Mobile Processes: Enhancing Cooperation in Distributed Mobile
Environments *

Christian P. Kunze, Sonja Zaplata, and Winfried Lamersdorf
Distributed Systems and Information Systems, Department of Informatics
University of Hamburg, Hamburg, Germany
Email: {kunze, zaplata, lamersdorf} @informatik.uni-hamburg.de

Abstract

Currently, context awareness is one of the main trends in
distributed mobile computing environments. Against this
background, the demand for more complex — and addi-
tionally long-term — mobile applications increases contin-
uously. Nevertheless, most current available mobile appli-
cations — as well as their supporting middleware platforms
— are still relatively monolithic and closed systems, con-
centrating on only short-term activities. As a consequence,
most present appliances are still restricted to rather simple
tasks and are therefore rather insufficient for more complex
ones which consist of sequences of related long-term activ-
ities tied together in respective application-oriented pro-
cesses. In order to overcome the resource and capability
restrictions of mobile environments, such application pro-
cesses may profit from, e.g., cooperation between devices
in the mobile vicinity — a fact which is hardly supported by
existing systems.

Therefore, this paper introduces a concept for integrat-
ing explicit support for mobile processes into mobile sys-
tem infrastructures and for distributing their execution
over different nodes in the network. Additionally, a corre-
sponding middleware platform for context-aware and co-
operative mobile applications is proposed. This frame-
work has been designed and realized in the context of
project DEMAC (Distributed Environment for Mobility-
Aware Computing) which supports such migrating pro-
cesses and helps to execute them under the restrictions im-
posed by realistic mobile applications. In particular, this
paper proposes a corresponding process description lan-
guage and an execution model for such mobile (business)
processes.

1 Introduction

Compared to traditional distributed systems, mobile com-
puting environments are characterized by additional re-
quirements and limitations like, e.g., resource restrictions

*This paper is based on “Mobile Process Description and Execution,”
by Christian P. Kunze, Sonja Zaplata, and Winfried Lamersdorf, which
appeared in the Proceedings of the 6th IFIP WG 6.1 International Con-
ference on Distributed Applications and Interoperable Systems (DAIS),
Bologna, Italy, June 2006. (©) 2006 Springer.

or increased variability in performance and reliability of
wireless connections [19]. To overcome such constraints,
mobile computing applications can take advantage of con-
text information to break up their isolation by decreasing
the distribution transparency and thus getting access to ad-
ditional environmental data and services. Therefore, ap-
plications and middleware platforms evolved to become
aware of their frequently changing vicinity and adapt and
react to it accordingly and, thus, to benefit from their mo-
bility.

Currently, so-called context-aware systems can be di-
vided into four classes which describe how context infor-
mation is used [4]: The first one is the class of context-
based selection which contains applications that select
their information or services based on context information,
such as a tourist or museum guide in the GUIDE [7] re-
spectively Cyberguide [1] projects. The applications of the
second class — context-based presentation — adapt the way
how they present their information according to contextual
constraints. E.g. a mobile phone can switch from acous-
tic to optic notification of incoming calls during a meet-
ing. The third class, which is called context-based action,
includes applications that react to context changes (espe-
cially changes in the quality of used services) as they adapt
the fulfillment of their own service accordingly. This is
done e.g. in the UbiQoS project [5] where the frame rate
of a video stream is adapted to the available bandwidth dur-
ing its transfer. The fourth group of context-based tagging
or annotation summarizes applications which provide the
possibility to augment things or special context situations
with additional information, such as in the Stick-e Notes
project [16].

In summary, in such current systems context awareness
and adaptability is, in most cases, still restricted to support
more or less monolithic and ad-hoc static applications in
fulfilling their momentary tasks. This means, contextual
information about resources — like data, services or poten-
tial participants — is collected only once to create a tailored
run of the mobile application. Because devices of the mo-
bile vicinity do not cooperate in order to execute the ap-
plication, available resources are determined and thus re-
stricted by the capabilities of the executing device. Re-
sources available by other devices remain inaccessible for
the dynamic adjustment of the mobile application. As a
consequence, also the complexity of applications and tasks



is limited by the device‘s capabilities and its supported
technologies. Hence, most existing middleware systems
are rather application centric and, thus, offering assistance
for basic but actually simple tasks. In order to come closer
to the original vision of pervasive computing [22,23], also
much more complex and eventually even unknown tasks
and thus more generality must be supported by new mo-
bile middleware systems.

Such complex application tasks can be regarded as se-
quences of related simple tasks tied together in a (business)
process which is managed by a mobile client on behalf of
a user. This means that a mobile client is required to reach
and invoke all the services needed to execute such a pro-
cess. It must also be capable of handling all intermediate
results — regardless of their size and relevance to the ex-
pected final output. As a consequence, it may become a
single point of failure and also a bottleneck during execu-
tion time. Altogether, this means that the capabilities of a
mobile client limit the quantity of possible processes to be
executed.

But since the user is, in most cases, just interested in
some specific effects of a process (and not in its execution
or intermediate results), this effect could be eased by trans-
ferring the control flow — and with it the whole process — to
other devices, if possible. In combination with the possi-
bilities of mobile computing middleware systems to utilize
context information and to cooperate, such long-time mo-
bile processes and their distributed execution provide addi-
tional efficiency to application process execution in mobile
computing.

Accordingly, this paper presents a system platform that
enables a new class of context-based applications which
is called context-based collaboration. This is done by in-
troducing the Distributed Environment for Mobility-Aware
Computing (DEMAC) middleware framework — which re-
alizes such an extension — with a special focus on a new
description language and execution model for such mobile
(business) processes.

The following subsections of the paper introduce the
definition of mobile processes and provide a sample sce-
nario to illustrate the concept of such processes. Section
2 addresses related work, and section 3 provides a closer
look at the coarse system architecture, the process defini-
tion language, and the execution engine. A more technical
view on the prototypical implementation of the proposed
middleware and on the evaluation environment is presented
in section 4. The paper concludes with a summary and an
outline of future work.

1.1 Integrating Processes into Mobile Com-
puting Systems

The work presented here aims to extend the capabilities of
mobile devices by means of cooperation with other devices
in their vicinity and thus increase of their potential. This
is achieved by integrating distributed (business) processes
into an adequate mobile system infrastructure. Such an ap-
proach is different to most existing ones of integrating pro-

cesses with mobile computing devices which just extend
their traditional process infrastructure by including mobile
devices as process participants (cp. e.g. [18]). Accord-
ingly, in our context, the term mobile process is defined
and used as followed:

A mobile process is a sequence of (remote) services
which may last over a longer period of time and span
several devices during its execution. The results of
the process are the effects the initiator expects from
it.

In traditional mobile middleware, a process executes the
application logic by explicitly assigning local or remote
services to the process‘s activities and by invoking them
directly. In addition to that, in our view, such application
processes may (partly) diffuse into the mobile middleware:
They just form a stub which collects information from the
user to assemble the process and its general conditions and
to pass the mobile process to the middleware.

Moreover, as some mobile process activities may last
rather long (like hours, days, or weeks) the environmen-
tal conditions of the device can change dramatically be-
tween the executions of adjacent activities and even during
the execution of single activities. Therefore, a late bind-
ing strategy to assign services is — certainly — essential but
not always sufficient. Consequently, the mobile processes
as proposed here are executed based on an opportunistic
strategy: As long as the process engine of a device is able
to bind local or remote services to its current activity, it is
responsible for the mobile process. However, in cases of
failures or lack of respective service instances the engine
is able to try to find other devices to execute the mobile
process and then transfers the remaining process and its
execution to one of them.

Considering the limited capabilities and resources of
mobile devices, it is unlikely that one single device is able
to execute a complex process entirely or that all required
resources reside in its communication and capability range.
Assuming that, e.g., a mobile device has to access a se-
quence of remote activities to obtain some data from them
and that, in its direct vicinity, adequate services to perform
these tasks exist, but that the mobile device cannot access
them. The migration of the process provides the possibil-
ity that other devices may be capable to access the services
and thus to fulfill the tasks. Furthermore, the migration
opens up a new vicinity to search for other and maybe more
suitable services.

As shown, such a process distribution is especially
advantageous in (realistic) heterogeneous and frequently
changing mobile environments where device capabilities
may highly differ. Thus, such process transfer opens up
additional services which were not accessible according to
the traditional execution approach. This also means that
the likelihood of a mobile process to be executed success-
fully increases substantially.



The Mobile Mechanic

[0 request fire brigade
request towing
M search garage

Car Number:

Customer:

[ cheapest

O nearest

O call a taxi for customer

(a) An Application to initiate Mo-
bile Processes

Check Car | € Driver Data

by Mechanic| < Failure Data

g Get GPS Data| = Location Data
Inform € Location Data

€ on Data = Garage Location

cheapest

Inform
Car Owner
€ Driver Data

(b) A Process to Recover a Broken-down Car

€ Failure Data

Figure 1: The Mechanic Assistant Application Example

1.2 Example: The Mechanic Assistant

To clarify the potential of mobile processes, a short exam-
ple scenario is presented. In this scenario, a mechanic of
an automobile club — who assists drivers of broken-down
cars on the motorway — is supported by a pda-based service
application (see figure 1(a)).

If the mechanic is not able to repair the car immedi-
ately he uses the mobile assistance application to initi-
ate appropriate measures, like the towing of the car to a
garage where the car will be repaired. Such required ac-
tions would cause a process of the following kind (see fig-
ure 1(b)):

After checking the car, the local position (e.g. data
of the Global Positioning System) is determined to be
able to notify a towing car and to search for an appro-
priate garage. To make an optimal decision the pro-
cess is enriched with non-functional data, like the fact
that the customer asked for the cheapest or nearest
garage. The address of the selected garage is transmit-
ted to the towing car which then carries the broken-
down car to that garage. Finally, the mechanics of the
garage repair the car and inform the owner that he can
pick it up.

In this example, the process is generated out of a tem-
plate base by the application running on a PDA. During the
execution of the mobile process, four roles are involved:
the mechanic, the automobile club back office, the tow-
ing car, and the garage. These participants are resolved, in
parts dynamically, into concrete services or servants at run-
time. However, only by cooperation of these participants
and the migration of the process among them, the expected
results can be achieved.

Such a composed task, consisting of diverse — possibly
distributed — subtasks, each of them depending on different
environmental conditions and all of them forming a long-
term process with manual and collaborative activities, is

hardly supported by traditional middleware platforms so
far.

1.3 Requirements for Descriptions of Mobile
Processes

In order to describe processes in ways which allow exe-
cution strategies as described above, an abstract process
description language has to be designed: In such a view,
mobile processes have rather similar requirements for their
description as traditional (business) processes, these are
among others: the need for the ability to express the busi-
ness logic with its data and control flow, the participating
parties (as roles or individuals), and routines to recover
from failures [14].

But in addition, they have also some specific require-
ments based on the nature of mobile environments and the
opportunistic and distributed execution strategy (cp. sec-
tion 1.1): E.g. mobile process descriptions must be lean
and simple to run in order to save memory, CPU power,
and energy resources. They also must include mechanisms
to handle communication failures and the distribution of
the process itself. This means especially that the state of
the process and the user ‘s non-functional conditions for the
execution of the process must be expressible. The (late)
binding mechanism to assign service instances to process
activities as late as possible must be integrated into the de-
scription language by using a preferably abstract notation
of the desired services [10, 19].

Based on these requirements an analysis of related work
and, in particular, existing process description languages
are presented in section 2.

2 Related Work

This paper specifically concentrates on the description and
execution of mobile processes. Therefore, an overview of
related work in the area of mobile systems infrastructures



and middleware platforms is given first — before existing
approaches and techniques to express and execute long-
term business processes are analyzed more extensively.

2.0.1 System Infrastructure

Since mobile process execution always relies on contextual
information, the context modeling and context data acqui-
sition are crucial for the respective concepts and system
infrastructure to be developed. The abstract and generic
definition of context and its data as used in the Context
Toolkit [8] by Dey is mainly suited for the mostly a pri-
ori unknown demands of mobile processes. Whereas the
understanding provided by Schilit [20] or Schmidt [21]
turned out to be too narrow to support the wide range of
possible processes as required in our approach. The idea
of the NEXUS project [9] to ensemble the context of an en-
tity by federating local context clippings of entities within
their particular vicinities is used in the system infrastruc-
ture to construct a global context representation efficiently.

The mobile process infrastructure as addressed here also
relates to recent research in the area of mobile agents [6].
However, in relation to that it differs in some important as-
pects: In contrast to an agent a mobile process does not
contain executable code. In fact, mobile processes only
provide meta-data about the structure of the described ap-
plication and, thus, the estimated effects but not about the
way how this behavior is achieved. In addition, they do
not have a social behavior either, nor could they act au-
tonomously or proactively. Nevertheless, some parts, e.g.
security and privacy concerns or the need to determine the
execution state, have, in principle, similar requirements
and, thus, solutions.

2.0.2 Process Description

A process description language for mobile processes has to
consider aspects of distribution as well as support for high
level flexibility and fault tolerance. An analysis of most
prominent existing process description languages shows
that the concepts and constructs provided by these lan-
guages are not in total adequate to describe highly dynamic
processes on mobile distributed computing systems [25].
Table 1 summarizes the results of the following analysis in
more detail and presents how the specified requirements
are fulfilled by common process description languages,
like BPEL4WS, WSCI, JPDL, ebBPSS and XPDL. Finally,
DPDL, the proposed extended description language, is also
validated against these requirements (cp. 3.2).

The Business Process Execution Language for Web Ser-
vices (BPELAWS respectively WS-BPEL) [2] is one of the
most popular approaches to describe the orchestration of
activities defined as Web Services. It offers very specific
and powerful elements to describe activities, to link tasks
and to deal with errors and transactions. Processes de-
fined with BPEL4WS are ready to be executed but limit
cooperations between business partners using the Web Ser-
vice protocol stack and describing their services with the
Web Service Description Language (WSDL). To overcome

these restrictions, various extensions have been discussed,
as there are BPEL4PEOPLE [12] to cover human user in-
teractions or BPEL-SPE to support the explicit definition
of sub-processes [13]. Nevertheless, BPELAWS process
descriptions tend to become rather complex due to possible
combinations of sequential blocks with graph-structured
elements in order to express parallel behavior. Addition-
ally, the definition language is developed for running on a
central workflow engine and does not provide concepts for
distributed process execution.

As well as BPEL4WS, the Web Service Choreography
Interface (WSCI) [3] is an add-on of WSDL, but, in con-
trast to BPEL4AWS, it concentrates on the choreography
of web services by describing a task from the individual
perspective of its participating services and thus in a dis-
tributed manner. Therefore, the description itself is lean
because each one is intended for only one single partici-
pant. The disadvantage of WSCI, however, is that all pos-
sible participants have to be determined in advance so the
process ‘s information can be distributed and a fixed com-
patible interface can be implemented within the WSDL de-
scription of each participant. Therefore, choreographies
based on WSCI are hardly scalable, because the descrip-
tion of each existing partner has to be changed whenever
a new participant is inserted. If, in addition, these part-
ners are mobile and thus may become unavailable easily,
dynamic processes or ad-hoc workflows as well as often
changing vicinities of mobile devices cannot be handled
with WSCL

EbBPSS is the Business Process Specification Scheme of
the EbXML framework [17]. In particular, it is designed to
describe business transactions and, therefore, it focuses on
the aspect of binary collaboration between several compa-
nies. Although EbBPSS has the ability to describe quality
and security issues as fixed requirements for the scheduled
cooperation, it depends highly on the ebXML framework
which is, in itself, too complex for most of today ‘s mobile
computing systems. Standing alone, it does not support
the description of required constructs, such as error han-
dling mechanisms or the possibility to integrate users and
different kind of services. Furthermore, the intricate exten-
sion of defined binary collaborations is inappropriate for
dynamic mobile environments with more than two static
participants.

A very lean description language is provided by JPDL
[11], which is an integral part of the Java Business Process
Management (JBPM). JPDL supports manual tasks, but the
description of automated function logic is matched to the
Java programming language. For error handling, JPDL
also relies on the Java platform and, therefore, cannot be
considered to be totally platform-independent.

Closest to the required concepts as mentioned above is
the XML Process Definition Language (XPDL) [15], which
was developed as an abstract interchange format for differ-
ent workflow engines. As a meta-model it provides a very
general view on processes, is open for extensions and ready
for all kind of automated and manual services. On the other
hand, due to its high level of abstraction, it does not pro-



Table 1: Analysis of Related Process Description Languages and DPDL

BPEL4WS | WSCI | EbBPSS | JPDL | XPDL DPDL
Service Composition + + + + + +
Late binding / service discovery at runtime + + + + + +
Support of migrating processes or distributed administration - + - - - 4
Description of non-functional demands - + + - - +
Support of user interaction / manual tasks - - = + + +
Constructs to describe control flow + + + + + +
Constructs to describe data flow + + + + + +
Constructs to describe participants + + + + + +
Mechanisms for error handling + + - - - +
Scalability + - - + + +
Extensibility + + + + + +
Security support - - + - - °
Transaction support + + - - - 4
Technology-independence + + + - + +
Audit Trail - - + = + +
Support of priority management - - - - + +
Economic consumption of memory = + - +/- +/- +
Economic consumption of computing power - + - +/- +/- +
Avoidance of communication overhead + + + +/- +/- +/-
Ability to handle connection reset - - - - - +

+ = supported - = not supported +/- = not applicable o = postponed

vide sufficiently powerful concepts to perform distributed
process execution and handle errors as well as transac-
tions. Since XPDL is released as version 2.0 [24], it is
intended to be used as a file format for the graphical nota-
tion of BPMN. However, this enhancement does not affect
the original purpose of XPDL and it does not introduce
any beneficial concepts to support the given requirements
of mobility either.

So, in summary, none of the considered approaches
supports transfers of process descriptions and allows a
completely distributed administration of mobile processes.
Late binding of participants is often possible, but there
are no adequate concepts to choose participants by their
respective quality or by other non-functional criteria. In
most cases, the description of activities and their depen-
dencies within the process is very extensive or requires a
lot of computing power to work on it. This, however, is not
suitable for relatively weak mobile devices. Finally, con-
cepts for handling faults are insufficient for the error-prone
mobile computing systems and the handling of connection
resets and security issues has not been considered at all
since these process description languages have been devel-
oped basically for reliable central workflow engines.

3 A Mobile Process Integration Ser-
vice

The deficiencies of established approaches for describing
mobile processes (cp. section 2) motivate the develop-
ment of an enhanced description language, called DEMAC
Process Description Language (DPDL) which fulfills the
specified requirements of the previous section (cp. table 1,
last column). Accordingly, this section presents the most
relevant features such an approach bases on: (a) the pro-
cess description language for distributed processes and (b)
a corresponding mobile process execution engine. But as
such an engine cannot be realized without an underlying
system infrastructure, subsection 3.1 first provides an out-
line of the middleware architecture as developed for that
purpose in the DEMAC project.

3.1 A Middleware Architecture for Support-
ing Distributed and Mobile Processes

The decision to design a tailored system infrastructure for
supporting a seamless integration of mobile processes into
a mobile computing middleware evolved from the given
analysis of the process‘s requirements and the respective
features as offered by existing middleware approaches. Es-
pecially the close cooperation between the mobile pro-
cesses and the context model to distribute and execute the



processes leads to the need of a specifically adjusted model
and service architecture.

The resulting system architecture is based on four ba-
sic service components (see figure 2) which are briefly de-
scribed before section 3.2 introduces the integration of mo-
bile processes in more detail.

3.1.1 The Communication Basis

The asynchronous transport service and the event service
form the communication platform of the architecture and
provide communication with both push and pull seman-
tics. This service abstracts from concrete transport proto-
cols — like TCP/IP, Bluetooth or IrDA. To be independent
from the underpinning protocols, the transport service uses
its own addressing schema. These addresses are bound to
a device and translated into concrete protocol specific ad-
dresses by the transport service. If the device is reach-
able by different protocols, non-functional aspects, like
e.g. quality of service attributes, can be used to make an
optimal choice.

3.1.2 The Context Service

The context service collects and maintains all information
about the context of the device. It acquires its knowledge
either by events from the event service or by direct message
exchange using the transport service. Towards the entities
which use the service, it filters and partitions the informa-
tion and provides only the amount of data they need. These
are next to quality of service parameters also information
about reachable devices and their services, location param-
eters and data about other users and their identity. To ac-
quire the context information, a federated approach is cho-
sen. Every device provides only local context information.
To get the overall context, the information of the devices
in the environment is merged. To find and resolve devices
and services in the vicinity, the context service contains a
distributed registry which uses peer-to-peer mechanisms to
obtain its knowledge.
Applications ]

______ p ~

Application Layer [

Process Service

)
\/ T
) \
Context Service )
4
. Event Service .
g

Asynchronous Transport Service

Service Layer

Transport Protocol \_/—~\
Access Layer
—————— Adapter I. Adapter I.

Transport Layer

N/

Virtual l .

Transport

[Transpnrt Protnml} [Transport Protnml]
J

Figure 2: The DEMAC Abstract Architecture

3.1.3 The Process Service

The process service realizes the integration of process
management into the DEMAC architecture. It is comprised
of two parts: The first one is a definition language in order
to describe the mobile process as well as the user‘s and
application‘s non-functional demands (cp. section 3.2).
Using this language, an application is able to define a se-
quence of activities, intermediary results which must be
achieved, and constraints for the execution. The second
part of the service is an execution engine for process defi-
nitions, which resolves and executes mobile processes (cp.
section 3.3). It can either invoke the activities locally or
delegate the process to a remote process service. When
delegating a process, the description and all necessary data
is transferred to the remote unit by use of the transport ser-
vice. Thereby, the process service relies on the information
provided by the context service to find a device providing
the needed service and to enforce the non-functional de-
mands and constraints. The execution engine‘s architec-
ture provides the ability to extend a compact core by plug-
ging in functional modules to adapt to the capabilities of
the underlying device.

3.2 DEMAC Process Description Language

The DEMAC Process Description Language' is an XML-
based description language to integrate distributed long-
time processes into mobile computing systems. DPDL
follows the meta-description language XPDL [15] and in-
herits the structure and those constructs of XPDL which
turned out to be suitable for describing mobile processes.
The basic idea of DPDL is to allow a distributed han-
dling of the process over heterogeneous systems. An en-
tire process may be passed on to another device to con-
tinue working on the process‘s tasks. So devices which
are not capable of executing a particular task of the pro-
cess can mark its latest execution state and search for other
devices able to carry on at the position established so far.
So, by sharing the potential of several mobile devices, this
approach increases the likelihood of successful process ex-
ecution - even under the (generally unstable) conditionals
which are typical for mobile devices and applications.

3.2.1 Meta-model and Structure

As shown in figure 3, the basic container for the DPDL pro-
cess description and all its data is a Package. A Package
contains at least a single WorkflowProcess, which holds all
tasks to be worked on (Activities) and the control flow as
a fixed sequence to execute these tasks. Activities can be
atomic or can be grouped to simple reusable blocks (Ac-
tivity Sets), to a sequence of activities to be executed as
a Transaction or to a set of repeatable actions within a
Loop. Furthermore, an activity can represent an entire Sub-
process.

Thttp://vsis-www.informatik.uni-hamburg.de/projects/demac/dpdi1.0.xsd

(DPDL)



1
Package
1

HEE

* * *

*
Workflow P
RelevantDalaH AppllcatlunH Strategy ‘

1]1

Participant

Al

Workflow [

Process foT
1

* *

Transaction

Activity Set

RE

Block Transaction ' l Loop ‘
Activity Activity Activity

I
Activity

1 ,_:I
Lr Sub-Process
Atomic
* N N Activity
=]
e s Activity Reference }:

Exception
Handler
1

%1 Transition [

[ Native XPDL Elements

[] Additional Constructs in DPDL

Figure 3: DPDL Meta-model

To integrate non-functional criteria, the Package can
also contain definitions of requirements for service qual-
ities or for quality aspects of devices or networks. These
requirements are modelled as Strategies and can be bound
to activities or to the entire process.

To deal with likely occurrences of errors and connection
resets, DPDL introduces Exception Handlers and Connec-
tion Reset Handlers. These elements refer to another set
of activities which should be executed in cases where the
normal execution fails.

The introduction of ActivityReferences allows reusing
the description of activities within the process, for example
as a part of several error handling descriptions. ActivityRef-
erences are linked by Transitions to describe the process‘s
control flow. ActivityReferences are unique within the pro-
cess. They contain all information which is relevant for
the execution of the activity in dependence of its position
in the control flow, such as references to participants, error
handling and non-functional criteria.

3.2.2 State Concept

In order to enable a distributed process to be executed
whilst maintaining the autonomy of each single partici-
pant, three different cooperation scenarios can be distin-
guished: First, an activity can be executed locally by an
application running on the same (mobile) device. If such
local applications are unavailable, the device can search for
adequate services on other devices in its vicinity to execute
the task remotely. In case the direct vicinity does not pro-
vide the required service, the process description can be
transferred to another remote device in order to enable the
execution in a different vicinity.

The phase of migration can be considered the crucial
point: All progress concerning the execution of the pro-

cess has to be stopped and state information has to be doc-
umented in order to provide a consistent starting position
to subsequently executing devices. In particular, the pro-
cess cannot be transferred before all of the currently exe-
cuted atomic entities are completed. This approach is ad-
vantageous because, as long as an activity can be executed
locally, there is no need to search for another execution
partner to accomplish this task. Furthermore, the process‘s
consistency and integrity of its data must not be violated
by splitting up atomic tasks.

Figure 4 shows the potential life cycle of a mobile pro-
cess. On the basis of a common life cycle [14], it intro-
duces the safe state Option in order to define a stable point
to securely transfer a process during its execution. In de-
tail, the Option state offers the possibility to either execute
the process in case the upcoming activity can be executed
locally, or to transfer the process description to another de-
vice.

At this central point the process life cycle embeds the
potential life cycle of an Activity (c.p. figure 4). The pro-
cess is regarded to be in the state Running if activities are
being executed. The state of each single activity within the
process is modeled as a property of its respective unique
ActivityReference, so the execution state of an activity is
well-defined and the progress in processing the activities
is visible for every participating device at any time during
execution.

An ActivityReference is inactive if preliminary activities
are not executed or conditions for the execution of the ref-
erenced activity are not checked yet. In case one or more
of these conditions can not be fulfilled, the ActivityRefer-
ence is set to the error state skipped. If these conditions
evaluate to true or there are no conditions defined, the Ac-
tivityReference is set to the state ready. It may happen that
a mobile device is capable of checking the conditions of an
activity, but is not able to perform the execution itself. In
this case, it will possibly take some time to transfer the pro-
cess description to another device and it has to be checked
close to the execution if the next activity is still valid or if
a defined expiration date is exceeded (error state expired).
The states skipped and expired are also relevant for the ap-
pliance of a Dead Path Elimination. If all prerequisites are
fulfilled and the actual execution starts, the ActivityRefer-
ence is set to the state executing. The appearance of errors
during the execution will result in a general error state in
error. An activity is executed when its execution is suc-
cessfully completed. It might now be set back to the ready
state to be restarted later (for example if the activity is part
of aloop) or it is set to the state finished which indicates the
execution of the ActivityReference is terminated and finally
closed.

Furthermore, a particular ActivityReference can be ref-
erenced as a start activity to mark the next task to be exe-
cuted. This relieves other participating devices of dealing
with tasks which have already been finished.



Process Life Cycle

Suspended

Figure 4: Process and Activity Life Cycles

3.2.3 Description of Activities and External Data

Transfer and execution of processes on mobile comput-
ing systems also require an efficient use of the available
amount of system memory. This means, one of the most
important requirements of mobile processes is to make
process descriptions as lean as possible. DPDL allows de-
scribing activities as a short but significant identifiers and
supports to store data external to the actual process. For
example, huge documents may be kept completely out of
the description until their processing time has arrived. This
is particularly suitable if the data is needed only once or is
used in very few activities within the process. On the other
hand, the provision of flexibility is essential in this case
because the availability of devices and their connectivity
may appear as a bottleneck to the dynamic integration of
external features. So, it depends on the kind of applica-
tion to decide whether or not obtaining data from a remote
location.

In the presented example (cp. section 1.2) the gath-
ered GPS coordinates are important prerequisites for
the execution of subsequent tasks. In addition, only a
small amount of data has to be stored on (potentially
mobile) devices. In this case, the content for the vari-
able “Location Data” can easily be hold within the
process description for immediate access. Transfer-
ring this data to a remote location would involve the
risk of hazardous inaccessibility. In contrast, the pro-
vision of data resulting from the mechanics inspection
might be very extensive, for example because it con-
tains images or complex measured data. Furthermore,
it is not necessarily needed to continue the process.
Therefore, it would be adequate to store this data ex-
ternally to the process description. In DPDL, the data
item “Failure Data” can be represented by an external
reference in order to save memory and network costs.

Considering the description of the task itself, the
generic activity “Get GPS Data” is abstracted by a
universal unique identifier (UUID) which represents
the category of adequate services to execute the re-
spective activity, in this case obtaining GPS coordi-
nates of the current position. To resolve services into

activities, an abstract service class is instantiated with
an arbitrary service implementation. For instance, the
customer ‘s car navigation system might be able to of-
fer a Web Service to provide GPS coordinates of its
position. By ways of externalizing the semantic de-
scription for executing the task, the process descrip-
tion is relieved of complex details, e.g. the compu-
tation of GPS coordinates or satellite adjustment. If
existing, the data involved in the task (service param-
eter) is finally called from the process description and
is mapped to the formal parameters of the generic ap-
plication. The output data of the resolved service, in
this case the received content of the data item “loca-
tion data” retrieved from the navigation system‘s Web
Service is stored within the process.

3.2.4 Users and Devices

The integration of users and with them the introduction of
human interactions is both necessary and beneficially. Mo-
bile devices are primarily designed to accompany (mobile)
users and therefore users should be addressable not only
to initiate processes from mobile devices, but also to par-
ticipate in the process manually and to solve unexpected
errors by direct interaction.

Therefore, mobile processes are highly related to tasks
which require interaction with mobile participants such as
users or devices or a combination of both. Special con-
structs are needed to describe which individuals are in-
volved in which task and by what kind of communication
channels these persons might be addressed or accessed. In
DPDL, a participant is either totally specified or described
in a generic way, e.g. by the declaration of a certain role.
Descriptive properties of users (for example a digital iden-
tity) and devices (for example a unique identifier like the
DEMAC transport address) can be combined to character-
ize a participant and help finding the required instance to
execute the upcoming task.

In the example the automobile club‘s back office is
a fixed participant to execute the activities “Inform
Towing Car” and “Search for Garage”. Therefore, the
process description specifies how the back office can
be addressed. In the scenario, this participant could
be a stationary device which should be responsible for
executing the mobile process. The device can be de-
termined by an IP address or an arbitrary set of char-
acteristics. Additionally or alternatively, a certain per-
son in charge may be specified to manually supervise
the process.

3.2.5 Handling Errors and Connection Resets

Due to the high risk of faults appearing in mobile com-
puting systems, error handling mechanisms are essential
for the execution of mobile processes. The main objective



here is to provide a sufficient amount of information to be
able to resolve most of the errors likely to occur and to
recover from sudden connection resets and failures with-
out depending on other resources. Therefore, the device
currently responsible for the execution has to know un-
ambiguously what to do in case the regular control flow
fails. Even if the executing device itself encounters prob-
lems, it still must have the ability to recover its work from a
save state or choose an alternative path to execute the pro-
cess. Since alternative paths are totally dependent on the
process‘s objectives, it is mandatory that the modeler of a
process has the absolute flexibility to define what should
happen in different erroneous situations.

DPDL supports the definition of user defined alternative
paths and therefore provides special constructs to handle
errors and unexpected situations. The description of Ex-
ception Handlers (cp. figure 3) provides a definition of
alternative control flow constructs to be executed when an
error occurs. In case of a connection reset, the commu-
nication may be either restarted, the service partner may
be changed, or the activity may be skipped. The actual
behavior depends on the involved applications and the spe-
cific use-case and can also be modeled as a combination of
activities.

Just in case the responsible device collapses perma-
nently, the execution will obviously fail. A possible so-
lution to enforce fault tolerance in a rather pessimistic sce-
nario is to integrate check points and to hold copies of the
process description. For example, a parallel path can be
executed on another device to control the work of its coun-
terpart (see figure 5). If both paths cannot be joined before
a specified deadline, the backup device will either carry on
or initiate an error handling mechanism. Only if all of the
possible recovery mechanisms fail, the user is involved in
order to react to the acute problem.

deadline
deadline

Error
Handler

If (Wb ” deadline expired) thenc

=2
Ifbythency

normal
execution

Figure 5: Error Handling: Guarded Execution

3.2.6 Parallel Execution

In case there is no relevant data dependency within the con-
trol flow, parallel paths of the process can be executed by
different mobile computing systems. To share a process
description, the responsible mobile device decides to exe-

cute an arbitrary parallel path and thereby sets its first Ac-
tivityReference to the state executing. While in this state,
it produces a snapshot of the process description as a copy
of its own process and forwards this copy to exactly one
other device. Because the path chosen by the first device is
already in the state executing, the second device can only
select one of the remaining parallel paths. Using this strat-
egy, there is always one device responsible for a specific
path of the process description and it is therefore also re-
sponsible for error handling along this path.

In order to synchronize parallel paths, there has to be
a defined meeting point, for example a stationary device.
The participating devices can pass their copies of the pro-
cess description to the given address. The service at the
meeting point collects all incoming parallel paths belong-
ing to a shared identifier and merges the copies to a single
process description. If required, this one can be forwarded
again to continue execution.

3.2.7 Integration of Non-Functional Criteria

To narrow the selection of potentially participating devices
and services according to the user‘s interests, intentions,
and demands the process description may contain a set of
non-functional criteria. The user who initiated a process
can define a Strategy (cp. figure 3) to assert a certain level
of quality throughout the execution of the process. This
way, Strategies help to ensure the user‘s goals as they were
intended originally. Each Strategy contains a set of require-
ments which each hold a key-value-pair consisting of an
identification argument and a target value.

The scenario (cp. section 1.2) shows, exemplarily,
how to define a limitation of the factor “cost” for the
execution of the activity ”Search for garage”. Assum-
ing garages near to the current position determined
by former activities offer electronic services to pro-
vide information about their details of repair, the pa-
rameter “’cost = cheapest” forms a strategy to select a
service that fits the customer ‘s interests best. From all
available garages the one with the lowest costs will be
picked accordingly.

Before executing an activity with specific requirements,
the context service has to collect the relevant quality infor-
mation, so the process service can ensure that only those
services and devices are involved in the activity‘s execu-
tion which meets the specified requirements. Thus, ser-
vices have to be comparable and have to offer information
about their functional and non-functional properties in or-
der to be considered for the selection procedure.

3.3 Mobile Process Execution

Depending on their intended purpose, mobile devices can
have many different properties and a wide range of capa-
bilities. To integrate most mobile devices and to benefit



from the collaboration of heterogeneous systems, the mo-
bile process execution engine must support different levels
of performance.

Therefore, the execution engine is characterized by a
modular design (cp. figure 6). A core module provides
basic functionality such as receiving, storing, and forward-
ing process descriptions. It can be run independently on
less powerful devices, like PDAs or cell phones, which do
not provide enough memory or computing power to exe-
cute complex tasks but are useful to transport the process
descriptions to other (different) environments. The core
module also provides the interface for applications to initi-
ate processes by passing the DPDL process description to
the execution engine.

Interprete process descriptions and
execute processes

Extension
Module

<User
Interaction>

Extension
Module

Base Module

<Security>

Extension
Module
Enhance the functionality

of devices being more powerful <Transactions>

Receive and forward process
descriptions considering non-
functional criteria

Figure 6: Modular Execution Engine for Mobile Processes

A more powerful base module is responsible for exe-
cuting the described tasks of the process. It uses the core
component to communicate with other devices and can be
enhanced by further task-specific extension modules. Ex-
tension modules are strongly dependent on the character-
istics of the device, for example an additional component
supporting user interaction can only be realized if the re-
spective device has a proper user interface.

The complete set of all installed components together
with the DPDL description of mobile processes realizes the
DEMAC process service which can have different combi-
nations of execution modules (c.p.figure 6).

Finally, the mobile process execution engine cooperates
closely with the DEMAC context service in order to get
information about the device‘s vicinity, such as available
services, environmental data or its own identity. If a new
process description is received by the core module, the pro-
cess data is made persistent and the process ‘s Strategies are
extracted from the Package. In case there is no base mod-
ule attached or a proper component to execute the process
locally is missing, the context service is requested to find
a device suitable to the specified constraints to continue
the execution. Otherwise, the execution engine within the
responsible mobile device starts working on the process

itself. It picks the upcoming Start Activity, examines it
and requests the context service to find suitable services to
process the task, depending on the defined Participants,
Strategies and/or Conditions of this activity. If an ade-
quate service for executing the upcoming activity cannot
be found, the local execution engines marks the latest ex-
ecution state, stops working on the process, and again re-
quests to find an alternative device to continue. This way,
sharing the different properties and potentials of context
aware mobile computing systems even complex and long-
time processes can be executed in a step-by-step-manner.

4 Prototype Implementation and
Evaluation

The presented concept of a middleware for mobile pro-
cesses (cp. section 3) has been prototypically realized for
the system configuration shown in figure 7. The resulting
system consists of several heterogeneous devices, operat-
ing systems and communication links which are: a Linux
server, a desktop PC and a laptop with Windows XP, as
well as an iPAQ Pocket PC with Windows Mobile 2003.
The server and the desktop PC are connected through stan-
dard Ethernet and the Pocket PC communicates with the
laptop using wireless LAN. These two separated networks
are connected through a Bluetooth link between the laptop
and the desktop PC.

™.
AN
3\
SNV K
\Bluetooth Ethernet
/ Desktop MS-XP
—“ ____.
Laptop MS-XP

Linurver
Figure 7: System Configuration of the DEMAC Prototype

For this system configuration, the DEMAC middleware
has been realized twice, once for the Java Platform, Micro
Edition with CDC? / Personal Profile 1.0 and a second time
for the Java Platform, Standard Edition. The communi-
cation over (wireless) LAN is realized with the integrated
functionality of the Java environments and the Bluetooth
link is realized with the Avetana Bluetooth Stack and re-
spectively with the BlueCove Stack.

The transport system of the DEMAC platform — includ-
ing transport and event service as well as the process ser-
vice — has been realized with their main functionality. Thus
the system is able to receive process descriptions from ap-
plications, to interpret processes, and to migrate them to
other devices. Also the generic context model and the man-
agement system of the context service have been realized.
Only the distributed registry and the generic service factory
to create proxy objects for arbitrary services in the vicinity
of the mobile device have not been finished so far (i.e. in
fall 2006).

2Connected Device Configuration



Because of the stringent modular design, aiming at port-
ing the middleware from Java ME to Java SE, only a reim-
plementation of the platform dependent components was
necessary, such as the Bluetooth communication integra-
tion or XML-parser components. Using uniform adapter
components to integrate different communication proto-
cols, allowed for a dynamic and tailored configuration of
the DEMAC platform for the different system components
through easy to use property files.

In addition, the DEMAC middleware was also used
and tested in academic education. By realizing context-
enriched applications, such as, for example, a context-
aware instant messenger, the suitability of the system for
developing also more “standard” context-aware applica-
tions could be demonstrated.

5 Conclusion

In summary, the approach of mobile processes provides a
basis to support the cooperation of mostly heterogeneous
and a priori unknown devices. In this context, the paper de-
scribed how to make mobile computing middleware plat-
forms capable of supporting abstract descriptions as well
as new execution models of mobile distributed long-term
business processes. It was assumed that, due to (a) the
distributed and cooperative nature of such processes and
(b) the restrictions and specific characteristics of mobile
computing environments, existing description languages
and execution models for centrally coordinated processes
do not suffice. Therefore, an extended, technology inde-
pendent description language was proposed and a corre-
sponding execution platform and its realization have been
described in this paper.

The main contribution of this work is the definition
of the DEMAC Process Description Language which ex-
tends the XPDL meta-model by concepts for distributing
and executing processes in mobile and frequently chang-
ing vicinities. It also describes the prototype realization of
an execution engine for such mobile processes. Thereby
the paper argues that the presented modular design is able
to support most of the heterogeneous capabilities of typical
mobile devices. Overall, these concepts lead to a new class
of context-aware applications which partly diffuse into the
middleware and which are executed cooperatively. This
new class is respectively called context-aware cooperation.

Finally, a number of additional issues remain to be ad-
dressed in order to evaluate and improve the overall per-
formance of the system and to make the approach more
practical. For instance, an adequate transaction concept
for distributed and mobile processes has to be developed.
At the moment it is being analyzed to which degree ex-
istent transaction models can be adapted to support the
atomic execution of interrelated activities in highly unre-
liable systems. More fundamental questions arise in the
fields of integrating privacy and security mechanisms into
dynamic and ad hoc environments. The provision of trust
is essential to achieve user acceptance, e.g. in order to al-
low private processes to be executed on foreign devices or

to permit processes of others to be executed on their own
devices. Therefore, concepts of encryption, authentication
and privacy have to be surveyed and integrated as well.

As a prototypical implementation of the presented ar-
chitecture has been realized already, a next step is to im-
plement — on top of this platform — some of the project‘s
use cases and sample scenarios to evaluate the architecture
in more detail.

References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long,
R. Kooper, and M. Pinkerton. Cyberguide: A mobile
context-aware tour guide. Wirel. Netw., 3(5):421-
433, 1997.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, 1. Trickovic, and S. Weerawarana. Business
process execution language for web services version
1.1. Specification, IBM, BEA Systems, Microsoft,
SAP AG, Siebel Systems, 2003.

[3] A. Arkin, S. Askary, S. Fordin, S. Jekeli,
S. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, 1. Trickovic, and
S. Zimek. Web Service Choreography Interface
(WSCI) 1.0. Specification NOTE-wsci-20020808,
World Wide Web Consortium, 2002.

[4] C. Becker. System Support for Context-Aware Com-
puting. Habilitation, University of Stuttgart, 2004.

[5] P. Bellavista, C. Stefanelli, and M. Tortonesi. The
ubiQoS Middleware for Audio Streaming to Blue-
tooth Device. mobiquitous, 00:138-145, 2004.

[6] P. Braun and W. Rossak. Mobile Agents - Basic Con-
cepts, Mobility Models, and the Tracy Toolkit. Else-
vier and Morgan Kaufmann and dpunkt.verlag, 2005.

[7] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a context-
aware tourist guide: the GUIDE project. In MobiCom
"00: Proceedings of the 6th annual international con-

ference on Mobile computing and networking, pages
20-31, New York, NY, USA, 2000. ACM Press.

[8] A. K. Dey. Understanding and Using Context. Per-
sonal and Ubiquitous Computing Journal, 5(1):4-7,
2001.

[9] F. Diirr, N. Honle, D. Nicklas, C. Becker, and
K. Rothermel. Nexus—A Platform for Context-Aware
Applications. In Roth, Jorg, editor, I. Fachge-
sprich Ortsbezogene Anwendungen und Dienste der
GlI-Fachgruppe KuVS, 2004.

[10] G. H. Forman and J. Zahorjan. The Challenges of
Mobile Computing. Technical Report TR-93-11-03,
University of Woshington, 3 1994.



[11] JBoss Company. JBoss jBPM 3.0 - Workflow and
BPM made practical. Documentation, JBoss Com-
pany, 2005.

[12] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,
A. Rickayzen, C. von Riegen, P. Schmidt, and
I. Trickovi. ~WS-BPEL Extension for People -
BPELA4People, 2005.

[13] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,
A. Rickayzen, C. von Riegen, P. Schmidt, and
I. Trickovi. WS-BPEL Extension for Sub-processes -
BPEL-SPE, 2005.

[14] F. Leymann and D. Roller. Production Workflow -
Concepts and Techniques. PTR Prentice Hall, 2000.

[15] R. Norin and M. Marin. Workflow Process Defini-
tion Interface — XML Process Definition Language.
Specification WFMC-TC-1025, Workflow Manage-
ment Coalition, 2002.

[16] J. Pascoe. The Stick-e Note Architecture: Extending
the Interface Beyond the User. In IUI "97: Proceed-
ings of the 2nd international conference on intelli-
gent user interfaces, pages 261-264, New York, NY,
USA, 1997. ACM Press.

[17] K. Riemer. EbBPSS Business Process Specification
Schema, Version 1.01. Specification, Oasis ebXML
Business Process Project Team, 2001.

[18] SAP AG. SAP Mobile Infrastructure: An Open Plat-
form for Enterprise Mobility. Technical report, SAP
AG, 2003.

[19] M. Satyanarayanan. Fundamental Challenges in Mo-
bile Computing. In Proceedings of the Fifteenth ACM
Symposium on Principles of Distributed Computing ,
1996.

[20] B.N. Schilit, N. Adams, and R. Want. Context-Aware
Computing Applications. In Proceedings of the 1%
International Workshop on Mobile Computing Sys-
tems and Applications, pages 85-90, 1994.

[21] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is
more to Context than Location. In Proceedings of the
International Workshop on Interactive Applications
of Mobile Computing, 1998.

[22] M. Weiser. The Computer for the Twenty-First Cen-
tury. Scientific American, 256(3):94—-104, 1991.

[23] M. Weiser. Ubiquitous Computing. IEEE Computer
Hot Topics, 1993.

[24] WEMC. Process Definition Interface - XML Pro-
cess Definition Language Version 2.00. Specification
WEMC-TC-1025, Workflow Management Coalition,
2005.

[25] S.Zaplata. Prozessintegration in Middleware fiir mo-
bile Systeme. Master’s thesis, University of Ham-
burg, 2005.

Christian P. Kunze is currently a research assistant and Ph.D.
candidate at the University of Hamburg, Germany. He received
his diploma in informatics with a focus on distributed systems
from the University of Hamburg in 2003.

He was software engineer at the SHS Informationssysteme AG
before he became a research assistant. At the moment, he holds
courses and advises projects in the field of mobile and pervasive
computing, which is also the main focus of his research interests.

Sonja Zaplata works as a research assistant in the Department
of Informatics, Research Group for Distributed Systems and In-
formation Systems (VSIS), at the University of Hamburg, Ger-
many. After finishing her training of Business Administration at
the Wirtschaftsakademie Hamburg in 2000, she studied computer
science and received her diploma in informatics from the Univer-
sity of Hamburg in 2006. Currently, she is a Ph.D. candidate
and is interested in the research activities of distributed workflow
management.

Winfried Lamersdorf is a full professor at the Department of
Informatics at the University of Hamburg and head of the de-
partment as well as of the Distributed Systems and Information
Systems unit there - with specific responsibilities in the area of
distributed systems.

From 1974 to 1980 he studied computer science at the Techni-
cal University of Munich and the University of Hamburg. He also
spent a year as a guest scientist at the University of Maryland,
USA, in collaboration with the National Institute of Standards
and Technology (NIST) in Washington/DC and received his doc-
torate for work in the field of database languages and semantic
data models in 1985.

From 1983 to 1990 he was a staff-member in the Distributed
Applications research group at the IBM Scientific Centre (WZH,
1983/84) and in the IBM European Networking Centre (ENC,
1984-90) in Heidelberg. There he started concentrating on Open
Systems communication in general and communication support
for database and distributed applications specifically.



