
Context-Dependent and Self-Responsible Migration of
Software Agents in Heterogeneous Environments

Dirk Bade
University of Hamburg, Department of Informatics

Distributed Systems and Information Systems Group

bade@informatik.uni-hamburg.de

Abstract: Software agents are often employed in distributed environments to cope
with the various dynamical dimensions of such systems. Furthermore, the paradigm
of agent-oriented software engineering is of special interest in the course of ubiquitous
computing and the emerging mobility of users. One reason for this are the constituting
characteristics of agents, that perfectly suit the accompanying demands of these trends.
Hence, this paper introduces a new kind of adaptive, mobile application supporting the
”anywhere and anytime”-ability of mobile computing in general as well as the mobility
of users and their adaptation to new computing environments. Therefore, a generic
and extensible environment model, facing the heterogeneity of the infrastructure and
entities within the environment, is presented in this paper. Further on, a mobility
model for safe and efficient migration of agents is introduced. Using these models,
agents may adaptively choose appropriate migration strategies at runtime by taking
their current context into account.

1 Introduction

Since the early eighties agent-oriented software engineering gains more and more interest.
Due to the offered higher level abstractions compared to e.g. the object-orientation, this
paradigm is especially suited for the development of complex and distributed systems
[LMSW05]. Another reason for this are the constituting characteristics of software agents
like their ability to perceive the environment, to autonomously and proactively act in this
environment and thereby to dynamically adapt to changes [WJ95, RN03]. Additionally,
the notion of mobility is included in some definitions of agents, allowing them to migrate
between different execution platforms and perform tasks in a suitable environment [FG96].

The ability to sense the environment combined with the ability to change the place of
execution allows for dynamically choosing appropriate execution platforms, characterized
e.g. by offered local resources. This feature is especially useful in the context of mobile
computing, where agents are executed on resource constrained devices and hence may
wish to temporarily migrate onto other platforms in order to process their tasks. This
also allows agents to autonomously accompany their user by monitoring her behavior and
migrating on a (mobile) device close to the user. This way, the user has access to the agent’s
data and services anytime and anywhere. Think of a mail-agent for example, retrieving



mails once a network resource is available and following it’s user so that she can read and
respond to mails no matter whether she is at her desktop computer at home or at work or
with her mobile device on the way.

But having a personal agent following it’s user to offer data and services is just one as-
pect. Since only a single instance of an application agent is needed, multiple installations,
configurations and subsequent updates as well as manually synchronizing two or more in-
stances can be avoided. This results in a higher convenience for the user as she can work
with her application in a familiar setting and does not have to get used to new applica-
tion settings on each device she is working with. Other examples include self-organizing
service networks, where context-aware, mobile service agents are responsible for load-
balancing and failure-recovery or applications for mobile ad-hoc networks (MANETs), in
which unreliable and slow connections demand safe and efficient migration protocols that
take the agent’s current context into account.

Therefore, in this paper an environment model is presented in section 2, allowing agents
to exchange information about entities in their surrounding. Furthermore, section 3 intro-
duces a mobility model, which is used to specify the details of a migration process like e.g.
the kinds of environmental events triggering the migration, the kind of migration (weak or
strong), safety provisions (e.g. agent backups, error handling) and so on.

2 Environmental Awareness

Sensing the environment plays a key role in an agent’s internal reasoning process to choose
an appropriate action towards reaching one of it’s goals. Such an action is often directed
to some kind of entity within the environment, e.g. another agent to coordinate with, a
database to access or a service to engage. In order to perceive entities, an agent either
needs some kind of sensor or it must exchange knowledge with other agents. The received
percepts then need to be integrated into an internal model of the environment for further
application-dependent processing.

This work therefore proposes a generic and flexible environment model, which is on the
one hand responsible for gathering information about locally and remotely accessible en-
tities and on the other hand for offering this information to the user and other agents in
an easy, intuitive and yet expressive way. Furthermore, the model should not only allow
for entity look-up or discovery, but should also support awareness [McG00], i.e. the con-
tinuous integration of state changes triggered by any environmental events. Due to the
heterogeneity of the entities in the environment, it must allow for integrating informa-
tion about any kind of entity (e.g. hardware entities, remote platforms, available services
and other agents) and must be extensible to incorporate application-dependent information
(e.g. documents, business objects, etc.). Finally, the model should make use of existing
standards for exchanging and representing knowledge, but also provide simple proprietary
mechanisms as a least common denominator.

In order to meet these requirements, the proposed model defines a set of generic interfaces
for a) gathering information about local entities, b) exchanging information with other
agents about remote entities and c) representing information. Local sensors are responsi-



ble for gathering information about e.g. the hardware, the operating system and execution
environment as well as locally offered services and other local agents. Discovery protocols
(e.g. Jini, Bluetooth SDP, JXTA, etc.) may be used to distribute information within the net-
work and hence to collect information about remote entities. Different representation- and
query languages as well as optional transformation services allow for expressing knowl-
edge, ranging from simple string-based to expressive logic-based languages (e.g. RDF,
OWL). Additional support for ontologies not only yields to a common conceptualization
of entities, but also eases the transformation of representations into one another and hence
supports the interoperability of different protocols and mechanisms.

In the context of this work a prototype for the Jadex agent system [BPL05] has been devel-
oped. This prototype has been implemented as a dedicated service agent (called resource
facilitator, RF) responsible for managing and updating the environment model. Once
started, this component may use different mechanisms to initially find other remote RFs
and to subscribe for specific news channels (e.g. news about offered services, known
contacts, resource load, etc.). In the following, information is exchanged using one or
more standard discovery protocols, which are adaptively chosen, depending on the cur-
rent context. This way, a virtual (multi-hop) network is spanned, in which environmental
information is actively distributed among the RFs. Being aware of the environment is
furthermore the basis for context-dependent, event-driven migration, as described in the
following section.

3 Context-Dependent and Self-Responsible Migration

Considering the process of agent migration, there are three questions to answer: when,
where and how to migrate an agent? In general, one might say, an agent needs to mi-
grate once it’s current platform lacks a required resource, which is available elsewhere.
This answers the first two questions. But how to migrate strongly depends on the current
conditions, because there are different kinds of migration techniques. One has to decide
whether to migrate weakly (only transfer the object-state) or strongly (transfer the agent’s
object-state along with it’s call stack and it’s instruction pointer) and whether to push all
or some of it’s classes to the next destination or to pull them on demand. This decision is
called a migration strategy [Bra03] and has a high impact on the efficiency of the migration
process. For example, in a mobile ad-hoc network it might be better to push an agent, it’s
whole state and all of it’s code, because it cannot be assured that the unreliable connection
is still functional later on to reload some classes. On the other hand, with an expensive
UMTS connection, one might want to push only the agent’s object state and pull single
classes once they are needed.

Answers to the questions raised above can often only be determined at runtime. And since
an agent should be allowed to decide and act autonomously, user intervention should be
avoided for convenience (surely not in all cases). Using the environment model introduced
in the previous section an agent is able to perceive changes in the environment and may
therefore decide at runtime when, where and how to migrate. But the process of migration
is error-prone and hence reasonable precautions have to be taken, especially in case the
user did not initiate the migration but the agent. As a consequence, the agent has to act



self-responsible, which means that the agent has to make sure, that the user’s access to the
agent is always granted. In unreliable networks (e.g. MANETs) the agent may for example
create a backup of itself on the user’s device, demand a transactional but less efficient
migration and choose appropriate migration strategies in order not to get lost. In addition,
sophisticated exception-handling for every single stage of the migration process needs to
be applied in order to react to failures and to restart an agent once the migration failed. In
order to meet these requirements, the proposed mobility model extends the Kalong model
[Bra03], which focuses on the efficiency, in a way to also include safety aspects in a
migration process. This way agents may autonomously find a trade-off between efficiency
and safety of a migration process, depending on their current context.

4 Conclusion

This paper proposes a generic and flexible environment model as well as an adaptive mo-
bility model. Although each of these models is useful in itself, the combination of these
enables a new kind of adaptive mobile application. On the one hand, such an application
may autonomously delegate subtasks to be executed on several nodes in a distributed sys-
tem, thereby considering efficiency and safety aspects so that complete execution can be
guaranteed. And on the other hand, this allows for an application to follow its user (or
other mobile entities) in order to offer data and services anywhere and anytime 1.

References

[Bad07] Dirk Bade. Kontextabhängige und eigenverantwortliche Migration von Software-
Agenten in heterogenen Umgebungen. Master’s thesis, Uni Hamburg - Dept. Infor-
matik - AB VSIS, May 2007.

[BPL05] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Jadex: A BDI-Agent
System Combining Middleware and Reasoning, pages 143–167. Whitestein Series in
Software Agent Technologies, Birkhäuser Verlag, 2005.

[Bra03] Peter Braun. The Migration Process of Mobile Agents-Implementation, Classification,
and Optimization. PhD thesis, Uni Jena, CS Dept., May 2003.

[FG96] S. Franklin and A. Graesser. Is it an Agent, or just a Program? In Intelligent Agents
III. ATAL’96, volume 1193. Springer-Verlag, 1996.

[LMSW05] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

[McG00] R.E. McGrath. Discovery and Its Discontents: Discovery Protocols for Ubiquitous
Computing. Technical report, Uni. of Illinois, CS Dept., 2000.

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition, 2003.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and Prac-
tice. Knowledge Engineering Review, 10(2):115–152, 1995.

1Further information can be found in [Bad07]


