatment of self–organizing dynamics as reusable, exchangeable
software components. The unification of mechanism description and implementation models
promises a coherent architectural view–point and implementation environment.

In order to examine the ability to adapt self–organizing dynamics to application specific prob-
lems, a library of coordination mechanisms is provided. A generic usage interface allows their
reuse and facilitates their software technological treatment. The provided library provides a cat-
alogue of mechanism pattern as reusable components that provide systematic problem–oriented
descriptions of mechanisms in an abstract, reusable format. This facilitates the selection and
combination of mechanisms.

Figure 1 shows the reference architecture [SR08b] for self–organizing application, which is
meant as a coarse blueprint for applications having some self–organization features. It consists
of three abstraction layers. The top most application layer contains the standard application func-
tionalities and in addition may have a link to agents, which are mainly responsible for realizing
the self–organization characteristics, but may also exhibit other application functionalities. The
coordination layer placed below consists of the agents as well as a substrate, which may contain
one or more coordination media. Mechanism instances are encapsulated in distinct coordina-
tion media and are interfaced by coordination components that allow to modify agent states.

5 / 12 Volume 17 (2009)

Systematically Engineering Self-Organizing Systems

This model allows to enact coordination strategies by (1) configuring the component internal
information to be exchanged, (2) defining the dynamics of the information flows between com-
ponents and (3) declaring how individual components adjust their local activities (cf. section
3.1.2). Finally, the execution infrastructure layer is responsible for providing basic services to
the coordination layer. These services e.g. include the agent management and execution.

Based on detailed classifications of coordination mechanisms properties [SR08a, DH06a,
SGK06] generic environment and interaction models remain to be devised that combine and pro-
vide the functionalities that allow coordination media to be configured to resemble the dynamics
of established coordination mechanisms (cf. section 2.2).

Application

Agent Platform

Coordination
publication / perception

Coordination
publication / perception

Coordination
publication / perception

Agent Agent Agent

generic
agent
interaction
decentral
coordination
[self-
organization]

A
pp

lic
at

io
n

La
ye

r

coordination
service
usage
agent
platform
service
usage

AgentAgent

Coordination Medium

Coordination Medium

coordination
information
publication /
perception

C
oo

rd
in

at
io

n
La

ye
r

Execution Infrastructure Layer

application
dependent
functionality

Figure 1: SodekoVS reference architecture, following [SR08b].

3.1.2 Application Integration

Designs of self–organizing applications typically harmonize the coordinated subjects and the
means to their coordination, i.e. component and coordination models are tightly coupled. The
systematic utilization of the provided coordination media demands conceptual and technological
solutions to defining the correct interplay of coordination interactions and application dependent
component functionalities. A generic usage interface is required that respects component au-
tonomy and allows the reliable integration of inter–component coordination. The integration in-
terface abstracts from the specific coordination mechanism instances, therefore supporting their
arbitrary integration as well as their interchangeability and reconfiguration.

The encapsulation of self–organizing mechanisms and their integration in agent models has
found minor attention. In [SPK06, SRR06], adjustments of agent models have been proposed that
allow to equip individuals with observer / controller components that enforce self–organizing dy-
namics by monitoring and modifying agent states. These approaches facilitate the separation of
mechanisms to the enforcement of self–organizing dynamics from the application development,
i.e. the construction of application dependent agent models.

In [SR08b], an alternative, minimal–intrusive approach has been proposed that allows devel-
opers to control the influences of coordination services (cf. section 3.1.1) by annotating agent
models. These annotations define which agent internal elements are monitored and effected by
coordination services.

Proc. WowKiVS 2009 6 / 12

ECEASST

This approach promises the separation of coordination and application models. It aims at
providing a generic integration interface that abstracts from mechanisms details. Enabling this
independence from mechanism implementation details is required to facilitate the coherent defi-
nition of coordination strategies and the interchangeable usage of coordination mechanisms.

3.2 Methodical Challenges

The outlined reference architecture allows to resemble nature–inspired self–organization strate-
gies and integrate them in conventionally developed software systems. Supporting the system-
atic integration by a generally accepted development process is a practical challenge and requires
tools to the design and evaluation of self–organizing dynamics. Figure 2 denotes a conceptual
view on integrating self–organization. Incremental development activities are supplemented with
activities that address the manifestation of self–organizing phenomena (I–V). While developers
design the functionality of their applications, they revise the decentralized coordination of com-
ponent activities in interleaved development activities. Supplements to the requirements activi-
ties (I) facilitate the description of the intended application dynamics [SR07a]. During analysis
activities (II), it is examined which instances or combinations of coordination metaphors (cf.
section 2.2) can bring by the required adaptivity, i.e. component activity coordination. Design
activities (III) detail the models of selected coordination strategies and configure the coordination
mechanisms that are used for their realization [SR09a]. These activities prepare the implemen-
tation / integration (IV) of the coordination dynamics within the application software. This is
facilitated by a library of mechanism instances to be configured and accessed by a generic us-
age interface. Testing (V) activities are supplemented with the simulation-based validation that
component coaction meets the given requirements, i.e. manifests the intended adaptiveness. The
detection of variations enforce tuning mechanism parameters (III) and/or coordination redesigns
(II).

The major challenges in providing these development activities consist in conceiving practi-
cal means to model self–organizing dynamics that facilitate design activities, i.e. coordination
strategy selection, combination and refinement (cf. section 3.2.1). The validation that modeled
and implemented dynamics meet system requirements is a laborious effort that explicit models
of intended dynamics promise to support by tailored system simulations (cf. section 3.2.2).

Requirements Analysis Design Implemen
tation Test

Self-Organized Coordination Engineering
I II III IV V

+
tt

Define Intended
System Behavior

Mechanism Selection
+ Configuration

Metaphor Selection
(+ Combination)

Software Library /
Execution Platform

Simulation Support /
System Behavior Validation

Figure 2: SodekoVS development activities.

3.2.1 Designing Self–Organizing Dynamics by Refining Coordination Strategies

Approaches to model self–organizing dynamics typically rely on sophisticated formalisms that
facilitate the derivation of macroscopic system properties from local element specifications e.g.

7 / 12 Volume 17 (2009)

Systematically Engineering Self-Organizing Systems

[RZT07]. Facilitating the incremental design of these dynamics requires modeling formalisms
that support refinement operations and allows to align coordination models with application de-
signs. Systematic utilization of coordination strategies demands that guidelines for the selection
and combination of design models can be derived from strategy descriptions.

Distributed control loops have been identified as the driving force of self–organizing dynam-
ics (e.g. in [PB04], cf. section 2) and their explicit modeling promises an approach to relate
coordination models to entity designs. In [SR07b, RS08, SR09a] this approach has been pro-
posed to describe the coordination in agent–based applications. The proposed modeling notions
take inspiration from the macroscopic modeling level that is adopted by System Dynamics (SD)
modeling concepts [Ste00]. SD describes systems in terms of system state variables, i.e. accu-
mulative values of system qualities, and causal relations among them which denote the rates of
change of variable values. This view–point highlights how system elements mutually influence
and therefore facilitate the description of feedback loops. Transferring these systemic model-
ing notions to the semantics of agent–based application designs [SR09a] allows to describe how
agent activities influence each other as well as environment properties. Hence, this modeling
approach provides an additional view–point on detailed agent designs and the derived models
indicate the dynamic system behavior [Ste00].

The approach has been successfully applied to describe the requirements on the adaptivity
of self–organizing applications [SR07a]. These descriptions utilize systemic application models
and classify the space of possible system configurations, i.e. possible value ranges of state vari-
ables. In this respect, adaptivity is described by transitions between types of macroscopic system
states.

Coordination strategies provide reusable means to steer the collective reconfiguration of com-
ponents. Enabling their methodical utilization demands to support their selection, combination
as well as the configuration of coordination mechanism implementations. The systematic selec-
tion of coordination strategies hasn’t been significantly supported in literature. An exception is
[DH06b], where coordination mechanisms have been associated to the properties of the macro-
scopic system behaviors that they are capable to enforce. Coordination metaphors have been
classified (e.g. see [MMTZ06]) but unambiguous criteria for the systematic selection remain to
be derived. Systemic modeling notions allow to describe coordination strategies. These descrip-
tions particularly facilitate the anticipation of the macroscopic behaviors that result from strategy
utilizations either by deriving simulation models or their mathematical treatment. Therefore, this
approach promises to facilitate the combination of coordination strategies, e.g. as approached in
[SR07b, RS08, DH06a].

These results demonstrate that models of application dynamics can be mapped to agent–
oriented design models. The detailed examination of their relation remains future work. It
needs to be examined how to derive systemic models from established design notations, possibly
supported by tools to maintain the consistency of both modeling levels.

3.2.2 Validation–Support for Self–Organized Applications

Systematic development of self–managing applications demands approaches to validate that
systems exhibit the intended characteristics. When the self–management is realized via self–
organization, structured procedures are required to to check that the coaction of system elements

Proc. WowKiVS 2009 8 / 12

ECEASST

gives rise to the expected system behaviors. Basically, two different approaches can be exploited.
Formal verification of self–organizing dynamics (cf. e.g. [RZT07]) and systematic simulation
studies [Edm04]. Simulation approaches are generally applicable and do not require advanced
mathematical skills from developers and hence fit better for mainstream software development.

Self–organizing applications designs can be validated by both qualitative as well as quantita-
tive simulations. Qualitative simulations (cf. e.g. [GVO06]) allow to check at early development
stages that application designs are capable to exhibit the intended system behaviors. Developers
derive simulation models from application designs, examine their dynamic properties and when
indicated revise application designs. Within the SodekoVS framework, developers will apply
simulations to check that combinations of coordination strategies are capable to meet system
requirements.

Realizations of coordination strategies (cf. section 3.1.2) need to be simulated to validate their
qualitative behavior as well as to quantitatively adjust implementation parameters. The defini-
tion of simulation experiments and the interpretation of their results requires manual effort. The
SodekoVS framework aims to support and automate these. The ability so simulate applications
will be integrated in the coordination middleware service (cf. figure 1). This allows to directly
simulate the application code, possibly equipped with mock third party elements, and reduces
the effort to repeatedly check the effects of decentralized coordination. The definition of system
requirements (cf. section 3.2.1) facilitates the definition of hypotheses on the manifested causal
relations among system variables that can validated via system simulations [SR09b]. This intro-
duces the testability of self–organized phenomena and its practicability and automation will be
examined in a prototype implementation of the presented reference architecture (cf. section 3.1).

4 Application Scenarios

In many application areas, challenges exist that can be tackled by employing self-organized
dynamics. These challenges are usually induced by the fact that applications need to be deployed
in unpredictable and constantly changing environments. Examples of successful self-organizing
applications can be found, e.g., in the areas of production control [JB03], ad-hoc/sensor networks
as well as robots and unmanned vehicles [MMTZ06]. In all of these settings, self-organization
provides advantages compared to traditional solutions, because of the natural robustness and
adaptivity of the underlying algorithms.

These algorithms have to be conceived and implemented by trial-and-error in a tedious and
manual way. The SodekoVS project strives to simplify and overcome this problem and enable
a systematic construction of the desired dynamics. For all phases of the development process,
supporting techniques will be provided, which allow focusing on domain relevant factors like
costs and capacity utilization. To illustrate this vision and the expected benefits, two example
application scenarios will be described in the following, which will be used among others to
validate the practical applicability of the SodekoVS approach.

In the area of transportation logistics, domain relevant factors are, e.g., the utilization of trucks
and packet delivery time. Among the environmental challenges are the uncertainty about the
amount and destinations of future orders, the dynamic occurrence of traffic jams as well as
unexpected truck breakdowns. These domain factors and environmental challenges are highly

9 / 12 Volume 17 (2009)

Systematically Engineering Self-Organizing Systems

interrelated. Instead of fighting the connections between factors, the SodekoVS approach focuses
on exploiting existing and newly introduced feedback loops to robustly and adaptively balance
domain factors as desired. In this respect, self-organized resource/task allocation can be used to
balance truck utilization vs. packet delivery time and self-organized routing algorithms ensure
that trucks follow nearly optimal routes even in the presence of potential traffic jams [PBS+08].

The management of application within Service–Oriented Architectures (SOA) poses consid-
erable administrative overhead. The reduction of this expense factor is of economic interest.
Application elements like databases, application servers and (web) services, are complicated
software components that often require manual administration. E.g. in [KLT+08], it has been
proposed to save energy (cost) by adaptively switching physical servers. The deployment of
application services is also subject to manual adaptation. E.g. when service demands are fluctu-
ating over time and locations, application placements need to be adjusted (cf. e.g. [NT04]). The
SodekoVS approach provides coordination media that allow to distribute feedback loops among
system entities, i.e. to exchange coordination relevant information that trigger component ad-
justments. E.g. service brokers may publish service demands and (physical) servers may publish
the availability of resources, i.e. the ability to host web services. These information would al-
low managers of service endpoints to balance service deployments with service workloads. The
declarative integration of a comparable coordination strategy is discussed in [SR08b].

5 Conclusions

In this paper it was argued that in many challenging application areas properties like robustness
and adaptability are inevitable. In order to provide these properties it is necessary to consider
decentralized solutions without a single point of failure. For the coordination of such systems
self-organization can be used, but the integration of self-organizing coordination strategies into
software systems is a non-trivial activity. Hence, in this paper the vision of a novel development
approach for constructing self-organizing systems in a systematical software engineering way
was presented. This vision is currently pursued in the context of the SodekoVS project.

Starting point for realizing the vision consists in a new general conceptual framework for
building self-organized applications. This framework proposes a generic reference architecture
as well as a methodical development support. The reference architecture illustrates which con-
stituents make-up a self-organized application and how these constituents interact, while the
development approach shows, which additional activities should be performed in each of the
standard development phases. By using the conceptual framework, the current state of the art,
the preliminary results of the project as well as the open research questions have been discussed.

Future work concerns the outlined challenges, particularly the realization of the presented
coordination architecture, generic coordination environment models and their validation via an
integrated simulation support. Moreover, the developed concepts and tools will be used to realize
software demonstrators in the outlined application scenarios.

Acknowledgments

SodekoVS is funded by the Deutsche Forschungsgemeinschaft (DFG).

Proc. WowKiVS 2009 10 / 12

ECEASST

Bibliography

[DH04] T. DeWolf, T. Holvoet. Emergence and self-organisation: a statement of similarities
and differences. In Proceedings of ESOA’04. Pp. 96–110. 2004.

[DH06a] T. DeWolf, T. Holvoet. Decentralised Coordination Mechanisms as Design Patterns
for Self-Organising Emergent Applications. In Proceedings of ESOA’06. 2006.

[DH06b] T. DeWolf, T. Holvoet. A Taxonomy for Self-* Properties in Decentralised Auto-
nomic Computing. In Autonomic Computing: Concepts, Infrastructure, and Appli-
cations. 2006.

[Edm04] B. Edmonds. Using the Experimental Method to Produce Reliable Self-Organised
Systems. In Engineering Self Organising Sytems. LNAI 3464, pp. 84–99. 2004.

[GVO06] L. Gardelli, M. Viroli, A. Omicini. On the Role of Simulations in Engineering Self-
organising MAS: The Case of an Intrusion Detection System in TuCSoN. In Engi-
neering Self-Organising Systems. LNAI 3910. 2006.

[HM08] M. C. Huebscher, J. A. McCann. A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comput. Surv. 40(3):1–28, 2008.

[JB03] N. R. Jennings, S. Bussmann. Agent-based control systems. IEEE Control Systems
23(3):61–74, 2003.

[KLT+08] R. D. J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, H. Chan. Autonomic
Multi–Agent management of Power and Performance in Data Centers. In Proc. of
AAMAS 2008 – Industry and Applications Track. Pp. 107–114. 2008.

[MMTZ06] M. Mamei, R. Menezes, R. Tolksdorf, F. Zambonelli. Case studies for self-
organization in computer science. J. Syst. Archit. 52(8):443–460, 2006.

[Mog05] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems. Technical
report HPL-2006-2, HP Laboratories Palo Alto, 2005.

[MWJ+07] G. Mühl, M. Werner, M. A. Jaeger, K. Herrmann, H. Parzyjegla. On the Definitions
of Self-Managing and Self-Organizing Systems. In Proc. of KIVS 2007. 2007.

[NT04] S. Nakrani, C. Tovey. On Honey Bees and Dynamic Server Allocation in Internet
Hosting Centers. Adaptive Behavior 12(3-4):223–240, 2004.

[PB04] H. V. D. Parunak, S. Brueckner. Engineering Swarming Systems. In Methodologies
and Software Engineering for Agent Systems. Pp. 341–376. 2004.

[PBS+08] A. Pokahr, L. Braubach, J. Sudeikat, W. Renz, W. Lamersdorf. Simulation and Im-
plementation of Logistics Systems based on Agent Technology. In HICL. 2008.

[RMB+06] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, H. Schmeck. Towards a generic
observer/controller architecture for Organic Computing. In INFORMATIK. 2006.

11 / 12 Volume 17 (2009)

Systematically Engineering Self-Organizing Systems

[RS08] W. Renz, J. Sudeikat. Modeling Feedback within MAS: A Systemic Approach to
Organizational Dynamics. In Proc. of OAMAS’08. 2008.

[RZT07] M. Randles, H. Zhu, A. Taleb-Bendiab. A Formal Approach to the Engineering of
Emergence and its Recurrence. In Proc. of EEDAS 2007. 2007.

[SGK06] G. D. M. Serugendo, M. P. Gleizes, A. Karageorgos. Self–Organisation and Emer-
gence in MAS: An Overview. In Informatica. Volume 30, pp. 45–54. 2006.

[SOR07] H. Seebach, F. Ortmeier, W. Reif. Design and construction of organic computing
systems. Proc. of CEC 2007, pp. 4215–4221, Sept. 2007.

[SPK06] L. M. Seiter, D. W. Palmer, M. Kirschenbaum. An aspect-oriented approach for
modeling self-organizing emergent structures. In Proc. of SELMAS ’06. 2006.

[SR07a] J. Sudeikat, W. Renz. On Expressing and Validating Requirements for the Adaptivity
of Self–Organizing Multi–Agent Systems. System and Information Sciences Notes
2(1):14–19, 2007.

[SR07b] J. Sudeikat, W. Renz. Toward Systemic MAS Development: Enforcing Decentral-
ized Self–Organization by Composition and Refinement of Archetype Dynamics. In
Proc. of EEMMAS 2007. LNAI 5049. 2007.

[SR08a] J. Sudeikat, W. Renz. Applications of Complex Adaptive Systems. Chapter Building
Complex Adaptive Systems: On Engineering Self–Organizing Multi–Agent Sys-
tems, pp. 229–256. IGI Global, 2008.

[SR08b] J. Sudeikat, W. Renz. On the Encapsulation and Reuse of Decentralized Coordina-
tion Mechanisms: A Layered Architecture and Design Implications. In Communi-
cations of SIWN. Volume 4(ISSN 1757-4439), pp. 140–146. 2008.

[SR09a] J. Sudeikat, W. Renz. MASDynamics: Toward Systemic Modeling of Decentralized
Agent Coordination. In Proc. of KIVS 2009. 2009.

[SR09b] J. Sudeikat, W. Renz. A Systemic Approach to the Validation of Self–Organizing
Dynamics within MAS. In Proc. of AOSE’08. 2009.

[SRR06] A. Shabtay, Z. Rabinovich, J. S. Rosenschein. Behaviosites: a novel paradigm for
affecting Distributed Behavior. In Proceedings of ESOA’06. Pp. 23–39. 2006.

[Ste00] J. D. Sterman. Business Dynamics - Systems Thinking and Modeling for a Complex
World. McGraw–Hill, 2000.

[Zad63] L. A. Zadeh. On the definition of adaptivity. Proceedings of the IEEE 51(3):469 –
470, 1963.

Proc. WowKiVS 2009 12 / 12

	Introduction
	Self--Organization in Software
	Self--Management via Self--Organization
	Developing Self--Organizing Systems
	Existing Obstacles for Using Self--Organization in Software Systems

	SodekoVS: Toward Engineering Self--Organization
	Architectural Challenges
	Providing Self--Organizing Dynamics as Software Components
	Application Integration

	Methodical Challenges
	Designing Self--Organizing Dynamics by Refining Coordination Strategies
	Validation--Support for Self--Organized Applications

	Application Scenarios
	Conclusions

