
Supervising Remote Task Execution in

Collaborative Workflow Environments

Michael von Riegen⋆ and Sonja Zaplata

University of Hamburg, MIN Faculty, Department of Informatics,
VSIS, Vogt-Kölln-Straße 30, D-22527 Hamburg

Abstract. A key problem of collaborative workflows is the - sometimes
questionable - assumption that remote tasks will be executed as agreed
on before. In order to enforce compliance to given requirements, evidence
of the correct execution of a remote task has to be produced. However,
participants of inter-organizational workflows are autonomous and in-
formation about their private business processes is often (intentionally)
unavailable to service consumers. This contribution identifies and dis-
cusses distinct levels and approaches to enforce the correct execution of
tasks which are executed remotely. In addition to that, specific super-
vising mechanisms are presented, which are able to create evidence of
correct execution while preserving the autonomy of participating busi-
ness partners. Finally, the identified mechanisms are integrated into a
flexible architecture to support monitoring and controlling of remote
services.

1 Introduction

Collaborative workflows between organizations and cross-border processes are
playing an important role in today’s business processes, for example for eGovern-
ment applications. To achieve collaboration in virtual enterprises or between
two or more business partners, there are reasonable strategies like outsourcing
of tasks, execution of remote activities or the entirely distributed processing
of workflows [18]. Nevertheless the acceptance for using these opportunities is
still weak: As of today, service providers deliver their services on their own
behalf. Outsourcing of tasks always means to distribute the responsibility of
task execution, and a task executed remotely probably leaves the provider’s
sphere of control. Therefore, an unreliable execution of tasks through external
subcontractors does not only weaken the customer’s trustfulness, but can as well
have serious legal consequences, for example if a subcontractor delivers too late.

In majority, partners of business contracts want to be autonomous and het-
erogeneous. Heterogeneity problems can be solved by using established Web Ser-
vice technologies and service oriented architectures. But, due to their autonomy
and because their internal business functions are concealed behind well-defined
interfaces, the participants can change or behave arbitrarily [10]. Technically,

⋆ The work was sponsored by the EU IST-2004-026650 project “R4eGov”



paradigms like encapsulation and information hiding help to develop and inte-
grate standard and easy-to-use functional access points, but on the other hand
they also imply the behavior of a black box. The lack of insight into private pro-
cesses of cooperating business partners declines confidence and causes doubts on
reliability. Therefore, there is a need for mechanisms to ensure that an external
service behaves just like the consumer has expected it to do, and that the re-
sults received are correct. Especially in an open environment, the enforcement
of contracts and the proof of compliance to predefined requirements is a chal-
lenge. Therefore, this paper addresses the question how to enforce the execution
of tasks by producing evidence that a remote task was executed as agreed on
before.

Enforcement of remote task execution implies on the one hand judicial as-
pects, where in case of failures the aggrieved party can go to court and enforce
its rights. To be able to do this, the partners have to prove the correct execution
of the objected task, for example with an audit log. On the other hand, the
step enforcement implies technical aspects where, for example, transactions or
monitoring and controlling mechanisms can be used to create evidence during
or directly after the execution of a task. Here, the goal is to detect failures or
discrepancies during and immediately after the execution of a task in order to
be able to react at once.

This contribution concentrates on technical aspects and therefore identifies
different approaches to task enforcement and defines various levels of integrating
monitoring and controlling capabilities into existing collaborative workflows. The
actual decision which technology to adapt for a specific scenario depends signif-
icantly on the application, the kind of outsourced tasks, the involved business
parties, as well as the sensitivity and the relevance of the execution. There-
fore, this contribution introduces an approach for a flexible supervision platform
which is able to negotiate appropriate enforceability mechanisms for various ap-
plications.

The remainder of this paper is organized as follows: Section 2 introduces a
classification of possible solutions for step enforcement and creation of evidence
on remote task execution. Existing approaches and techniques are reviewed and
discussed in Section 3. Section 4 presents important requirements and prerequi-
sites, and section 5 proposes a coarse architecture for an integrated approach of
step supervision and enforcement. The paper concludes with a summary and an
overview of future work.

2 Step Enforcement in Collaborative Workflows

Collaborative workflows are often realized with approaches based on loosely cou-
pled components. One of these approaches is the workflow view approach which
is inspired by the database view concept. The workflow view approach can be
described as a distributed workflow running between organizations, where the or-
ganizations involved are able to refine their parts of the global workflow to build
their private (sub-)workflows. This peer-to-peer like approach requires that the



private workflows of participating organizations will satisfy the public workflow
as agreed on before [18]. To build a workflow based on the workflow view ap-
proach, the following steps can be performed: The organizations involved agree
on a common public workflow, which serves as a contract between them. Each
task of the public workflow is mapped to one of the participating organizations.
This public part of the workflow is referred as their public view. Each organi-
zation can now create a new private workflow or adapt their existing workflows
regarding the public view. In order to satisfy the overall correctness of the col-
laborative workflow, each organization may only specify a private workflow as a
subclass of its public view.

While a private view implements its corresponding public view and hides
company specific implementation details, the public view itself interconnects
and interacts with the public views of the other organizations. Within the next
section, the need for concepts to enable enforceability in collaborative workflows
is discussed against the background of the workflow view approach.

2.1 Enforcement of Step Characteristics

A key problem within collaborative workflows is the enforcement of contracts
and the proof of compliance to predefined requirements. The goal is to pro-
duce evidence for the correct execution of remote tasks, without reducing the
autonomy of the business partners.

Normally, the notion of transactions can be used to keep the consistency
within a process and to provide evidence that all partners sent a positive confir-
mation on their execution. But how can a business partner verify semantically
whether a remote partner upheld the agreements or not? In this case, transac-
tions are not strong enough to produce evidence, so the outcome of a task itself
has to be analyzed in more details. In order to do this, functional as well as
non-functional aspects of the remote task have to be supervised.

The supervision of the execution of a task can take place either during (moni-

toring) or after a task is being executed (controlling) [11]. During task execution,
monitoring can include intermediary results, status information or quality of ser-
vice aspects. This information can be used to make predictions about success or
failure of the execution, for example about the compliance to time-constraints.
After task execution, the given results can be verified against agreements that
have been specified beforehand.

2.2 Example

To motivate the need for a flexible and adaptable enforcement and supervision
mechanism, a short example from the domain of public procurement is presented:

A company offers business services, which can be requested by both private

customers and public authorities. Because of legal obligations, the company

has to provide detailed supervising mechanisms in order to collaborate with



a public authority. For example, the public authority needs a confirmation

for each task performed by the company and also a deeper insight to some of

the company’s private processes. On the other hand, when dealing with pri-

vate customers, requirements for enforcement become more casual, whereas

performance issues gain more importance in order to be competitive with

other providers of similar services.

This example displays different degrees of evidence and data in order to
supervise remote tasks. Therefore, the next section presents different levels of
enforcement by displaying several solutions for each level.

2.3 Levels of Enforcement

Depending on the processes’ sensitivity and the effort to be spent in order to
check compliance, either a pessimistic or an optimistic enforcement strategy can
be applied. In a pessimistic scenario, everything processed by the remote task
should be controlled. This can be done for instance by checking input values
against output values and comparing them to contractual invariants or even
install a trusted computing environment on the remote site. In contrast, an
optimistic controller assumes that the remote partner operates like expected
and applies just a minimum of checking. Between these two extreme positions,
more detailed levels of enforcement can be identified:

(Level 0) Confidence In this level no mechanisms of enforcement are pro-
vided. The outsourcing party trusts on the partner’s capabilities and relies
completely on his integrity. There is no review of results and no guarantees
are expected. Runtime errors may remain unhandled and the overall process
might fail because of failures in subsystems. This level of enforcement is at
the most appropriate for already established business relationships, intra-
enterprise collaborations or self-maintained subsystems.

(Level 1) Confirmation The successful execution of an outsourced task will
be notified by sending a confirmation, which could be, for example, a dig-
ital signature or a certification document. Collecting confirmations is most
valuable for tasks and subprocesses, which do not return result values to
indicate that anything has happened to perform the task. Although within
this level the remote runtime behavior cannot be monitored and therefore
errors cannot be detected in advance, failures determined later can be as-
sociated with their origin and, for instance, legal steps can be taken to deal
with non-compliance.

(Level 2) Controlling by Process Design In case the control flow returns
to the calling entity or output data is available, time constraints can be
checked or return values can be verified against specified conditions. This
level makes use of existing control flow constructs to check return values,
deadlines and conditions. It is therefore part of the process modeling to
specify what should happen if an error occurs during execution or if the
result values do not meet given requirements.



(Level 3) Agreements and Policies Additional agreements can be made in
order to define QoS requirements, policies or functional constraints. Agree-
ments are mostly made prior to execution and are often defined separately
from the business logic. Therefore, requirements and service properties are
negotiated and finally result in a contract which is binding for both parties.
But the act of checking the compliance with a defined agreement is outside
the scope of defining contracts and needs support of other mechanisms, like
monitoring and controlling tools. Therefore, this level as a single solution is
not sufficient to detect errors in time to be able to react accordingly, e.g.
by exchanging service providers in case the compliance with functional or
non-functional requirements is at risk.

(Level 4) Monitoring and Controlling This level makes use of advanced
monitoring and controlling tools either from the side of the service consumer,
the service provider, or a trusted third party. For instance, consumer-side
management systems can be extended in order to check incoming results
and monitor the conformity of remote execution with predefined agreements.
Furthermore, the service consumer can exploit monitoring information made
available by the service provider. This way, either the foreign service provider
can be monitored at runtime or the performed task is controlled after its
completion. Provider-side monitoring and controlling requires a deeper look
into external processes and allows for a more detailed view on quality pa-
rameters, faults and intermediate results, while still keeping the autonomy
of each business partner. However, this level cannot prevent intentional ma-
licious behavior of business partners.

(Level 5) Dual Control This level requires that a task will be effectively pro-
cessed by at least two individuals or software programs (4-Eyes-Principle).
This could for example mean that the execution is performed in a two-way
manner. Results can either be compared to assure correct execution or the
execution can be observed in a very detailed way, e.g. the result of each
single step is controlled. The problem with this procedure is that it might
be unreasonable and expensive: In most cases, the verification of a task’s
execution is at least as complex as executing the task itself. Furthermore, it
appears that, if the outsourcing partner has the capability to rework every
single step of a task, he could have done the job all by himself and there is no
need for outsourcing it. Another point is that some activities with an exactly

once semantic (e.g. a bank transfer) cannot be performed several times to
compare results or to prove that the desired effect has occurred.

(Level 6) Direct Control Direct Control means to supervise the conformity
of a remote task at the location of its execution. Technically, this can be
achieved by a software agent or an external (hardware) module to control
every step performed by the partner, for example with a trusted comput-
ing platform. Level 6 is the strongest way of enforcing functional and non-
functional requirements. However, the problem is that normally autonomous
business partners do not allow external software to be run within their pri-
vate business systems. This paper does not deal with direct control mecha-
nisms, because their realization would reduce the partners’ autonomy.



A combination of the mentioned levels of enforcement is possible to achieve
stronger individual evidence. For example, agreements to assure non-functional
properties may be combined with means of confirmation to create legal evidence
for the functional part. Another alternative is to integrate the results of advanced
monitoring tools (Level 4) with the business process itself (Level 2) in order to
allow an alternative control flow in case of dis-compliance.

3 Related Work

Most of existing languages to model business processes, for example BPEL4WS

[1], WSCI [3] or XPDL [15], offer feasible constructs to check return values,
monitor deadlines or define scopes for error handling in order to solve (external)
failures. These elements allow to model controlling mechanisms right from the
stage of process design and to integrate an alternative control flow in dependence
of monitoring results. Additionally, some approaches integrate externally defined
monitoring rules into existing processes by specifying assertions and by checking
pre- and post-conditions to detect violations of functional contracts [5] [6].

The issue of defining service level agreements (SLA) and policies to obtain
contracts is addressed, for instance, in the research area of Web Services where
a couple of specifications have already evolved, like WSLA [14], WS-Agreement

[2] or WS-Policy [4]. But, in the mentioned approaches, the problem of checking
the compliance to these agreements remains unaddressed. Therefore, initiatives
like the Cremona framework [13] also deal with the monitoring of agreements.
Cremona introduces a middleware layer to create agreements and to access the
current state of an agreement at runtime. Lazovik, Aiello and Papazoglou [12]
propose another monitoring framework, which expresses contracts via assertions
and checks them with a monitoring algorithm.

The CrossFlow Project [9] introduced monitoring mechanisms and empha-
sized its high relevance for inter-organizational workflows. Here is the focus on
service contract establishment and enactment. The enforcement of contracts and
the supervision of required Quality of Service parameters are considered only
marginally in this project. An interesting aspect is the possibility to include
terms of monitoring into the service contract, but integration with existing moni-
toring tools is an open issue.

More related work for monitoring and controlling data can be found in the
research area of service management. OASIS provides the service management
standards MOWS [16] and MUWS [17], which also involve aspects of service
monitoring by using Web Service protocols. Likewise, Hewlett Packard presented
the WSMF [7] framework for service management. In general, these management
facilities were designed to be applied to controllable systems, not to remote
services of autonomous business partners.

As to see, there are already many adequate concepts and technologies to
define and integrate control flow, agreements and assertions. The presented con-
cepts are feasible to define contracts on how to behave and to decide how to
react in case of dis-compliance. A relevant insufficiency is that these techniques



- although well suitable on a higher level - lack basic support to create evidence
about what has actually happened. Summarized, the presented concepts rely on
observing and analyzing the externally visible behavior of the communicating
parties.

4 Supervising Remote Task Execution

In collaborative workflows it is very likely that participants are autonomous and
by this, their services and internal processes are mostly heterogeneous and may
be based upon proprietary technologies. But not only service implementations
are heterogeneous, also monitoring tools and log files are different amongst busi-
ness partners. While services can be accessed by means of standard interfaces like
WSDL, there is a need for allowing access to management tools, irrespective of
the technology used for internally accessing monitoring, controlling and logging
data. Additionally, security mechanisms to protect monitoring and controlling
interfaces from unauthorized access have to be provided.

4.1 Requirements

Considering the problem of enforcement and the creation of evidence for task
execution, a number of important requirements can be identified. First, vali-
dation for the execution of a task is necessary to disallow repudiation about
which party has performed a certain object of agreement. Besides this merely
judicial aspect, mechanisms to detect errors in any stage of an external task’s
execution are required. Most importantly, possible dis-compliances have to be
detected immediately, so that partners can react as soon as possible. Reacting
on dis-compliances can mean to either restart tasks or the whole process, change
parameters or to select other partners in order to execute the task on a different
system.

Because collecting of monitoring data and its evaluation can have negative
effects on the performance of a task (or even the performance of the whole
process), it is important to allow to separate monitoring capabilities from the
business logic of the service [5]. Therefore, the consumer should decide (ideally
dynamically) whether to integrate monitoring and controlling functionality or
not. Cooperating parties can also decide or determine the amount of supervision
in dependence on the task’s sensibility or a business partner’s identity and select
the appropriate level of enforcement accordingly.

Nevertheless, if for instance public authorities need deeper insight into the
partner’s internal processes and need to include higher levels of enforcement,
they have to prove their authorization level during a negotiation phase where
partners can agree on supervising methods (See also section 2.2).

4.2 Discussion of Life Cycle Aspects

The question, what kind of supervision data should be accessible is also related
to the question, when this data should be accessed. There are three possibilities,



Process Design

Negotiation +
Selection of 
Business Partner

Execution of
Outsourced Task

Monitoring

Completion of 
Outsourced Task

Process
Termination

 Analysis /
Evaluation

Controlling

Preparation

Fig. 1. Phases of Supervision

which are summarized in Figure 1: First, information can be accessed before the
task is going to be executed (Preparation Phase). This could be, for example,
within the preparation of service assembly to check the availability of a service.
Second, information can be accessed at runtime (Monitoring Phase) in order to
check the task’s progress, its current state and the compliance to constraints and
agreements. Third, results can be checked after the execution of a task (Control-

ling Phase). Here again, non-functional criteria like the abidance of deadlines,
agreements and policies have to be evaluated. It is also possible to delay the
controlling procedure and to wait until the entire process is finished. The results
of this late controlling procedure do not longer affect the process instance itself,
but can be integrated into statistics, interpreted for optimization purposes, or
can be taken to initiate legal actions against partners who did not fulfill their
tasks properly. This is often referred to as auditing which analyzes divergences
between the as-is state of a system and the target state in which it should be or
should have been.

4.3 Supervision Models

Besides the aspects regarding the life cycle, monitoring and controlling tech-
niques can be distinguished by the way of how the supervision information is
actually accessed: In the Push Model monitoring and controlling data is supplied
by the service provider, for example by sending notifications in case a certain
event occurs or a threshold value is exceeded. In the Pull Model the data is
explicitly requested by the consumer, e.g. by asking for the current process state
[8]. Both paradigms can be combined to design flexible and efficient monitoring
and controlling models.

5 An Architecture to Supervise Remote Execution

Generally, monitoring and controlling can be considered from three different view
points, depending on the involved party: A service provider, a service requester

and an eventually involved third party.



A service provider supplies relevant data and (aggregated) information about
the progress of a task via monitoring and controlling interfaces on the public
view of a workflow. The provided interfaces encapsulate relevant internal data
provided by the according private workflow and are able to negotiate the degree
of information that can be supplied. They are also able to return results (if any)
to a service requester, depending on the type of interaction between the business
partners.

On the other side, a service requester can check results and information sup-
plied by the service provider. This includes monitoring and controlling data and
even the results of a request itself. Regarding the provided data, the requester
can decide if this creates evidence on task execution or if the provider abides
certain quality of service requirements.

Nevertheless, both service provider and service requester have the option
to use a trusted third party in order to collaborate. This trusted third party
monitors the execution, validates the results and ensures the abidance of given
contracts. Apart from that, a third party has also the ability to monitor messages
and to check whether the exchanged messages between business partners comply
a given protocol or not.

Regarding these viewpoints, the next section gives an overview of our archi-
tecture to supervise remote task execution.

5.1 Overview

Figure 2 depicts the viewpoints as introduced in section 5 and shows starting-
points for integrating monitoring and controlling capabilities into existing col-
laborative workflows: If a client invokes a method on the public view of business
partner A, the execution of a private process is initiated. If this private pro-
cess of business partner A includes interaction with other services regarding the
public workflow, A will invoke a method of the public view of business partner
B. Because A is in charge of the whole request and the integration of partner
B remains transparent for customers, the enforcement of this step (executed
remotely by B) is essential for A.

The key component of B is an additional service which offers an interface
to negotiate enforcement mechanisms and provides monitoring and controlling
capabilities. This monitor and controlling interface (m+c interface) encapsulates
internal process data of the private view and possibly existing private monitoring
mechanisms. It aggregates required data in order to abide privacy policies. In
case an internal system monitor already exists, the m+c interface can act as
a simple wrapper to integrate the monitoring functions. If there is no existing
internal system monitor, the m+c interface has to monitor internal processes as
well.

The proposed levels of enforcement (see section 2.3) can also be identified in
this architecture. Level 0 (Confidence) does not use monitoring and controlling
mechanisms at all. This is the trivial case where no m+c interfaces and system
monitors are implemented. Within this architecture, Level 1 (Confirmation) is



Trusted Third PartyPublic view

Private view

Internal

System

Monitor

monitoring 

activity

outsourced 

activity

controlling 

activity

Legacy Systems

Public view

Private view

Legacy Systems

Internal 

System

Monitor

m+c Interface

Functional InterfaceProxy

m+c Proxy

Functional Interface

customer

invokes

implements
implements

W
o
rk

fl
o
w

 E
n

g
in

e

W
o
rk

fl
o
w

 E
n

g
in

e

optional

m+c req. m+c prop.

Fig. 2. Coarse architecture to enforce remote task execution

achieved by requesting a digital signature attached to the task’s result after fin-
ishing the remote execution. Furthermore, activities to check the result values
or time constraints are optionally included into the process description (Level 2,
Controlling by Process Design). Existing concepts are used to realize this, e.g.,
the conditional branch construct or the deadline expression from BPEL4WS.
Advanced requirements and factors which cannot be specified within a process
description or which should be defined external to the business logic, are de-
scribed by additional documents containing agreements and policies (Level 3,
Agreements and Policies). For instance, quality of service parameters, like con-
straints on costs and response time or requirements on security issues can be
defined. To access runtime data, like progress information or intermediary re-
sults, the selected business partner has to offer a special interface to present the
results of internal monitoring and controlling tools to the consumer (Level 4,
Monitoring and Controlling). The correctness of received results or the verifica-
tion of the consequences of an execution can further be determined by another
authority (Level 5, Dual Control). This authority could either be the consumer
of the service himself or a trusted third party. Level 6 (Direct Control) is not
applicable within this architecture, because it would reduce the autonomy of
business partners.



5.2 Negotiation of Supervising Policies

Like described within the requirements (see section 4.1), the type of supervising
mechanisms and the amount of insight provided must be negotiable. Besides the
required level of enforcement (see section 2.3), formats and patterns (e.g. push
vs. pull model) have to be settled before starting collaboration. In summary,
there are five different areas of negotiable information: Status and progress in-
formation, Quality of Service data, intermediary results, certification data and
log data. The requirements for particular monitoring information are specified
within a m+c requirements document, whereas the properties of the remote m+c
interface are defined in a m+c property document. Matching between these two
policy documents can be included into the service discovery and selection pro-
cedure, so the m+c requirements can act as a non-functional requirement for
service selection. To attach these requirements documents to specific business
cases, they are either involved as process data in the workflow description itself
or can be specified externally in a Service Level Agreement (SLA).

6 Conclusion

This paper has motivated the need for techniques to support monitoring and
controlling in order to create evidence of a remote task execution within col-
laborative workflows. In contrast to auditing mechanisms, this paper proposes
supervising techniques that are able to check, validate and control the execu-
tion of a task immediately after and during its execution without tampering
the remote site. We have presented different supervising categories that can be
used as single solutions or as a combination to strengthen the evidence of exe-
cution. These supervising mechanisms to enforce a step within a collaborative
workflow have been depicted in different phases of a process life cycle. In order
to handle these categories, we have presented an architecture for supervising
task execution by using the public-to-private workflow model to enable collabo-
rative workflows between two partners. The introduced architecture is based on
Web Service technologies and provides negotiation capabilities to determine the
category of supervising by the involved partners prior to task execution. In the
future, the amount of supervision is supposed to become dynamically adjustable,
so that a possibly negative performance impact of supervision can be evaluated
against the benefit of the enforced task execution.

Finally, this contribution only considers the creation of evidence of remote
tasks executed between two partners (local evidence). Future work includes the
extension of the concept to all partners participating in the collaborative work-
flow. To prove that all tasks of such a distributed workflow have been executed
accordingly to agreements made before (global evidence), local guarantees have
to be integrated. This also reflects the idea taken from transaction management,
where local guarantees generate global guarantees on distributed transactions in
heterogeneous federations [19].



References

1. T. Andrews et al. Business Process Execution Language for Web Services - Version
1.1. Technical report, BEA Systems, International Business Machines Corporation,
Microsoft Corporation, SAP AG, Siebel Systems, May 2003.

2. A. Andrieux et al. Web Services Agreement Specification (WS-Agreement). Spec-
ification, 2005.

3. A. Arkin et al. Web Service Choreography Interface (WSCI) 1.0. Specification,
World Wide Web Consortium, 2002.

4. S. Bajaj et al. Web Services Policy Framework (WSPolicy). Specification, 2006.
5. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. pages

193–202, 2004.
6. L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS-BPEL Processes.

In B. Benatallah, F. Casati, and P. Traverso, editors, ICSOC 2005, Third Inter-
national Conference of Service-Oriented Computing, volume 3826 of Lecture Notes
in Computer Science. Springer, 2005.

7. N. Catania, P. Kumar, et al. Web Services Management Framework (WSMF)
Overview Version 2.0. Specification, 2003.

8. Y. Hoffner, H. Ludwig, et al. An Architecture for Cross-Organizational Business
Processes. Proceedings of the Second International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems (WECWIS 2000), 00, 2000.

9. Y. Hoffner, H. Ludwig, et al. CrossFlow: integrating workflow management and
electronic commerce. SIGecom Exch., 2(1), 2001.

10. M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 09(1), 2005.

11. S. Jablonski, M. Böhm, and W. Schulze. Workflow Management - Entwicklung von
Anwendungen und Systemen. dpunkt, 1997.

12. A. Lazovik, M. Aiello, and M. Papazoglou. Associating assertions with business
processes and monitoring their execution. In ICSOC ’04: Proceedings of the 2nd
international conference on Service oriented computing, New York, NY, USA, 2004.
ACM Press.

13. H. Ludwig, A. Dan, and R. Kearney. Cremona: An Architecture and Library for
Creation and Monitoring of WS-Agreements. In ICSOC ’04: Proceedings of the
2nd international conference on Service oriented computing, New York, NY, USA,
2004. ACM Press.

14. H. Ludwig, A. Keller, et al. Web Service Level Agreement (WSLA) Language
Specification. Specification, 2003.

15. R. Norin, M. Marin, and R. Shapiro. Workflow Process Definition Interface - XML
Process Definition Language Version 2.0. Specification WFMC-TC-1025, Workflow
Management Coalition, 2005.

16. I. Sedukhin. Web Services Distributed Management: Management of Web Services
(WSDM-MOWS) 1.0. Specification, 2005.

17. W. Vambenepe. Web Services Distributed Management: Management Using Web
Services (WSDM-MUWS) 1.0. Specification, 2005.

18. W. van der Aalst. Loosely coupled interorganizational workflows: modeling and
analyzing workflows crossing organizational boundaries. Inf. Manage., 37(2), 2000.

19. G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kaufmann
Publishers, 2002.


