
An Architecture and Framework for
Agent-Based Web Applications

Alexander Pokahr and Lars Braubach

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{pokahr | braubach}@informatik.uni-hamburg.de

Abstract. The construction of web applications is a complex task as
different kinds of technologies need to be integrated. To ease the task of
developing web applications many different web frameworks have been
conceived. These frameworks aim at providing support for recurring and
tedious development tasks and address complexity by separating the ba-
sic concerns of applications. Most of the currently available web frame-
works adhere to the widely accepted Model 2 design pattern that targets
a clean separation of model, view and controller parts of an application
in the sense of the model view controller (MVC) pattern. In this paper it
is shown how the basic Model 2 archiecture can be adapted for enabling
its usage in combination with business logic realized with agent technol-
ogy. Besides the architecture itself additionally its realization within the
Jadex Webbridge framework is sketched.

1 Introduction
The popularity of web applications is steadily increasing for which one impor-
tant reason is that they can be accessed via browsers in a standardized way.
In this regard they facilitate the execution of arbitrary applications without
the need for installing or updating software components. These characteristics
make web applications desirable even for more advanced and complex business
tasks. Agent technology has already been used in many research and industrial
projects for building enterprise scale applications [4,2], but only few works exist
that aim at a systematic integration of agent and web technology allowing to
easily build agent-based web applications. Hence, in the following an architec-
ture and a corresponding framework for the efficient development of agent-based
web applications are presented.

2 Architecture
The main aim of the approach consists in separating the agent-specific parts
of an application from the web-specific parts allowing web and business logic
developers to focus on their individual competency respectively. Foundation of
the proposed architecture is the widely used and accepted Model 2 design pattern
[3]. The pattern proposes a separation of concerns, whereby each of the three



ControllerController

Coordinator
Agent

Coordinator
Agent

View
(JSP)
View
(JSP)

Delegate
Servlet

Delegate
Servlet

BrowserBrowser

1) Request

2) Delegate

9) Response

7) Forward
Model

(Java beans)
Model

(Java beans)

8) Extract

3) Find and delegate

5) Pass back model6) Pass back model

4) CreateApplication
Agent

Application
Agent

DataData

Fig. 1. Agent-based Model 2 architecture

proposed aspects plays a fundamentally different role. The model represents the
domain-specific representation of the data on which the application operates.
It is used by the view which has the purpose to render the data in a user-
friendly manner. In between the controller serves as a connector that translates
interactions with the view into actions to be performed on the model.

In an agent-based web application, the agents are responsible for the execu-
tion of the application logic. In the traditional Model 2 architecture, the appli-
cation logic is executed by the controller, which is realized as a Java servlet. To
achieve the seamless integration of agents with the web, the Model 2 architecture
is extended as shown in Fig. 1 to allow for the execution of agent behavior inside
the controller. For this purpose the controller is split into three different entities.
The delegate servlet forwards the browser request to the agent layer and renders
the result by redirecting to a chosen JSP. On the agent side a dedicated coor-
dinator agent is responsible for finding or creating a suitable application agent
that is capable of handling the request. The result is then passed back from the
application agent to the coordinator which communicates it back to the delegate
servlet.

3 Framework
The agentified Model 2 architecture presented above has been realized in a
generic software framework based on the Jadex BDI (belief-desire-intention)
agent system [1].1 This new framework, called Jadex Webbridge, enables ap-
plication developers focussing on the three core aspects of an application, i.e.
the application logic using agents, visualization via JSP pages, and the domain
data utilizing Java objects.

In the Webbridge framework the delegate servlet and the coordinator agent
are responsible for mediating between these elements. They have been realized
as reusable components within the framework and offer clear configuration and
extension points. From the perspective of an application developer the main task
consists in configuring the application settings via the normal web.xml file and
additionally in developing the application agents for handling the web requests.
The latter task is simplified by a generic agent module, called web interaction
1 http://jadex.sourceforge.net



capability, which can be included by the developer into application agents and
handles all communication aspects with the coordinator behind the scenes.

The generic coordinator automatically forwards Web requests as agent mes-
sages to an application agent. The web interaction capability is included into
an application agent and automatically handles request messages sent by the
coordinator. For each message a goal of type web_request is created, which has
to be handled by custom application plans. The result of the goal processing
is automatically communicated back to the coordinator. From the viewpoint of
application developers, the web interaction capability converts web requests into
goals that belong to the application agent. Therefore, the details of the web re-
quest handling are abstracted away from agent programmers allowing them to
focus on the behavior of the application agent. This behavior can be built taking
the intentional stance and applying the BDI-specific mentalistic notions such as
goals and plans. Request processing can of course involve interactions with other
agents if appropriate.

4 Conclusion
In this paper, an architecture and a corresponding framework have been pre-
sented that allow combining agent and web technology. The proposed architec-
ture extends the well known Model 2 design pattern for web applications and
introduces a decomposition of the controller part into a delegate servlet, a co-
ordinator agent and application agents. Supporting the separation of concerns
established by Model 2, the architecture further separates the web layer from
the agent layer, thereby providing a solid foundation for combining agent-based
application functionality and web-based user interaction.

To ease the development of applications following the proposed architecture,
the Jadex Webbridge framework has been presented, which provides ready-to-use
and extensible functionalities realizing the delegate servlet and the coordinator
agent. Additionally, a web interaction module (capability) is provided that en-
capsulates the generic functionalities needed by application agents. It abstracts
away details of message-based communication and reduces the task of the appli-
cation agent developer to writing plans for the domain logic of pursuing goals,
which correspond to web requests.

References
1. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent System Combin-

ing Middleware and Reasoning. In Software Agent-Based Applications, Platforms
and Development Kits, pages 143–168. Birkhäuser, 2005.

2. J. Castro, M. Kolp, and J. Mylopoulos. Developing agent-oriented information
systems for the enterprise. In Proc. of the 2nd Int. Conf. on Enterprise Information
Systems (ICEIS 2000), pages 9–24. ICEIS Secretariat, 2000.

3. N. Ford. Art of Java Web development: Struts, Tapestry, Commons, Velocity, JUnit,
Axis, Cocoon, InternetBeans, WebWorks. Manning Publications, 2003.

4. N. R. Jennings and M. J. Wooldridge. Agent Technology - Foundations, Applications
and Markets. Springer, 1998.


