The Webbride Framework for Building
Web-Based Agent Applications

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach}@informatik.uni-hamburg.de

Abstract. Web applications represent an important category of appli-
cations that owe much of their popularity to the ubiquitous accessibil-
ity using standard web browsers. The complexity of web applications is
steadily increasing since the inception of the Internet and the way it is
perceived changes from a pure information source to a platform for ap-
plications. In order to make the task of building web applications easier
many different web frameworks exist that aim at providing support for
recurring and tedious development tasks. Most of the currently available
web frameworks adhere to the widely accepted Model 2 design pattern
that targets a clean separation of model, view and controller parts of an
application in the sense of MVC. Nevertheless, existing frameworks are
conceived to work with standard object-oriented business applications
only and do not respect the particularities and possibilities of agent ap-
plications. Hence, in this paper a new architecture, in accordance with
the Model 2 design pattern, is proposed that is able to combine the
strengths of agent-based computing with web interactions. This archi-
tecture is the basis for the Jadex Webbridge framework, which enables
a seamless integration of the Jadex BDI framework with state-of-the art
JSP technology. The usage of web technology in combination with agents
is further exemplified by an electronic bookstore case study.

1 Introduction

One key reason for the popularity of web applications is that they can be ac-
cessed via browsers in a standardized way. In this respect, they facilitate the
execution of arbitrary applications without the need for installing or updating
software components. These properties make web applications desirable even for
more advanced and complex business tasks. Intelligent agents have been used
for enterprise scale applications [2,4,11] for quite a long time. Nevertheless, few
works exist that aim at a systematic integration of agent and web technology
allowing to easily build web-based agent applications. Therefore, although there
are many agent frameworks available few support exists on how to build agent
applications employing the web as user interface. Such a setting requires anwser-
ing some fundamental questions about how interactions should be managed be-
tween the web and the application layer and what responsibilities agents should
overtake in such a scenario.

A systematic integration between both layers has the aim reducing the gap
between the request/response style of browser-based interaction and the au-
tonomous and concurrent nature of agent-based task execution. It will allow
exploiting the full power of the agent paradigm for building the application logic
and tie the web interface seamlessly to it. For example, in the back-end of a lo-
gistics transportation system, agents could concurrently negotiate with different
subcontractors for establishing a complex multimodal transportation route while
processing a single user request. In this paper we propose an architecture and a
corresponding framework providing such a systematic integration and therefore
allowing the efficient development of web-based agent applications.

The rest of the paper is structured as follows. In the next section an archi-
tecture for building web-based agent applications will be presented. In section 3
the realization of the architecture within the Jadex Webbridge framework is de-
scribed. Thereafter, an example application will be discussed in section 4 which
illustrates the usage of the web framework in a typical e-commerce scenario. In
section 5 our approach will be discussed in the context of existing approaches
including non-agent based frameworks as well as related agent-based solutions.
Finally, we will conclude the paper with a summary and an outlook on planned
future work in section 6.

2 Architecture

The goal of the approach proposed in this paper aims at seamlessly integrating
agent technology and web applications. Main focus is to increase efficiency and
usability for developers confronted with the task to build a web-based agent
application. While interoperability with web browsers could be hand-crafted
into agent applications, a generic web/agent framework allows developers to
concentrate on the application problem, abstracting away from technical details.

To enable modularization and maintainability of the code-base during devel-
opment, thereby also supporting specialization of developers (e.g. web engineers
vs. agent programmers), the primary objective of the approach is to separate the
agent-specific parts of an application from the web-specific parts such as HTML
pages. Therefore, during building the web representation, the developer should
not be concerned with agent-specific aspects, whereas during the development
of the business logic using agents, details of the web layer should not be of great
importance.

To achieve the desired independence between the web front-end and the agent
application an extra layer has to be introduced, which performs the necessary
mediation operations. This “glue tier” therefore allows to transparently map be-
tween details of the agent and the web layer (cf. Fig.1). In its general form,
the problem and its solutions are not specific to agent applications. As can be
seen from the large number of web frameworks today (cf. section 5), a multitude
of design choices exists for an implementation of mediation layers between a
web front-end and some application logic. The design and implementation of the
specific agent-oriented solution proposed in this paper is influenced by existing

Web Frontend
(HTML pages, images, servlets, etc.)

html>) 3 ﬁ html>
</html> ﬁ 5‘ <Jhtmi>

Webbridge
(glue for transparent mapping)

Agent Application
(agents reacting to user requests)

Fig. 1. The webbridge as glue between agent and web layer

approaches and frameworks, but is motivated by the fact that the application
programmer should only be concerned with the abstract and intuitive concepts
of the agent paradigm. To this end, a well-established design pattern for con-
ventional web applications is used as a starting point and is extended in a way
suitable for developing agent-based applications.

2.1 Traditional Model 2 Architecture

Foundation of the proposed architecture is the widely used and accepted Model 2
design pattern [8], which adopts the Model-View-Controller (MVC, cf. [12]) ap-
proach for web development. The main idea behind this pattern is the separation
of concerns, whereby each of the three proposed aspects plays a fundamentally
different role. The model represents the domain-specific representation of the
data on which the application operates. It is used by the view, which has the
purpose to render the data in a user-friendly manner. In between, the controller
serves as a connector that translates interactions with the view into actions to be
performed on the model. In contrast to the MVC pattern which was conceived
for desktop applications with a toolkit-based user interface, Model 2 transfers
the original ideas to the web and adapts them to the request/reply-based inter-
action pattern. Therefore, all action in Model 2 is caused by a user that interacts
with its browser and e.g. cannot arise from changes in the model data.

By separating an application into the three distinct parts application compo-
nents become more manageable and can be reused or exchanged independently
of each other, e.g. alternative views could be used for rendering a data model.
Model 2 has been conceived by web developers who realized that it is quite
difficult to use the original MVC architecture for web applications as the view

Controller

Servlet,
1) Request () 2) Create
—> Browser 3) Forward (Ja\?/laol;‘;elms) Data |
5) Response View 4) Extract
(JSP)

Fig. 2. Model 2 architecture (following [8])

cannot play an active role in the system. The browser always sends a request and
receives a response but usually does not have the possibility to react to changes
in the data model of the application.

In Model 2 the data model is kept in data bases and the data is cast into
Java beans [9] for transmission and presentation. The view is typically expressed
within JavaServer Pages (JSPs) [7] and the controller is represented by servlets
[6]. A typical Model 2 scenario for Java web applications is depicted in Fig. 2.
A browser request is issued by a user and invokes a controller servlet (1). This
servlet performs the request processing, produces results in form of Java beans
(2) and additionally decides which JSP to forward the request to (3). The only
responsibility of the JSP is rendering the result page by utilizing the data gen-
erated from the servlet (4). The generated view is then sent back to the browser
and presented to the user (5). This architecture takes advantage of the predom-
inant strengths of both techniques, using JSP to generate the presentation layer
and servlets to perform computation-intensive tasks.

As stated above the Model 2 architecture provides several benefits and allows
for building complex web applications in a clean way. Additionally, its practical
importance is emphasized e.g. by many non agent-based web frameworks that
build on it and refine and extend its basic functionality. Hence, the direct usage
of the Model 2 architecture would be beneficial but is hindered by the tight
technology coupling via servlets and JSPs. In order to employ the advantages
of agent technology for web-based applications modifications to the Model 2
architecture are necessary. These modifications should be carefully designed to
preserve the benefits of the architecture and to enable the developer to continue
using established technologies such as JSPs and JavaBeans, which have proven
their value for web-based applications.

2.2 Extending Model 2 for Agents

In a web-based agent application, the agents are responsible for the execution
of the application logic. In the traditional Model 2 architecture, the application

Controller 2) Delegate 3) Find and delegate

1) Request ——> —> 4) Create

Delegate ICoordinator Application
Servlet e | Agent | | Agent

6) Pass back model 5) Pass back model

7) Forward
Model ” |
e (Java beans) Data

8) Extract

9) Response View

(ISP)

Fig. 3. Agent-based Model-2 architecture

logic is executed by the controller, which is realized as a Java servlet. To achieve
the seamless integration of agents with the web, a conservative extension of the
Model 2 architecture is proposed, allowing for the execution of agent behavior
inside the controller. This extension allows the application functionality being
designed and implemented consisting of different interacting agents. As only the
controller is changed with respect to the original Model 2 architecture, the web
front-end can still be realized using the well established JSP and JavaBeans
technologies.

Figure 3 shows the extended Model 2 architecture proposed in this paper.
To avoid application logic being scattered between the agents and the controller
servlet, web requests from the browser (1) that require the execution of applica-
tion logic are completely forwarded to the agent layer. Forwarding is performed
in a two-step process. First the request is transferred from the delegate servlet to
a generic coordinator agent (2), which acts as a mediator between the agent sys-
tem and the web layer. The coordinator is responsible for finding an application
agent that is able to process the request (3). If no suitable agent is available, the
coordinator can also decide to create a new agent instance for the request. Once
a suitable application agent has been identified, the coordinator sends a message
to the agent, containing the details about the request. As the request is trans-
formed to an agent message by the coordinator, the application agent does not
need to know, if the request comes from the web layer or another source. After
processing the request and generating the model data (4), the application agent
sends the result back to the coordinator (5), which forwards it to the servlet
(6). Finally, a JSP page is selected (7), which reads the results created by the
application agent (8) and displays it to the user (9).

Controller

web.xml Coordinator Agent Application Agent

delegate servlet

coordinator ...) N
' [Coordinator Capability Web Interaction

! specifies Capability

TCP Ping Capability
Delegate Servlet connection Ping Capability

message

exchange
2 service() server plan =
4 request_plan
process
web data
v | e N
Default andle _request
Preprocessor custom plan goal request_plan
@ web_request
goal
I
---------- |
ey = e
' Custom H > ¢ ind_app_agent _ 8 S 0
' Preprocessor | H <custom plan { goal find_plan > - I
----------- lookup/ N
create o
agent 4

G

redirect to JSP —» Broswer

L

Legend @ Extension Point D Goal () Plan —» Control Flow ~ —> Communication

Fig. 4. Framework components

3 Framework Realization

To simplify the development of applications following the architecture presented
above, a generic software framework has been developed based on the Jadex
BDI (belief-desire-intention) agent system [3,16]. The framework, called Jadex
Webbridge, enables application developers to focus on the three core aspects
of an application, i.e. the application logic using agents, visualization via JSP
pages, and the ontology-based domain data utilizing Java objects.

Following the presented architecture, the delegate servlet and the coordina-
tor agent are responsible for mediating between these elements. Both have been
realized as generic reusable components as part of the Webbridge framework.
They are accompanied by a generic agent module, called web interaction ca-
pability, which can be included by the developer into application agents and
handles all communication aspects with the coordinator. In the following sub-
sections, the purpose and operation of each of these three main components of
the Webbridge framework is described. The basic structure of these components
and their interplay is shown in Fig. 4, which zooms further into the Controller
part of Fig. 3.

3.1 Delegate Servlet

The delegate servlet has the purpose of transferring the processing of web re-
quests to the agent layer and to finally trigger the creation of a result page. It
does so by forwarding web requests to a coordinator agent using a determinate
TCP connection. To tell the servlet how to establish the connection, the ad-
dress of the coordinator agent can be specified in the configuration file of the
web application (web.xml). After the request has been processed, the delegate
servlet obtains the result from the coordinator agent and forwards the data to
suitable JSP page. The application objects that are contained in the result from
the application agent are copied into the forwarded request, such that they are
accessible from within the selected JSP page. A default JSP page can be defined
in the application configuration, but can be overridden in the result, in case
different pages should be displayed depending on the outcome of the request
processing.

An important responsibility of the delegate servlet is to ensure that appli-
cation data (represented as Java objects) can seamlessly be exchanged between
the web and the agent layer. A generic XML encoding for JavaBeans is pro-
vided, such that application objects can easily be included in the result obtained
from the agent layer. On the other hand, the values of parameters in the web
request are restricted to simple strings, as sent by the browser. To be able to
include application objects into web pages, the framework provides an extensible
pre-processing mechanism (cf. Fig. 4, left), which automatically converts string
values from the web request into corresponding application objects.

3.2 Coordinator Agent

The handling of web requests in the agent layer could be based on many different
strategies. The default strategy that is realized in the Webbridge framework is
that the coordinator agent forwards web requests from the delegate servlet as
messages to a specifc application agent instance belonging to the corresponding
web session. The kind of application agent suitable for handling a specific request
is defined in the web application configuration file and is therefore included in
the request sent from the delegate servlet. When no agent of this kind exists for
the corresponding session, a new instance is automatically created. Moreover,
unused application agents are automatically removed from the agent platform
after a configurable session timeout.

As different applications may have different requirements regarding the re-
quest handling, the default strategy is realized in a way, allowing it to be easily
extended or adapted. The coordinator agent functionality is implemented in a
reusable module called coordinator capability (cf. Fig. 4, middle). It exposes an
interface in the form of goals that are created during the handling of a request.
Moreover, the capability already contains default plans to handle these goals. To
specify different courses of action, the developer may include the capability in
a custom agent and define alternative plans for handling these goals. When the
coordinator receives a request, a handle request goal is automatically created,

containing the details of the request. The default plan for handling this goal
starts by creating another goal find _app agent with the purpose of finding (and
maybe creating) a suitable application agent. In order to check if the desired
application agent already (or still) exists the default find plan uses a simple ping
mechanism, which is readily available via the included Ping capabilty. After an
agent has been found or newly created, the plan sends a message with the re-
quest data to this agent. The default plan for handling the find _app_agent goal
realizes the session handling described above.

The two goals provide different entry points for extending or changing the
request handling. By defining new plans for the find _app _agent goal, developers
can realize different strategies for how a web request gets dispatched to applica-
tion agents. Alternatively, by directly reacting to the handle request goal, plans
can be created to process web requests without the need for additional applica-
tion agents (e.g. doing all processing in the coordinator agent or delegating to
other software components). Alternative plans can be developed to handle vari-
ous types of requests in different situations. For the selection of suitable plans,
BDI-style reasoning is applied, such that e.g. plans get selected according to pre-
or context-conditions and alternative plans are tried, when some selected plan
fails.

3.3 'Web Interaction Capability

Using the default strategy described in the last section, web requests are for-
warded by the generic coordinator agent as messages to an application agent,
which is implemented by the application developer. To simplify the development
of application agents, the Webbridge framework provides a reusable module,
called web interaction capability (cf. Fig. 4, right), which manages the commu-
nication with the coordinator agent. The web interaction capability is included
in an application agent and automatically handles request messages sent by the
coordinator. For each message a goal of type web request is created, which has
to be handled by plans, created by the application developer. The result of the
goal processing is automatically communicated back to the coordinator.

From the viewpoint of application developers, the web interaction capability
converts web requests into goals that belong to the application agent. Therefore,
the details of the web request handling are abstracted away from agent program-
mers allowing them to focus on the behavior of the application agent by setting
up custom plans to handle the different kinds of web request goals.

4 Example Application

In this section, an example application developed with the Jadex Webbridge
framework is described. The application represents an electronic bookstore and is
inspired by the book “Developing Intelligent Agent Systems: A Practical Guide”
[15]. In this scenario customers are allowed to search for and order books through
a web-based user interface. Other use cases of customers of the system include

<web—app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4" ..>
<servlet >

<servlet —name>DelegateServlet< /servlet—name>

<servlet —class>jadex.bridge. delegate . DelegateServlet < /servlet —class>

<init —param>
<param—name>agent_container</param—name>
<param—value>localhost:9090< /param—value>

< /init—param>

<init—param>
<param—name>session _agent type</param—name>
<param—value>jadex.bookstore.SalesAssistant< /param—value>

< /init—param>

<init —param>
<param—name>webdata_preprocessor</param—name>
<param—value>jadex.bookstore.BookstorePreprocessor< /param—value>

< /init—param>

</servlet>

<servlet —mapping>
<servlet —name>DelegateServlet< /servlet—name>
<url—pattern> /< /url—pattern>

< /servlet —mapping>

</web—app>

Fig. 5. Web.xml application configuration cutout

managing their account/profile and checking the state of an order. Additionally,
the system performs several back-end tasks. It has to manage a stock of books
and to reorder books from wholesalers in certain intervals.

The analysis and design of the application was done using the Prometheus
methodology [18] and carried further the modeling artifacts already presented
in the book. The complete application logic of the system is realized as a set
of collaborating agents. For the following description, especially the so-called
sales assistant agent is of vital importance as it represents a personal shopping
assistant for a customer. For each customer arriving at the web site an individual
sales agent is created. It has the purpose of helping a customer to find and
purchase books.

To show how the web/agent interaction is supported by the Webbridge frame-
work, some code snippets from the bookstore application will be presented and
explained next. The code snippets illustrate the interaction between the web
frontend and the sales assistant agent.

public Request preprocessWebdata(HttpServletRequest request) {
Request agentrequest = super.preprocessWebdata(request);

if (request. getRequestURI().indexOf("addOrderltem")!=—1) {

int isbn = Integer. parselnt (request . getParameter("isbn"));
int amount = Integer. parselnt (request. getParameter("amount"));
Orderltem item = new Orderltem(isbn, amount);

agentrequest. addParameterValue("item", item);

return agentrequest;

Fig. 6. Mapping HTTP request parameters to ontology objects

4.1 Application Configuration

The basic configuration of the web related parts of the bookstore application are
specified in its web.xml file. As available configuration properties are standard-
ized [7], the application can be deployed using an arbitrary web container such
as Apache Tomcat! or IBM WebSphere?. Figure 5 shows a relevant cutout of the
bookstore web.xml and mainly consists of servlet descriptions and their URL-
mappings. In the example, only the specification of the DelegateServlet and its
mapping are shown. It uses the default DelegateServlet of the Webbridge frame-
work (lines 2-18) and additionally defines several parameter values (lines 5-16).
Among these are the contact address of the coordinator agent (lines 5-8), the
class name of the application agent type (lines 9-12) and the class name of the
bookstore specific webdata preprocessor (lines 13-16). In the mapping part it is
defined that the DelegateServlet is the default handler for all page requests (lines
20-23). If some parts of the application should be generated by other means e.g
via normal JSPs more specific mappings can be defined which have precedence
over the DelegateServlet. In the bookstore example, e.g. further JSPs containing
general information about the store and contact details have been defined in the
full web.xml definition.

4.2 Preprocessing of Web Requests

Starting point of the scenario is that a human user is surfing at the web site
of the electronic bookstore and decides to order some books after her fancy.

! nttp://tomcat.apache.org/

2 http://www.ibm.com/software/websphere

When adding a book to the shopping cart an “addOrderltem HTTP request” is
automatically generated by the browser. The request contains the item’s ISBN
and the amount of items to be added and is processed by the delegate servlet.

For seamless integration between the web and the agent layer, the applica-
tion agent (i.e. the sales assistant agent of the bookstore) should not be required
to handle details of HTTP-based interaction, such as parsing URL-patterns
and MIME-encoding/decoding of request parameters. Therefore, the handling
of these details is performed in the delegate servlet, which forwards only clean
domain-level information based on an application-specific ontology. The mapping
between data received from a web form and domain-level objects are achieved
using the extensible preprocessing mechanism provided by the Webbridge frame-
work.

E.g., the data from the “addOrderltem” web form are represented as simple
strings, while the sales assistant agent only handles objects from the bookstore
domain ontology containing objects such as an OrderItem. Therefore, a domain-
dependent preprocessor is used by the delegate servlet to extract the values
from the request (see fig. 6, lines 6, 7) and create a new domain object of type
OrderItem (line 8). The ordered item is subsequently added to the agent-based
request (line 9) which will be sent to the coordinator agent.

4.3 Request Execution in the Agent Layer

The coordinator agent processes the request by determining if it belongs to an
ongoing conversation. In this case the request will be directly transformed into an
agent message and forwarded to the corresponding application agent. Otherwise
the coordinator first needs to instantiate a new application agent whose type
is specified directly within the request. In this example, sales assistant agents
are responsible for handling the user interaction, i.e. for each web session a
corresponding sales assistant agent is created, which stays alive until the user
leaves the site (as determined by a lack of activity for some time).

The agent definition file of the sales assistant is shown in Fig. 7. It includes
the Webbridge functionalities via the web interaction capability (line 3). This
capability mainly exports the web_request goal so that it is sufficient for the sales
assistant agent to react on all domain-dependent kinds of web request goals. In
order to do this it is necessary that the web _request goal is declared and connected
to the exported original one within the capability (lines 7-13). The goal exposes
two in-parameters containing the domain-dependent goal type (line 9) and the
agent-based web request (line 10) and one out-parameter for the agent-based
response (line 11, 12).

The application code is contained in plans, which are used to process the
web_request goals that are automatically created by the generic web interac-
tion capability. The reasoning engine uses the goal parameters to find matching
plans, which are executed in turn until one plan produces a suitable result. In
the example, the additem plan (lines 17-29) matches web request goals of type
addOrderItem (line 24-26). Because of the preprocessing described earlier, the
agent only has to cope with application specific objects like the OrderItem (lines

30

<agent name="SalesAssistant">
<capabilities >
< capability name="webcap" file="Weblnteraction" />
< /capabilities >

<goals>
<achievegoal name="web _request">
<assignto ref ="webcap.web request" />
<parameter name="type" class="String" />
<parameter name="request" class="jadex.bridge.onto.Request" />
<parameter name="response" class="jadex.bridge.onto.Response"
direction ="out"/>
< /achievegoal >
< /goals>

<plans>
<plan name="additem _plan">
<parameter name="item" class="Orderltem" >
<value>$goal.request.getParameterValue("item") < /value>
< /parameter>
<body>new AddOrderltemPlan()</body>
<trigger>
<goal ref="web request">
<parameter ref="type">
<value>"addOrderltem" < /value>
< /parameter>
< /goal>
< /trigger>
</plan>
< /plans>
< /agent>

Fig. 7. XML definition file excerpt from the SalesAssistant agent

18-20). The plan body (omitted here) whose creation is specified within the plan
head (line 21) contains the agent-based application logic to handle the customer
request. One purpose of this plan is simply to update the shopping cart of the
customer and store the result in the response object of the goal. In making use of
the advantages of the agent-based design, the sales assistant agent further inter-
acts with other agents in the backend of the bookstore application. It checks the
availability of the item by querying a so-called stock manager agent and at the
same time determines possible delivery options by negotiating with a delivery
manager agent. The results of these possibly lengthy additional interactions are
not passed back to the user in the context of the initial web request. Instead,

(ool = A O M

23

25
26
27

<%@page contentType="text/html; charset=1SO—8859—1"%>

<%@ page import="de.vsis.bookstore.ontology.*" %>

<% UserContext ctx = (UserContext)request.getAttribute("context"); %>
<jsp:include page="header.jsp" flush ="true"/>

<h1>Your Shopping Cart:</h1>
<% if (ctx!=null) {

Orderltem[] oo = ctx.getOrderltems();
if ((oo!=null)&&(oco.length>0)) { %>

<a href="/bookorder?sid=<%=request.getAttribute("sid")%>">
Order all items

<% for (int j=0;j< oo.length;j++) { %>
<%=o00]j].getlsbn()%>
(<%=o00[j].getAmount()+"x"+oo][j].getPrice()%> EUR)

<% } %>

<%}
} else { %>
Your shopping cart is empty.

<%} %>

<jsp:include page="footer.jsp" flush ="true"/>

Fig. 8. JSP page for the shopping cart of a customer

they are stored locally in the beliefbase of the sales assistant, which is then able
to instantly present this information to the user, if requested.

4.4 Result Page Generation

The visual part of the bookstore front-end is developed using JSP technology.
To simplify the development for web programmers, the JSP pages should not
have to deal with agent-related aspects of the application. Here again, the do-
main dependent ontology comes into play, which allows to represent all required
domain data in form of JavaBeans.

The results of the processing in the agent-layer are stored by the delegate
servlet directly within the original HTTP request, which is used to generate the
view via a JSP. Fig. 8 shows the JSP for displaying the shopping cart (e.g. after
the customer has added an item). As can be seen in lines 10-21, the information

of the OderItem objects can directly be accessed from the implicit request object
and is used for creating the HTML code to be presented to the user.

5 Related Work

Regarding agents and the web, there are basically two different strands of related
work that need to be considered. On the one hand, a huge amount of work has
been carried out in the context of traditional Model 2 Java web frameworks. In
this area many different frameworks have emerged that are able to satisfy nearly
any kind of developer needs. One of the first and best-known frameworks is
Jakarta Struts [5], which is still widely used and also features a large developer
community. Struts directly adopts the Model 2 pattern and introduces user-
defined actions that perform the work of the application and finally create Java
beans that can be processed in the view. Due to some limitations of Struts
many fundamentally different Model 2 approaches such as Spring MVC [13] and
JavaServer Faces (JSF) [10] have been proposed. A detailed comparison of many
traditional web frameworks can be found e.g. in [8]. To be able to use the existing
web frameworks in combination with agent technology it is necessary to embed
the agents in a web framework friendly manner. This approach is e.g. followed
by the Agentis AdaptivEnterprise Suite [17], which converts agents into J2EE
application server components and makes them accessible for web frameworks in
this way. Nevertheless, this approach limits the exploitation of agent technology
as important functionalities such as the application flow and dialog management
are typically handled by web frameworks cannot be delegated to the agent layer.

On the other hand, approaches need to be investigated that build up a web
framework especially for agent technology and are therefore directly comparable
with our architecture. Stunningly, this strand of research is nearly non-existent
today. Instead, in the agent community a large body of research has been carried
out in the field of interface agents aiming at the improvement of human com-
puter interaction e.g. [14] but this does not directly contribute to the problem
addressed in this paper. The only generic approach is provided by the JACK
WebBot solution® which can be used to equip JACK agent applications with a
web front-end. The approach is similar to ours as also the controller part repre-
sents the mediator component between the web and the agent layer. Although
the WebBot architecture is very flexible, it does not provide a clean framework
approach. Instead, the agent programmer has to design and implement generic
functionalities such as agent session management by herself and cannot make
use of predefined modules for that purpose. Additionally, it does not allow con-
sistently using the same ontology objects on all tiers and hence requires tedious
conversions being done by the application instead of the framework.

Besides the WebBot architecture, also some ad-hoc solutions exist, which use
external interfaces provided by an agent platform (e.g. the JadeGateway class in
JADE [1] or the HabitatGateway class in Tryllian’s ADK?). As such interfaces

3 http://www.agent-software.com
4 http://www.tryllian.com

only provide generic access to the agent platform, most of the technical details
concerning the connection of agents with the web layer have to be handcrafted
by the developers in these approaches.

6 Conclusion and Outlook

This paper has presented an architecture and a framework simplifying the devel-
opment of web-based agent applications as these kinds of systems gain steadily
more importance in the context of business solutions. To achieve an integration
between the web and the agent world a novel agent-based architecture confor-
mant to the well-known Model-2 design pattern has been proposed. The agen-
tified Model 2 architecture intentionally refines only a small part of the original
architecture by further developing the controller component. This enables using
agents for all aspects related to application functionality while preserving the
usage of the existing and well suited Model 2 techniques for rendering (JSPs)
and model representation (JavaBeans). One crucial aspect of this extended ar-
chitecture is the partitioning of the controller into three distinct functionalities:
delegate servlet, coordinator agent and application agents. The delegate has the
main purpose to forward business tasks that originate from browser requests to
the coordinator agent. The coordinator processes requests by distributing them
to domain-dependent application agents. A main advantage of the proposed
generic architecture consists in the separation of concerns established by Model
2. The architecture therefore detaches cleanly the web layer from the agent layer
facilitating their largely independent development.

Moreover, the Jadex Webbridge framework implementing the aforementioned
architecture has been presented. The main characteristic of this framework is the
support for agent technology in the context of web applications. The framework
provides ready-to-use and extensible functionalities realizing the delegate servlet
and the coordinator agent. Additionally a web interaction module (capability)
is provided that encapsulates the generic functionalities needed by application
agents. This capability transfers web requests to web _request goals which can be
handled in the same way as any other ordinary agent goal. The capability auto-
matically handles all interactions with the coordinator and reduces the task of
the agent developer to writing plans for the domain logic of pursuing web_request
goals.

Future work will be targeted at improving the processing of web interactions.
Currently, web interactions are short-lived meaning that request goals are created
whenever a user issues a new browser request so that the interaction state has to
be preserved within the agents beliefs. A more advanced approach would allow to
treat a conversation as a whole e.g. within a plan allowing the agent to manage
the interaction in a similar sense as normal message-based protocols. This would
mean that not only the functionality of one short-term interaction goal could be
captured in a BDI plan, but a whole workflow (e.g. the book buying use case in
the example presented).

References

1.

2.

o

11.

12.

13.

14.

15.

16.

17.

18.

F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems with
JADE. John Wiley & Sons, 2007.

S. Benfield, J. Hendrickson, and D. Galanti. Making a strong business case for mul-
tiagent technology. In 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006), pages 10-15, New York, NY, USA, 2006.
ACM Press.

L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent System Combin-
ing Middleware and Reasoning. In R. Unland, M. Calisti, and M. Klusch, editors,
Software Agent-Based Applications, Platforms and Development Kits, pages 143—
168. Birkhauser, 2005.

J. Castro, M. Kolp, and J. Mylopoulos. Developing agent-oriented information
systems for the enterprise. In Proceedings of the Second International Conference
on Enterprise Information Systems (ICEIS 2000), pages 9-24, Escola Superior de
Tecnologia de Setubal / Campus do IPS, 2000. ICEIS Secretariat.

C. Cavaness. Programming Jakarta Struts. O’Reilly Media, 2004.

D. Coward. Java Servlet, Specification Version 2.8. Sun Mircosystems, 2001.

P. Delisle, J. Luehe, and M. Roth. JavaServer Pages, Specification Version 2.1.
Sun Mircosystems, 2006.

. N. Ford. Art of Java Web development: Struts, Tapestry, Commons, Velocity,

JUnit, Axis, Cocoon, InternetBeans, WebWorks. Manning Publications, 2003.
G. Hamilton. JavaBeans, Specification Version 1.01. Sun Mircosystems, 1997.

. J. Holmes and C. Schalk. JavaServer Faces: The Complete Reference. McGraw-Hill

Osborne Media, 2006.

N. R. Jennings and M. J. Wooldridge. Agent Technology - Foundations, Applica-
tions and Markets. Springer, 1998.

G. Krasner and S. Pope. A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. Journal of Object Oriented Programming,
1(3):26-49, 1988.

S. Ladd, D. Davison, S. Devijver, and C. Yates. FEzxpert Spring MVC and Web
Flow. APress, 2006.

P. Maes. Agents that reduce work and information overload. Communications of
the ACM, 37(7):30-40, 1994.

L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons, 2004.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In
R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications, pages 149-174. Springer,
2005.

P. Taylor, P. Evans-Greenwood, and J. Odell. Agents in the enterprise. In Pro-
ceedings of the Australian Software Engineering Conference (ASWEC 2005), pages
9-24. IEEE Computer Society, 2005.

M. Winikoff and L. Padgham. The Prometheus Methodology. In F. Bergenti, M.-P.
Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering For
Agent Systems, pages 217-234. Kluwer Academic Publishers, 2004.

