
Transactional Coordination of Dynamic Processes
in Service-Oriented Environments

Martin Husemann, Michael von Riegen, Norbert Ritter
Distributed Systems and Information Systems

University of Hamburg
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
{husemann,riegen,ritter}@informatik.uni-hamburg.de

Abstract

Service-oriented environments facilitate dynamic pro-
cesses whose properties can be altered during runtime. The
transactional support of such processes holds specific re-
quirements that are not completely covered by existing spec-
ifications. In this paper, we introduce a life cycle model for
transactional dynamic processes and analyze existing spec-
ifications with respect to their potentials to support such a
model. Subsequently, we propose a framework resolving the
weaknesses of existing specifications and allowing compre-
hensive transactional coordination of dynamic processes.

1 Introduction

Service-oriented architectures (SOA) are a popular
paradigm to implement loosely-coupled distributed envi-
ronments [15]. Within these environments, participants can
overcome heterogeneity by communicating through stan-
dardized, implementation-independent interfaces. Appli-
cation logic is typically not located in monolithic pro-
grams, but distributed between the participants of processes.
This approach is referred to as service-oriented computing
(SOC).

The fundamental concept of Grid Computing is to trans-
parently provide resources to participants in a network. Re-
cent efforts in this field have been directed at developing a
technical platform for grids based on concepts of service-
oriented computing and Web services [7]. Today, the Web
Services Resource Framework [6] provides a standard rec-
onciling the requirements of the classical Web service world
with Grid-specific demands. A Grid service is basically a
stateful Web service which provides services and can be
discovered and used by service consumers within the Grid.
Grids built from such Grid services are called Service Grids.

Although this term is deduced from the technical plat-

form, it is also meaningful regarding the contents: Due to
the high level of abstraction permitted by Grid services, Ser-
vice Grids are not limited to the provision of simple re-
sources such as computational power or storage capacity,
but they can also provide complex services such as those
known from Web service environments, e. g. search engine
functionality or flight booking. In contrast to rather uni-
form Computing Grids or Data Grids, Service Grids are in-
herently more heterogeneous and show a greater dynamism
regarding the set of participants. A visionary global Ser-
vice Grid could reach the variety and complexity of today’s
World Wide Web.

Service Grids are an interesting implementation of
service-oriented computing since they contribute Grid-
specific properties such as dynamism and self-management.
Collaborative processes among Grid participants can then
run as dynamic processes. Ensuring transactional behavior
under these circumstances is challenging; current Web ser-
vice specifications for transactional coordination only cover
some of the requirements brought along by dynamic pro-
cesses.

In this paper, we present our work on transactional co-
ordination of dynamic processes in service-oriented envi-
ronments. Section 2 introduces our understanding of dy-
namic processes and associated aspects of interaction prim-
itives and transaction management. Existing specifications
and related work are discussed in Section 3. Section 4
presents our TracG framework aimed at supporting trans-
actions within dynamic processes. Section 5 gives a con-
clusion and an outlook on future work.

2 Dynamic Processes

A process is a definition of a series of steps to reach
a specified goal. The goal describes functional and non-
functional requirements on the results and the execution of
the process; it is typically specified by the initiator of the

request

planning

discovery

composition

agreement

negotiation

contracting

enactment

replanning

re
n
e
g
o
ti
a
ti
o
n

monitoring

invocation

p
ro
filin
g

replanning

transaction

result

re-invocationcheck

re
ne
go
tia
tio
n

re
p
la
n
n
in
g

persist

Figure 1. Life cycle of a dynamic process

process. Usually, a process is executed among a set of par-
ticipants that collaborate to achieve a consistent outcome,
even if they compete with respect to the individually de-
sired results. The process steps are carried out in sequential
or parallel activities on the participants.

Dynamism as a basic principle denotes the capability to
adapt to changing conditions. With respect to processes,
we regard dynamism as the capability to modify the pro-
cess structure during runtime. Modifications of the process
structure may arise from two cases: Firstly, as a reaction to
unexpected events in the course of the process, to continue
the execution towards the original process goal in consider-
ation of the new conditions. Secondly, as a means to change
the process goal and accordingly adapt the execution to-
wards the new goal. The first case comprises exception han-
dling, for example when the failure of a participant needs
to be compensated by locating and binding an adequate re-
placement to avoid a failure of the whole process. However,
unexpected events are not limited to errors or failures. In
order to take advantage of the flexibility in agile service-
oriented environments, processes should be modeled with
a certain degree of freedom on the part of the participants.
Consequently, the process execution cannot be specified be-
forehand in full detail. Instead, coarsely defined process
steps need to be refined at runtime, complying with the cur-
rent environmental conditions. For example, participants
may wish to leave the process or they may be dismissed by
superordinate participants. In such scenarios, the process
execution cannot be bound to rigidly predefined structures,
but it needs to be capable of short-term adaptations. Unex-
pected events are then not a materialization of errors, but a
common phenomenon.

If such a flexible execution of processes is supported, it
also allows changing the aspects of the process goal that are
concerned with requirements on the execution. Changes of
the aspired process results during runtime are rare when

those can be modeled with a degree of freedom. If the
premises change in such a radical way that a change of the
aspired results becomes necessary, it is more convenient to
abort and restart the process than to respecify all the af-
fected aspects during runtime. We therefore concentrate on
processes with stable aspired results. For such processes,
we identified three degrees of adaptability:

• static: A process is specified in all its details before the
execution is started; adaptations during runtime are not
possible.

• ad-hoc-static: Participants and flow are determined ac-
cording to the goal at the process start. After the pro-
cess start, adaptations are not possible.

• dynamic: Participants and flow are determined at the
process start, but they can be changed during runtime.

Ad-hoc-static and dynamic processes can be specified by
merely noting the process goal. Participants and flow of a
concrete process instance are then determined correspond-
ing to the current circumstances during its creation.

2.1 Life Cycle of a Dynamic Process

In service-oriented environments, dynamism for pro-
cesses in practice comprises short-term service compo-
sition, late binding of service instances and adapting to
changes caused by errors or modified demands during the
process execution. Figure 1 shows the life cycle of a dy-
namic process from the specification of the goal to the de-
livery of the results. The basic form of this life cycle was
introduced with the Adaptive Services Grid Platform [11],
however, in its original form, aspects of transaction support
are not taken into consideration.

A dynamic process is initiated by a client posing a re-
quest in terms of a process goal to a service bus [15]. The re-

Requestor

Provider

request response

(a) direct

Requestor

Provider

register
event

notification

(b) observer

Requestor

Provider

request ack

Recipient
response

(c) 3rd-party

Figure 2. Interaction primitives

quest defines the process goal and the transactional require-
ments such as coordination types and alternative activities
in case of exceptions. In the planning phase, an execution
plan to achieve the goal is constructed. Suitable services
are located and, where necessary, adequately composed to
attain the required functionality. The service bus shields the
client from possible service compositions through the gen-
eration of virtual services that are monolithic towards the
client and conform to the requested functionality.

In the second phase, agreements for the invocation of
concrete service instances are negotiated. This comprises
for instance QoS requirements and transactional capabilities
of services. If unrecoverable exceptions occur in this phase,
the life cycle processing returns to the planning phase to
determine another way to achieve the process goal by re-
planning the process with different services.

If the agreements have successfully been negotiated, the
enactment of activities takes place in the third phase. Unre-
coverable exceptions in this phase can be addressed by re-
turns to the agreement phase (renegotiation) or the planning
phase, depending on their severity.

If transactional behavior was specified in the request, the
transactional termination of the process is carried out in the
fourth phase through a transaction protocol. The state of the
participants is verified, and if applicable, the process results
are committed. Unrecoverable exceptions in this phase can
lead to returns to the enactment phase (reenactment), the
agreement phase, or the planning phase.

The life cycle of an ad-hoc-static process is largely iden-
tical to that of a dynamic process. After entering the en-
actment phase, however, returns to the agreement phase or
the planning phase are not possible. The capabilities to re-
act to exceptions are consequently limited, but the process
can still be initiated in consideration of the current environ-
mental conditions. The life cycle of a static process only
comprises the enactment phase and optionally the transac-
tional termination phase. Its potential for adaptability is
thus mostly limited to retries of the predefined activities.

The specification and execution of dynamic processes is
a complex field of its own which is beyond the scope of this
paper. Here, we concentrate on transaction management in
such processes.

2.2 Interaction Primitives

Analyzing service interactions in dynamic environments
in special consideration of transactional support, we iden-
tified a set of interaction primitives from which complex
interactions can be constructed. In contrast to the various
service interaction patterns [2], the set of interaction prim-
itives is small-sized. A separate provision for multilateral
interactions is unnecessary since such scenarios can be re-
duced to aggregations of bilateral interactions. For simi-
lar reasons, the distinction between single-transmission and
multi-transmission interactions can be omitted. We thus pri-
marily distinguish between immediate interactions and de-
coupled interactions.

Immediate interactions occur in scenarios where two or
more participants interact direct, i. e., without intermediate
nodes or event-based decoupling. In the basic case, there
are exactly two participants. More complex cases com-
prise 1:n constellations where a participant interacts with
a set of other participants in a set of pairwise communica-
tion acts. In either case, the interactions may take place
in a one-way or two-way manner. In one-way interactions,
the sending of a message or a request is not followed by a
response from the receiving participant; in two-way inter-
actions, responses are sent. Reliable transport mechanisms
with acknowledgments generally assure successful delivery
of messages. Messaging can be performed synchronously
or asynchronously. Figure 2(a) shows a direct two-way in-
teraction between two participants.

Decoupled interactions occur in scenarios where two or
more participants interact indirect or weakly coupled. Such
decoupling can be conducted at the application logic level
or the message flow level. Participants are decoupled at
the application logic level by the observer interaction prim-
itive as shown in Figure 2(b). A participant (requestor) reg-
isters with another participant (provider) to be notified in
case of a certain type of event. When the event occurs, the
provider sends a notification to the requestor. More than
one requestor may register for a given type of event, and a
provider may provide events of more than one type. Reg-
istered requestors do not know about other registered re-
questors, and the provider does not know the intentions of
the requestors. Event notifications can therefore set off indi-

vidual activities opaque to the provider; although messages
are exchanged direct between two participants respectively,
the interaction is decoupled at the application logic level.

Decoupling at the message flow level is implemented by
the 3rd-party interaction primitive. A typical constellation
is shown in Figure 2(c). A requestor poses a request to a
provider, but the provider sends the response to another par-
ticipant (recipient). The recipient can be determined by the
requestor or from the results of the request processed by
the provider; there may be more than one recipient. The
requestor is optionally sent an acknowledgment of the suc-
cessful execution. Requestor and recipient interact indirect
or totally decoupled via the provider. Such decoupled inter-
action also allows the requestor to withdraw from the pro-
cess after sending its request to the provider. If recipients
are allowed to actively register with the provider for spe-
cific requests, the 3rd-party interaction primitive also en-
ables publish/subscribe constellations with the provider act-
ing as a hub between the requestor and the recipients.

2.3 Requirements on Transaction Man-
agement

Dynamic processes entail specific requirements on trans-
actional activity control. Aborts or restarts of complex and
long running processes have to be avoided. Consequently,
changes of the execution structures during runtime of a
process are to have minimal effects on active transactions.
A framework for transactional activity control of dynamic
processes should provide support of the following require-
ments:

• The coordination of distributed transactions with
growing and shrinking sets of participants. Partici-
pants are able to join and leave a running process in
a controlled manner. Superordinate participants can
expel subordinate participants from the process.

• Dynamically adaptable execution structures and dy-
namic privilege allocation.

• Interaction scenarios containing decoupled interaction
primitives.

• The resuming of interrupted (sub-)transactions with
minimal loss of work after exceptions such as errors
or adaptations of the execution structures.

Central aspects are the support of variable sets of par-
ticipants, complex interaction scenarios, and process recon-
figurations. For instance, to fully leverage the 3rd-party in-
teraction primitive, the privilege of transaction demarcation
needs to be portable among the participants of a process.

The initiator of a 3rd-party interaction can usually not de-
termine a suitable time to trigger the termination of the pro-
cess and should therefore pass the demarcation privilege on
to the recipient of the result.

3 Existing Specifications and Related Work

A comprehensive platform for dynamic processes has
been introduced with the Adaptive Services Grid [11], but in
this project, very little attention is paid to transaction man-
agement.

Several approaches for transactions in Web and Grid en-
vironments have been proposed. Jin and Goschnick intro-
duced agent-based transactions [9], claiming that the usage
of agent technology for transaction management is the right
choice within a Web service environment. Their approach
seems to be in a very early state. A peer-to-peer approach
for Grid transactions was presented by Türker et al. [17].
It introduces a decentralized transaction model based on an
optimistic variant of serialization graph testing. This ap-
proach is innovative in uniquely combining existing con-
cepts and techniques for a new purpose. However, these
concepts are more concerned with Grid-specific problems
or paradigm-based suggestions instead of transaction pro-
cessing in dynamic service-oriented environments.

Only few articles address annotations of Web ser-
vices to support discovery and composition. The WS-
AtomicTransaction [4] and WS-BusinessActivities [5]
specifications mention policies expressed in WS-Policy
documents to be attached to WSDL descriptions. Such con-
cepts are also mentioned for example by Tai et al. [16] or
Montagut and Molva [14]. None of these papers, however,
is concerned with annotating the transactional behavior of
services.

Several specifications for the management of distributed
transactions in service-oriented environments have been put
forward, the most prominent being WS-Coordination [13],
WS-CAF [3], and BTP [8], which are all based on par-
ticipant/coordinator patterns. BTP and WS-Tx (an earlier
version of WS-Coordination) have previously been exam-
ined and compared by Little and Freund [13]. An overview
and comparison of WS-Coordination, WS-CAF and BTP
has been given by Kratz [10]. The Transaction Manage-
ment Research Group1 (TM-RG) of the Global Grid Forum
(GGF) also examined these specifications in special consid-
eration of their suitability for Grid environments. However,
none of these investigations put emphasis on specific as-
pects and requirements of dynamic processes.

1http://forge.gridforum.org/sf/projects/tm-rg

3.1 Analysis of Prevalent Specifications

WS-Coordination (WS-C) administrates participants via
a common context managed by the coordinator and
provides two different coordination types. In WS-
AtomicTransaction, the demarcation of transactions is con-
trolled with commit or rollback messages according to
the completion protocol; transactions are processed after the
2PC protocol. WS-BusinessActivities allows to coordinate
participants according to the atomic outcome or the mixed
outcome type. With mixed outcome, a transaction can also
terminate successfully if only a subset of the participants
commits. The coordinator decides to terminate or roll back
the transaction after all the participants have completed their
work.

The Web Services Composite Application Framework
(WS-CAF) also employs common coordination contexts.
It consists of the three frameworks WS-Context (WS-
CTX), WS-Coordination Framework (WS-CF), and WS-
Transaction Management (WS-TXM), featuring coordina-
tion protocols for distributed ACID transactions, long-
running activities, and business transactions with support
of non-atomic outcomes.

Business Transaction Protocol (BTP) is based on a mod-
ified 2PC protocol supporting both ACID and business
transactions. With ACID transactions, the protocol pro-
ceeds as classic 2PC. Business transactions allow individual
decisions about confirm and cancel messages between
the two phases; a transaction can also terminate successfully
if some participants are sent cancel messages.

All three specifications support ACID and long-running
business transactions. The processing of business transac-
tions is dependent on application logic and requires specific
knowledge within the coordinator. The specifications show
similar weaknesses in supporting requirements of dynamic
processes such as variable sets of participants, complex in-
teraction scenarios, and modifications of process structures.
Emission of participants is not supported in the ACID pro-
tocols of WS-C and WS-CAF; it is ungoverned in the busi-
ness activity protocols of WS-C and WS-CAF as well as
in BTP. None of the specifications provides for an explicit
management of the transaction demarcation privilege and
modifications of process properties during runtime. Decou-
pled interaction primitives are not properly supported since
none of the specifications features according control mech-
anisms. A specific limitation of BTP is the restriction to a
two-phase protocol. WS-CAF and WS-Coordination show
greater flexibility by allowing the implementation of indi-
vidual protocols. All three specifications offer extension
points where enhancements can be added.

4 TracG Framework

In this section, we propose our framework Transactional
activity control for the Grid, which meets the requirements
of dynamic processes on transaction management described
in Section 2.3. We chose WS-Coordination as a basis of our
framework since it is more lightweight than WS-CAF and
more flexible than BTP. The focus in this paper is on the
exit handshake protocol, which enables a process to adapt
to changing conditions during runtime. Furthermore, we
introduce service annotations for the discovery and binding
of services depending on their transactional capabilities and
explicate the propagation of the demarcation privilege.

4.1 Exit Handshake

The ungoverned emission of a participant from a pro-
cess may be fatal for a transaction or the whole process. A
transaction management framework needs to minimize the
effects of leaving participants such that the process can ter-
minate successfully. The task of a leaving participant can
for example be taken over by another, similar service. Such
a takeover of tasks depends on infrastructural support. We
distinguish two variants of participant emission:

• A participant wants to leave the process on its own ac-
cord, i. e., it wants to withdraw from the process. This
may be the case in scenarios of high load on a partic-
ipant or if a participant is not able to meet specified
requirements on its task.

• A participant has introduced another participant into
the process and decides to remove it from the process
again, i. e., to expel it. This may be the case if the
subordinate participant is not needed anymore or if a
superior alternative has been detected.

In order to avoid aborts and errors, an exit handshake is
required for the riskless emission of a participant. The coor-
dinator acts as a mediator in such a handshake. Since the co-
ordinator usually does not possess the necessary knowledge
to decide on the vitality of a participant and consequently
about the emission, the superordinate participant needs to
make this decision. For reasons of clarity, we refer to a
superordinate participant as father and to subordinate par-
ticipants as children. In order to act as a mediator, the coor-
dinator requires knowledge on the message flow and control
hierarchy in the process. Therefore, every participant has to
report its father to the coordinator during registration. The
protocols for withdrawal and expulsion are shown in Fig-
ures 3(a) and 3(b), respectively.

For a participant withdrawal, the following cases can be
distinguished:

T1

Coord

T2

10b. callFailResponse

3. call(Ctx)

6
.
w
it
h
d
ra
w

1
.
re
g
is
te
r

5
.
re
g
is
te
rR
e
s
p
o
n
s
e

7
.
c
a
n
W
it
h
d
ra
w
(
T
2
)

8
.
d
is
m
is
s
(
T
2
)

T3

12. alternative participant

9
.
a
b
o
rt
A
n
d
W
it
h
d
ra
w

1
0
a
.
a
b
o
rt
e
d
A
n
d
W
it
h
d
ra
w
n

1
1
.
d
is
m
is
s
R
e
s
p
o
n
s
e

4
.
re
g
is
te
r

2
.
re
g
is
te
rR
e
s
p
o
n
s
e

(a) Participant withdrawal

T1

Coord

T2

8b. callFailResponse

3. call(Ctx)

5
.
re
g
is
te
rR
e
s
p
o
n
s
e

7
.
a
b
o
rt
A
n
d
W
it
h
d
ra
w

T3

10. alternative participant

8
a
.
a
b
o
rt
e
d
A
n
d
W
it
h
d
ra
w
n

1
.
re
g
is
te
r

4
.
re
g
is
te
r

2
.
re
g
is
te
rR
e
s
p
o
n
s
e

6
.
d
is
m
is
s
(
T
2
)

9
.
d
is
m
is
s
R
e
s
p
o
n
s
e

(b) Participant expulsion

Figure 3. Exit handshake

• The withdrawing participant has a father which partic-
ipates in the process: The coordinator asks the father
about the vitality of the withdrawing child and thus
whether the withdrawal can be permitted. Participat-
ing children of the withdrawing child have to be ex-
pelled; non-participating children have to be detained
from registering for the process.

• The withdrawing participant has no father which par-
ticipates in the process or the father cannot judge the
vitality of its child: This case can occur with decou-
pled interactions, for instance if the participant was in-
troduced into the process through an observer interac-
tion. The withdrawal is denied because there is no way
to decide on the vitality of the withdrawing participant.

For a participant expulsion, these cases can be distin-
guished, depending on the state of the participant:

• The participant to be expelled is registered with the
coordinator: This participant can be expelled. Partic-
ipating children of the leaving participant have to be
expelled as well; non-participating children have to be
detained from registering for the process.

• The participant to be expelled is not registered with the
coordinator: If it tries to register in the further course
of the process, the registration is denied; the partici-
pant has to cancel its activities.

Emissions of participants are only possible within the
limits set by the transaction protocol. After the transaction
has been demarcated, the set of participants is immutable.
The exit handshake protocol can seamlessly be integrated
into WS-Coordination. The messages exit and exited
as well as the state exiting of WS-BusinessActivities then
become dispensable.

4.2 Annotation of Services

WS-AtomicTransaction and WS-BusinessActivities pro-
vide service annotations for transactional capabilities and
requirements such as supported coordination types and pro-
tocols. In order to enable more detailed planning and adap-
tivity at runtime, services also have to specify their transac-
tional behavior according to the following scheme:

• A call within a transactional context is mandatory: If
the call occurs within a transactional context, the ser-
vice registers with the coordinator. A call without a
transactional context is denied.

• A call within a transactional context is optional: If the
call occurs within a transactional context, the service
registers with the coordinator. A call without a trans-
actional context is also accepted, the service then pro-
ceeds without transactional control.

• A call within a transactional context is unsupported:
If the call occurs within a transactional context, it is
accepted and processed, but the service does not regis-
ter with the coordinator. A call without a transactional
context is accepted and processed normally.

• A call within a transactional context is prohibited: If
the call occurs within a transactional context, it is de-
nied. A call without a transactional context is accepted
and processed.

• A call within a transactional context is forwarded: The
service does not itself actively process calls, but dele-
gates them to other services. If the call occurs within
a transactional context, the context is forwarded with
the call. The forwarding service does not register with
the coordinator, but the service the call is forwarded

to may do so. This behavior supports 3rd-party inter-
actions by allowing a transactional context to propa-
gate from the requestor to the recipient through the
provider. Transactional agreements then have to be ne-
gotiated between the requestor and the recipient.

For example, in a composition operating within a trans-
actional context, only services with the behavioral attributes
“mandatory” or “optional” can directly join the transaction.
Services with the behavioral attribute “forwarded” can only
be integrated if the specific children of these services have
the behavioral attributes “mandatory” or “optional”.

4.3 Propagation of the Demarcation
Privilege

The demarcation privilege is the right to initiate the ter-
mination of a transaction. Upon demarcation, the transac-
tion protocol coordinating the termination is started. Usu-
ally, the initiator of a process holds this privilege. In order
to properly support decoupled interactions and withdrawal
from processes, the propagation of this privilege to other
participants must be possible.

In such cases, the demarcation privilege is passed to sub-
sequent participants, depending on the application logic.
In WS-AtomicTransaction, the new holder of the demar-
cation privilege has to register for the completion proto-
col with the coordinator. WS-BusinessActivities does not
provide a completion protocol. Within the BusinessAgree-
mentWithParticipantCompletion protocol, participants indi-
vidually signal completion of their work to the coordinator.
Within the BusinessAgreementWithCoordinatorCompletion
protocol, the coordinator decides when participants are fin-
ished, but the protocol does not specify how the coordi-
nator comes to this decision. It is therefore advantageous
to introduce the concept of demarcation privilege to WS-
BusinessActivities. The participant holding the privilege
can then trigger the coordinator completion protocol with-
out limiting the flexibility of the participant completion pro-
tocol.

4.4 Architecture

Our TracG framework for transactional activity control
is based on the WS-Architecture specification [1] and the
Service Bus principle [12]. Figure 4 shows its layered ar-
chitecture which integrates the WS-RF specification [6] im-
plemented in the Globus Toolkit [7].

An application calls services through a service bus. The
bus is responsible for managing the life cycles of dynamic
processes. It provides all necessary services regarding the
planning, agreement, and enactment phase as well as the
transactional termination. Specifically, the bus offers direc-
tory, composition, and transaction services. Service calls

applications

s
e

rv
ic

e
 b

u
s

d
ir

e
c
to

ry

Web services: SOAP, WSDL, WS-RF

communication layer

composition /

life cycle management

transactional activity control

enactment

Figure 4. Layered architecture of TracG

are encapsulated by an enactment layer in order to imple-
ment, for example, transparent load balancing.

The service bus provides different types of interaction in-
dicated by the arrows in Figure 4: If a particular service ex-
ists to handle a specific request, no dynamic service compo-
sition is conducted, but the service is called direct. This in-
teraction is typical for static, predefined processes. If there
is no service capable of directly answering the request, a dy-
namic service composition is performed. In both scenarios,
transaction management is supported.

Atomic

Coordinator

Atomic

SubCoordinator

Business

Coordinator

Business

SubCoordinator

ActivityContexts
(WS-RF Resource)

C
o
o
rd
in
a
to
r

P
a
rtic

ip
a
n
t

Participant

Port

Exit

Port

WS-AT

Participant

Port

Exit

Port

WS-BA

Registration

Port

Activation

Port

Demarcation

Port

Exit

Port

WS-Coord

Coordinator

Port

Completion

Port

WS-AT

Coordinator

Port

Proxy

Port

WS-BA

Figure 5. Coarse structure of the framework

The implementation of the framework is shown in
Figure 5. The Web service port types for the proto-
cols (WS-Coordination, WS-AtomicTransaction, and WS-
BusinessActivities) have been implemented separately from
each other. They invoke the corresponding coordinator, de-
fined by the SOAP message that calls the respective port
type. The coordinator classes then execute the correspond-

ing completion protocol. The status of the coordinator and
the protocol itself is represented by a Web service resource
[6]. The framework provides four coordinator implementa-
tions to support hierarchies of coordinators in both proto-
cols as specified in WS-Coordination (interposition): two
coordinator types for the roots of process trees and two co-
ordinator types for the subordinates. The port types imple-
menting extensions presented in this paper are indicated by
a darker coloring.

5 Conclusion and Future Work

Service Grids contribute concepts such as dynamism
and self-management to service-oriented computing and are
therefore a promising platform for distributed processes.
They allow the execution of adaptive and dynamic pro-
cesses whose structure can be changed during runtime. The
life cycle of such dynamic processes can be broken down
into planning, negotiation, enactment, and transactional ter-
mination.

The transactional support of dynamic processes holds
specific requirements. The set of participants and the struc-
ture of a process should be adaptable during runtime with-
out needing to abort or restart the whole process. In case of
decoupled interactions, some relationships between partici-
pants relevant to transaction management do not arise until
runtime.

Existing standards show several weaknesses regarding
the transactional coordination of activities in dynamic en-
vironments which mainly result from incomplete support
of dynamically shrinking and growing sets of participants.
More shortcomings can be identified with respect to com-
plex interaction scenarios which require extended concepts
such as propagation of the demarcation privilege.

Our TracG framework, regarding transaction manage-
ment, is based on WS-Coordination. We have enhanced the
specification with an exit handshake protocol. The privi-
lege to demarcate a transaction can be passed to other par-
ticipants. We proposed a concept to annotate services with
their transactional behavior to incorporate transaction man-
agement in automated service composition.

An important field of our future research will be the
localization of application-specific coordination logic in
generic coordinator services. To enable autonomous trans-
action coordination, it is necessary to explicitly describe
coordination logic in form of coordination rules which can
then be transferred to a coordinator. To this end, we inves-
tigate the definition of coordination primitives as building
blocks for coordination rules.

Furthermore, we strive to integrate the aspects of trans-
action management into the specification of dynamic pro-
cesses. In this respect, we will examine existing process
specification languages and possibly necessary extensions.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, et al. Web Services
Agreement Specification (WS-Agreement), May 2004.

[2] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service
Interaction Patterns. In 3rd Int. Conf. on Business Process
Management, Nancy, France, pages 302–318, 2005.

[3] D. Bunting, M. Chapman, O. Hurley, et al. Web Services
Composite Application Framework (WS-CAF) Ver 1.0, Jul
2003.

[4] L. F. Cabrera, G. Copeland, M. Feingold, et al. Web Services
Atomic Transaction (WS-AtomicTransaction), Nov 2004.

[5] L. F. Cabrera, G. Copeland, T. Freund, et al. Web Ser-
vices Business Activity Framework (WS-BusinessActivity),
Nov 2004.

[6] K. Czajkowski, D. F. Ferguson, I. Foster, et al. The WS-
Resource Framework (Version 1.0), May 2004.

[7] I. T. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. In IFIP Int. Conf. on Network and Paral-
lel Computing, Beijing, China, pages 2–13, 2005.

[8] P. Furniss, S. Dalal, T. Fletcher, et al. Business Transaction
Protocol (BTP 1.1), 2004.

[9] T. Jin and S. Goschnick. Utilizing Web Services in an Agent
Based Transaction Model (ABT). In AAMAS 2003 - Work-
shop on Web Services and Agent-based Engineering, July
2003.

[10] B. Kratz. Protocols For Long Running Business Transac-
tions. Technical Report 17, Infolab Technical Report Series,
Feb 2004.

[11] D. Kuropka and M. Weske. Die Adaptive Services Grid Plat-
tform: Motivation, Potential, Funktionsweise und Anwen-
dungsszenarien. Emisa Forum, 26(1):13–25, Jan 2006.

[12] F. Leymann. The (Service) Bus: Services Penetrate Ev-
eryday Life. In Third Int. Conf. on Service-Oriented Com-
puting, Amsterdam, The Netherlands, volume LNCS 3826,
pages 12–20, 2005.

[13] M. Little and T. Freund. A comparison of Web services
transaction protocols (A comparative analysis of WS-C/WS-
Tx and OASIS BTP), Oct 2003.

[14] F. Montagut and R. Molva. Augmenting Web Services Com-
position with Transactional Requirements. In IEEE Int.
Conf. on Web Services (ICWS’06), pages 91–98, 2006.

[15] M. P. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In 4th Int. Conf. on Web In-
formation Systems Engineering, Rome, Italy, pages 3–12,
2003.

[16] S. Tai, T. Mikalsen, E. Wohlstadter, et al. Transaction poli-
cies for service-oriented computing. Data Knowl. Eng.,
51(1):59–79, 2004.

[17] C. Türker, K. Haller, C. Schuler, and H.-J. Schek. How can
we support Grid Transactions? Towards Peer-to-Peer Trans-
action Processing. In Second Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, pages
174–185, 2005.

