
Enabling Context-based Cooperation: A Generic
Context Model and Management System

Christian P. Kunze, Sonja Zaplata, Mirwais Turjalei, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[kunze|zaplata|9turjalei|lamersdorf]@informatik.uni-hamburg.de

Abstract. In order to realise complex service-based applications on sys-
tem platforms for context-aware ubiquitous computing environments,
mobile processes have been introduced to support cooperation among
(mobile) devices by exchanging and executing arbitrary (business) pro-
cesses. In such a view, middleware platforms that support the execu-
tion and migration of mostly a priori unknown processes need a generic
and also application-independent context system. Accordingly, this paper
presents an approach for a generic context model and management plat-
form to support such context-based cooperation as currently developed
and used in the project DEMAC (Distributed Environment for Mobility-
Aware Computing).

1 Introduction

Mainly due to the technical progress in processor and network technology, ubiq-
uitous computing environments are becoming more and more reality. One of the
main characteristic of such environments is the mobility of users, devices, and
even application code. Under such conditions, mobile applications and support-
ing platforms frequently have to bridge the gap between required and provided
resources and capabilities at any specific place and/or time.

In order to narrow this gap, devices of respective mobile vicinities can cooper-
ate by sharing their resources for executing mobile applications. Today however,
in most cases, mobile applications are still restricted to the capabilities of those
device(s) they were initiated on. Other resources which are, e.g., potentially
available from other devices remain still inaccessible for any dynamic adjust-
ment of the mobile application. In consequence, this also limits the complexity
of applications and tasks to the initialing device’s capabilities. But, in order to
fully realise the vision of ubiquitous computing [16], even much more complex
and also unknown tasks (and thus more generality) have to be supported by
advanced mobile and context-aware systems. Mobile processes represent such
complex application tasks and use context knowledge to execute and migrate
(business) processes in order to increase the likelihood to finish the task suc-
cessfully by integrating the capabilities of different mobile nodes of the vicinity

(cp. [8] for a detailed introduction). As use of these processes leads to real co-
operation among the participating mobile systems, applications implemented as
mobile processes are able to realise a form of context-based cooperation [9]. How-
ever, a supporting context-aware middleware for this new class of applications
has increased requirements for the underpinning context model and management
system as compared to more traditional ones. Accordingly, this paper identifies
such requirements and presents an approach to model and use context for a
mobile system supporting the execution and migration of mobile processes.

The following subsections of the paper first motivate the need for a generic
context model and management system for mobile processes. Afterwards, basic
requirements of an underpinning context-aware middleware platform to support
such processes are identified. Section 2 then addresses related work and section 3
presents the coarse architecture, the proposed context model and the correspon-
ding context management component. Section 4 refers to the evaluation within
the DEMAC middleware before section 5 concludes the paper with a summary.

complex task results or effects

context federation context

www

Figure 1. Context-based Cooperation for Mobile Processes

1.1 Executing Service Compositions with Mobile Processes

A mobile process is a goal-oriented composition of arbitrary services and manual
tasks which may span several heterogeneous mobile and static devices, users,
and services. In order to (potentially) use all the capabilities and resources pro-
vided in its entire local and remote environment, such a process can migrate to
other devices, e.g. to share the functionality provided by these nodes. In order to
ensure the user’s goals even on foreign devices, non-functional requirements can
be specified to restrict participating services, users and devices. The required ac-
tivities within such processes are determined by abstract service classes to refer
and identify applications and services in a technology-independent way. This is
done because the type of services and applications provided in the environment
at runtime can not be determined at designtime - but result from the available

resources of the context during execution. The same argument holds for the de-
scription and the management of context information: Because a mobile process
can involve arbitrary tasks and heterogeneous devices - and therefore also differ-
ent contexts which cannot be determined in advance by the executing device -
the context model and context management system of a supporting middleware
infrastructure has to be generic and application-independent even at runtime.
Figure 1 shows an (abstract) mobile process migrating three devices in depen-
dence of the discovered context. As long as the process engine of a device is
able to bind local or remote services to its current activity, it is responsible for
the mobile process. However, in cases of failures or lack of respective service in-
stances the engine has to try to find other devices to execute the mobile process
and to transfer the remaining process and its execution to one of them. As the
initiator of the process (in this case the user of the PDA) is interested only in
the effects of the process execution, there is no need to return the results to this
participant. A concrete example of such a mobile process can be found in [9].

Figure 2. Probability tree of successful execution

The procedure of migration opens up a new vicinity to search for other and
maybe more suitable devices and is determined by the heterogeneity of the vicin-
ity. Thus, the likelihood to finish the overall task successfully is increased in the
following way (as depicted in figure 2): The upcoming task can either be directly
executed by the current device itself or, otherwise, has to migrate to another
device. Accordingly, let p denote the probability of a single device being capa-
ble of executing the current task. In extension, let q denote the probability of
migration. Without restricting generality, let furthermore p and q be equal for
all devices of the mobile vicinity, and n be the number of hops caused by migra-
tion. Equation 1 summarizes these observations by calculating the probability
as a converging geometric series as the likelihood of a successful execution of
the task anywhere in the mobile vicinity. Some exemplary values are presented
in figure 3 showing the probabilities of successful execution with a migration
probability of 20% and 80%. As to see, the estimated probability of a successful
execution increases considerably already after only a few number of hops.

PSuccess = p

n∑

i=0

((1− p)q)i = p
1− ((1− p)q)n+1

1− ((1− p)q)
(1)

23,81%

45,45%

65,22%

83,33%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16 18 20

probability of

successful execution

number of hops

(a) Migration (q=20%)

55,55%

76,92%

88,24%

95,24%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10 12 14 16 18 20

probability of

successful execution

number of hops

(b) Migration (q=80%)

Figure 3. Estimated probability of successful execution

In summary, the probability of successful execution – involving arbitrary
tasks and heterogeneous devices – is influenced by the migration which is it-
self dependent on the potential to detect and integrate heterogeneous context
dynamically. However, since such different context cannot be determined in ad-
vance, the context model and context management system of a supporting mid-
dleware infrastructure has to be generic and application-independent even at
runtime – which is hardly supported by traditional context-aware middleware
systems. The following section therefore presents basic requirements for such a
generic context-aware middleware approach for mobile processes.

1.2 Requirements Analysis

In order to facilitate the exchange of context information and interaction between
heterogeneous mobile devices, relevant context information has to be mapped
to an adequate data structure and thus be provided in a standardized way (1).
Therefore, on the one hand, context information has to be represented by an ad-
equate uniform and extensible model (2) which allows standardized interaction
between mobile devices. On the other hand, techniques for context manage-
ment, such as the discovery, evaluation and administration of relevant data, are
required. To ensure reusability and extensibility, the context model and the con-
text management system should be conceptually decoupled (3). Additionally, the
entire context system has to be independent of platforms, communication pro-
tocols and programming languages to allow a flexible integration into existing
mobile middleware (4).

A main aspect of cooperation is the exchange of distributed context informa-
tion (5). Thus, not only the local context but also the contexts of other mobile
participants in the vicinity are relevant. Therefore, the middleware should define
a protocol to exchange context information and to provide efficient mechanisms
to access the context of cooperating devices. Because different devices can in-
clude different contextual data, the context model has to be able to represent
different categories of context information (e.g. environment, activity, identity
or time). Therefore, it is necessary to abstract from the structure of contexts and

their actual representation, e.g. the local time, temperature or velocity (6). Con-
sequently, the management system has to support the transformation of context
information to equivalent data formats on the basis of semantic knowledge (7).

In order to enable proactive and ad-hoc reactions to relevant changes of con-
text, the middleware needs to observe the context model and notify registered
applications in case of specified changes (8) in the overall context or of single at-
tributes. Other important requirements are derived from considering constraints
resulting from mobility. The scarcity of resources of mobile devices requires a
lightweight and robust system architecture (9). This means, in particular, that the
composition of middleware services has to be flexible and scalable (10) in order
to allow, for example, deactivation of temporarily unused modules. Likewise, the
selection of relevant and situation-specific context information requires custom
filter mechanisms (11). Concerning the context model, the semantic separation
of high-level, low-level, dynamic and static context information facilitates the
runtime management (12): While dynamic context data is subject to frequent
changes and has to be updated periodically, static context does not need costly
refreshing procedures at runtime. Furthermore, non-functional aspects such as
security and privacy concerns (13) as well as the specification of quality para-
meters (14) for the potentially imprecise data play an important role (Quality
of Context [2]).

2 Related Work

As shown, context-based cooperation of services requires a generic context model
as well as a flexible management system to support arbitrary applications de-
fined as a mobile process. Respectively, this section presents an overview of re-
lated context modelling approaches and existing frameworks to support context
management on mobile systems. A rather simple and thus lightweight approach
of structuring context information is realized by the key value model [13]. To
provide context information, the value of the relevant context parameter - like
the current position - can be stored e.g. to the key of one respective environ-
ment variable [12]. As a consequence of its simple representation, this model is
not adequate to structure composed or high-level context information. In con-
trast to that, markup schema models represent context data in more complex
hierarchical textual structures [13]. Examples are the Comprehensive Structured
Context Profile (CSCP) [6] and the CC/PP Context Extension [7]. Related to
this markup approach, an object oriented model encapsulates context informa-
tion also hierarchical but as classes. A more formal description of context can be
derived by contextual reasoning or inferencing in logic-based approaches [10] or
can be realized by ontological models, which introduce methodologies for a nor-
malized domain-specific knowledge representation. Examples are Aspect Scale
Context Information (ASC) [10] and CONtext ONtology (CONON) model [15].

These models are used, e.g. in the Context Toolkit [11] which is a manage-
ment framework based on an object-oriented architecture. It uses context wid-
gets to abstract from sensor-based raw data, provides reusable components to

access context information, and supports the exchange, persistence and logging
of context data. Although the widget approach is a suitable solution to abstract
from low-level in-formation and to provide reusable components, there are no
concepts about how to exchange context information in a distributed mobile en-
vironment. In contrast, the Hydrogen framework [14] was exclusively developed
for mobile applications and is therefore characterized by a very lightweight archi-
tecture. However, communication between applications, middleware and sensor
network is restricted to TCP/IP-based protocols. Furthermore, a transformation
mechanism to obtain different but equivalent representations of context infor-
mation is not available. The Java Context Awareness Framework (JCAF) [1]
is a compact event-based system to support the development of context-aware
platforms. It consists of an extensible API to model application-specific context
information, and of a distributed infrastructure system, which provides cooper-
ating context services in order to manage the context model. However, a clear
separation between context model and management system is not consequently
pursued. Furthermore, the communication between services and clients as well
as among the clients themselves is based on Java RMI and, in addition, context
information is modelled as serializable Java objects and thus JCAF cannot be
considered to be totally platform-independent.

Context
Toolkit Hydrogen JCAF

DEMAC
Approach

(1) Provision of Context Information + + + + ++

(2) Extensibility and Reusability + + + – ++

(3) Separate Model and Management – – – + ++

(4) Integration + + – +

(5) Distribution – + + ++

(6) Mapping and Abstraction Level + – + +

(7) Transformation + – – + ++

(8) Extended Notification Mechanism – – – +

(9)Robustness and Compactness + + + + ++

(10) Flexibility and Scalability – – – – ++

(11) Filter Mechanisms – – – ++

(12) High Level and Static Context + – – – ++

(13) Security and Privacy – – – + –

(14) Quality of Context Parameter – – + + ++

++ supported; + partly supported; – marginally supported; – – not supported

Table 1. Analysis of Context-Aware Middleware Platforms

Although a detailed discussion of the whole range of related work is out of the
scope of this paper, in general, it can be derived that peer-to-peer and ad-hoc in-
frastructures of portable devices form the most challenging environment for mo-
bile applications and, consequently, systems which move at least important parts

of the context computation into supporting infrastructure - such as Nexus [4] or
Solar [5] - and relatively heavyweight ontological approaches - such as SOCAM
[15] or CoBrAs [3] - are not considered in this paper. Table 1 evaluates (due to
space restrictions only some) selected contemporary context-aware middleware
approaches and the proposed system according to requirements for supporting
context-based collaboration and outlines also exemplary deficiencies. In partic-
ular, the evaluated approaches have at least some deficiencies w.r.t. a clear sep-
aration between context model and management system which influences their
flexibility and scalability. Furthermore, mechanisms to filter relevant context in-
formation and to realize extended notification to consider changes in the overall
context remain unsupported. Therefore, all approaches presented there do not
suffice to support highly dynamic context-based collaborations which can also
determine relevant context parameters at runtime.

3 A Context Component for Distributed Mobile Systems

In line with the well-established tradition of ”middleware-based” approaches to
open distributed application development, system support for mobile, context-
aware applications shall also be realised by respective infrastructure components.
In such a view, figure 4 provides an overview of the coarse architecture of a con-
text (middleware) component. As shown, the raw data layer represents a collec-
tion of heterogeneous services and components which provide low-level context
information without any structuring. These are either interfaces to physical sen-
sors of the mobile device itself or logical sensors based on (remote) services. As
the components of the raw data layer are composed arbitrarily and can also
change during runtime, context information can be achieved from different re-
sources. Therefore, the service management of the context layer has to abstract
from these single resources in order to overcome the heterogeneity of its under-
lying services. The context management component uses homogeneous wrapper
services from the service management to administer the context model, e.g. to
update context data on the basis of new raw data. Both components are en-
capsulated by the context service, which acts as a proxy to access the context
layer.

3.1 Generic Context Model

Although resources and services providing context are often heterogeneous and
differ in representation and quality, the middleware should be able to allow for
an intuitive and non-complex selection and composition of context information.
Therefore, the context model has to provide standardized interfaces and formats
to integrate different context resources. To illustrate the components of the pre-
sented context model and the inter-relationships, figure 5 shows a schematic
diagram of this model: Here, an entity represents a single object which can ag-
gregate several components to describe contextual information on a higher level
as, e.g. a person with her location and activity or a meeting combining a set

Application (A) Application (B) Application (C)

Device

Sensor

Bluetooth

Service

RMI

Service

Web

Service

System

Preferences

Context Service

Service

Management

Context

Management

Context

Model

Application

Layer
...

...

Context

Layer

Raw Data

Layer

Figure 4. A Context Component to Support Context Aware Middleware Systems

of persons. As can be seen in this example, complex entities can also aggregate
other entities to describe their context recursively.

A single piece of context information within an entity is modelled as an
attribute. Because the context information can be obtained by heterogeneous
services with different characteristics, there are also different types of attributes.
A sensed attribute indicates a dynamic context value, meaning that the context
value changes relatively frequently which is typical for information from logical
or physical sensors (e.g. the amount of free memory space of a mobile device).
In contrast, a defined attribute models more static context information, which
is unlikely to change during runtime, e.g. the identity of the user or the type
and model of the mobile device. Finally, high-level context information, which is
obtained by a combination or processing of several low-level context attributes,
is described as a deduced attribute. The actual value of an attribute is modelled
as the data value component and can include arbitrary simple or complex data
types. Furthermore, each attribute provides a link to external semantic resources
- e.g. an RDF file - as a unique identifier allowing to share context data between
manifold applications more easily. Because contextual information can be impre-
cise, inconsistent, or incomplete, information about the quality of context helps
to interpret the reliability of the data. Therefore, the component quality con-
straints contains a set of quality parameters as, for example, the refresh period
of data, its precision, or its standard deviation.

On a higher level, the component domain context represents a self-contained
and specifically demarcated environment which holds a limited number of rele-
vant entities. This classification has the advantage to serve as a filter mechanism
in a way that in a given context only that information is being selected, which is
relevant to the respective application. As a result, the number of context prop-
erties discovered and held by the mobile device is as small as possible and the

amount of necessary information is customized to the particular environment of
the application.

Context Model
DeviceContext DomainContext

LocalContext RemoteContext Entity

DataValue

QualityConstraintsQualityParameter

SensedAttribute DefinedAttribute DeducedAttribute

Attribute
1..n 1 0..n 1

1 1..n

1

1..n

SemanticLink

 1

 1

1

1..n

1..n

Figure 5. Schematic Diagram of the Context Model

The whole set of relevant domain contexts and information about the current
domain is part of the device context which aggregates all context data of a single
mobile system. The overall context contains next to the local context also the
remote context of foreign (but locally reachable) mobile systems. As a result of
the generic model, the remote context can contain arbitrary domains and entities,
unaffected by the (limited) set of contextual information modelled within the
local context.

3.2 Context Management System

In order to achieve the required separation between context model and man-
agement, all middleware functions concerning the management of the presented
context model are realized by autonomous services: The central component of the
context management is the RemoteContextService which manages the exchange
of context information between cooperating devices. It implements a protocol to
provide local context to other devices and to integrate remote context to learn
about the environment of foreign participants. Additionally, a SecurityPrivacy-
Service determines which information should be revealed to other participants.
A SerializationService is responsible for serialization and deserialization of con-
text information by, e.g. representing the model in XML format or others. If
context data is required to have a different representation, the Transformation-
Service supports the conversion of contextual data values to equivalent formats.
Refreshing data values of the context model, which is especially relevant for dy-
namically sensed attributes, is done by the UpdateService which obtains recent
raw data from sensors and external services. A NotificationService observes the
local context model and the relevant context of remote systems in order to allow
proactive actions through event notifications. Finally, a StorageService saves con-
text information in order to analyse past values and to make predictions about
future contexts.

4 Evaluation

In order to evaluate the applicability of the generic context model and manage-
ment system as proposed above, a prototype implementation of all presented
components has been realized within the existing DEMAC middleware which
provides basic support for the exchange and distributed execution of mobile
processes (cp. [8]) in heterogeneous open system environements. For testing the
integrated approach, a distributed example application has been implemented
based on a set of mobile processes, each modelling a user-centric workflow to ex-
ecute a sequence of manual tasks and automatic services. The mobile processes
have been modelled with the DEMAC process description language (DPDL) (cp.
[9]) and contain several activities whose execution is constrained by different con-
textual criteria, depending on the user’s individual requirements as well as on
the capabilities of the environment the process is migrating to.

The prototype implementation of the DEMAC middleware runs on different
mobile devices, such as a notebook or a PDA as well as on Desktop PCs. Each
collaborating device holds its own local context model and can obtain relevant
remote context models if needed. Each local context includes a DefaultDomain
with a DeviceEntity and either a UserEntity or a CommunicationEntity and
a couple of basic context attributes, like static ones (e.g. user identity, display
resolution and operating system) and dynamic attributes (e.g. available network
connections, free disk space and current location). Furthermore, different services
(either locally or remotely accessible) have been realised to execute upcoming
(sub-) tasks of the mobile process.

Since context attributes can be exchanged and used during runtime, the pro-
cesses’ propagation can be controlled depending on relevant context data. This
hinders mobile process to be transferred to devices outside the right context -
thus avoiding unnecessary migrations. For example, in the prototype implemen-
tation, the middleware’s context service is able to consider the availability of a
specific participant (user or device), appropriate services to perform an upcom-
ing task, or the compliance to non-functional requirements like network quality
or memory resources. In case the context service cannot find appropriate partic-
ipants with an acceptable context, the mobile process can be transferred to an
arbitrary participant in order to enter a new execution environment and, thus,
new contexts.

To verify the results obtained by the analytical model (c.p. section 1.1) and
to analyze the applicability of the context service, the evaluation includes an
experiment to determine whether or not the probability of successful execution
increases by context-based cooperation based on the developed context model.
The environment for the experimental series consists of a simple process with
one single activity, six heterogeneous devices (as described above) with two de-
vices having the capability to execute the processes’ activity and four devices
being unable to do so. Because sender and receiver of the mobile process must
not be the same, there are 5 possibilities for each process to migrate from one
device to another, which makes an execution probability of p=40% within the
entire system. To test the behaviour of the prototype under load, three test

runs were carried out, each including a number of 100 processes. Figure 6 shows
the average number of hops resulting from migration necessary to execute the
process successfully. The analysis of the experiments further shows that only a
few hops suffice to increase the probability of successful execution to levels more
than twice as high. The probability estimated in the analytical model and the
applicability of the context model can therefore be confirmed also by practical
experimentation.

25,00%

35,00%

45,00%

55,00%

65,00%

75,00%

85,00%

95,00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

analytic estimated probability of
successful execution

average probability of successful
execution during the experiments

probability of

successful execution

number of hops

Figure 6. Experimental Series: Average Probability of Successful Execution

Nevertheless, a known issue of exchanging context data when no suitable
participant can be found is the low performance of retrieving remote context
information due to the necessity to collect it in recurrent intervals. Besides, better
process routing could be achieved, if context data could be shared transitively
among participating devices. Furthermore, not all relevant security issues could
be resolved so far.

5 Conclusion and Future Work

This paper argues that mobile processes can be used to realize a class of context-
based systems which use context information to support distributed cooperation
by joint use of all combined capabilities of all different (mobile) devices in a dis-
tributed environment. Since established context models and management sys-
tems do not suffice to support such applications, requirements for middleware
support for such a class of context-based cooperation were identified. A unified
approach of an adjusted and contemporary context model and corresponding
management component for mobile systems were presented and, also based on a
respective prototype implementation, evaluated. Future work includes solutions
for still open security issues as well as the development of advanced strategies
to increase migration performance.

References

1. J. E. Bardram. The Java Context Awareness Framework (JCAF) - A Service
Infrastructure and Programming Framework for Context-Aware Applications. In
Pervasive, pages 98–115, 2005.

2. J. Baus, A. Krüger, and W. Wahlster. A resource-adaptive mobile navigation
system. In IUI ’02: Proceedings of the 7th international conference on Intelligent
user interfaces, pages 15–22, 2002.

3. H. Chen, T. Finin, and A. Joshi. An Intelligent Broker for Context-Aware Systems.
Adjunct Proceedings of Ubicomp 2003, pages 183–184, 2003.

4. F. Dürr et al. Nexus – A Platform for Context-Aware Applications. In 1. Fachge-
spräch Ortsbezogene Anwendungen und Dienste der GI-Fachgruppe KuVS, 2004.

5. G. Chen and D. Kotz. Solar: A pervasive computing infrastructure for context-
aware mobile applications. Technical report, 2002.

6. A. Held, S. Buchholz, and A. Schill. Modeling of Context Information for Perva-
sive Computing Applications. In Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI2002), 2002.

7. J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen. Experiences in
Using CC/PP in Context-Aware Systems. In 4th International Conference on
Mobile Data Management (MDM), volume 2574 of Lecture Notes in Computer
Science, pages 247–261. Springer, 2003.

8. C. P. Kunze, S. Zaplata, and W. Lamersdorf. Mobile Process Description and
Execution. In Proceedings of the 6th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS 2006), pages 32–47.
Springer, 2006.

9. C. P. Kunze, S. Zaplata, and W. Lamersdorf. Mobile processes: Enhancing coop-
eration in distributed mobile environments. Journal of Computers, 2(1):1–11, 2
2007. ISSN : 1796-203X.

10. J. McCarthy and S. Buvač. Formalizing Context (Expanded Notes). In Computing
Natural Language, volume 81 of CSLI, pages 13–50. Stanford University, 1998.

11. D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit: Aiding the Devel-
opment of Context-Enabled Applications. In Proceedings of CHI’99, 1999.

12. B. N. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications.
In Proceedings of the 1st International Workshop on Mobile Computing Systems
and Applications, pages 85–90, 1994.

13. T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. In Proceedings of
the Workshop on Advanced Context Modelling, Reasoning and Management associ-
ated with the Sixth International Conference on Ubiquitous Computing (UbiComp
2004), 2004.

14. T. Hofer et al. Context-Awareness on Mobile Devices - the Hydrogen Approach.
In HICSS ’03: Proceedings of the 36th Annual Hawaii International Conference on
System Sciences (HICSS’03) - Track 9, pages 292–302, 2003.

15. X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology Based Context Mod-
eling and Reasoning using OWL. In PERCOMW ’04: Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, page 18, 2004.

16. M. Weiser. The Computer for the Twenty-First Century. Scientific American,
256(3):94–104, 1991.

