
Chapter 1

JADEX: A BDI REASONING ENGINE

Alexander Pokahr,1 Lars Braubach,1 and Winfried Lamersdorf1

1University of Hamburg
Distributed Systems and Information Systems
22527 Hamburg, Germany
{pokahr|braubach|lamersd}@informatik.uni-hamburg.de

Abstract This chapter presents Jadex, a software framework for the creation of
goal oriented agents following the belief-desire-intention (BDI) model.
The Jadex project aims to make the development of agent based systems
as easy as possible without sacrificing the expressive power of the agent
paradigm. The objective is to build up a rational agent layer that sits on
top of a middleware agent infrastructure and allows for intelligent agent
construction using sound software engineering foundations. Fostering a
smooth transition from traditional distributed systems to the develop-
ment of multi-agent systems, well established object-oriented concepts
and technologies such as Java and XML are employed wherever applica-
ble. Moreover, the Jadex reasoning engine tries to overcome traditional
limitations of BDI systems by introducing explicit goals. This allows
goal deliberation mechanisms being realized and additionally facilitates
application development by making results from goal oriented analysis
and design easily transferable to the implementation layer. The system
is freely available under LGPL license and provides extensive documen-
tation as well as illustrative example applications.

Keywords: BDI agents, FIPA standard, object-oriented software engineering, ex-
plicit goals.

1.1 Motivation
Today, a numerousness of different agent platforms is available for

developing multi-agent applications [13]. Nevertheless, most of these
platforms are developed with a specific technological focus such as the

2 The Jadex BDI Reasoning Engine

cognitive or infrastructural architecture. Hence, not all aspects of agent
technology are covered equally well. General applicability of an agent
platform for a great variety of domains demands that at least three
categories of requirements are considered: openness, middleware and
rationality. Openness is closely related to the vision of interconnected
networks of originally unrelated applications whereas middleware aspects
emphasize traditional software engineering concerns such as service man-
agement, security and persistency aspects. Rationality, in turn, focusses
on the agent’s internal decision making process and mostly tries to map
this process from a natural archetype such as insects or humans.

According to these aspects the existing platforms can be classified
into two almost distinct groups. On the one hand, FIPA-compliant plat-
forms mainly address openness and middleware issues by realizing the
FIPA communication resp. platform standards [19]. On the other hand,
reasoning-centered platforms exist, that focus on the behaviour model of
a single agent trying to achieve rationality and goal-directedness. This
gap between middleware and reasoning-centered systems is one main
motivation for the realization of the Jadex BDI (Belief-Desire-Intention)
reasoning engine [5, 18], which aims to bring together both research
strands.

Besides this overall objective to support both FIPA compliance and
BDI reasoning, the design of the system is driven by two main factors.
On the one hand, the development of the reasoning engine is acompanied
by an ongoing effort of enhancing the BDI architecture in general. The
system addresses shortcomings of earlier BDI agent systems, e.g. pro-
viding an explicit representation of goals and a systematic way for the
integration of goal deliberation mechanisms. On the other hand, the
system respects the current state of the art regarding mainstream (OO)
software engineering, and is designed to be used not only by AI experts,
but by the ordinarily skilled software developer. Therefore, agent devel-
opment is based on established techniques such as Java and XML, and
is further supported by software engineering aspects, such as reusable
modules and development tools.

1.2 Architecture
This section presents the architectural unperpinnings of the Jadex sys-

tem. It starts with a short review of the BDI model. Subsequently, an
overview of the architecture of Jadex is presented. The basic concepts –
beliefs, goals, and plans – of the system are introduced by highlighting
their main characteristics and differences to other BDI agent systems.

Architecture 3

Finally, the execution model is shortly sketched, showing how the com-
ponents of the system interoperate.

1.2.1 BDI Model
The BDI model was initially conceived by Bratman as a theory of

human practical reasoning [3]. Its success is based on its simplicity
reducing the explanation framework for complex human behavior to the
motivational stance [9]. In this model, causes for actions are only related
to desires ignoring other facets of cognition such as emotions. Another
strength of the BDI model is the consistent usage of folk psychological
notions that closely correspond to the way people communicate about
human behavior [14]. The BDI theory of Rao and Georgeff [20] defines
beliefs, desires, and intentions as mental attitudes represented as possible
world states. The intentions of an agent are subsets of the beliefs and
desires, i.e., an agent acts towards some of the world states it desires to
be true and believes to be possible. To be computationally tractable Rao
and Georgeff also proposed several simplifications to the theory, the most
important one being that only beliefs are represented explicitly. Desires
are reduced to events that are handled by predefined plan templates, and
intentions are represented implicitly by the runtime stack of executed
plans.

1.2.2 Concepts within Jadex
In Fig. 1.1 an overview of the abstract Jadex architecture is presented.

Viewed from the outside, an agent is a black box, which receives and
sends messages. As common in BDI systems, all kinds of events, such as
incoming messages or goal events serve as input to the internal reaction
and deliberation mechanism, which dispatches the events to plans se-
lected from the plan library. The reaction and deliberation mechanism
is the only global component of an agent. All other components are
grouped into reusable modules called capabilities.

Beliefs. One objective of the Jadex project is the adoption of a
software engineering perspective for describing agents. Therefore, Jadex
does not enforce a logic-based representation of beliefs. Instead, an
object oriented representation of beliefs is employed, where arbitrary
objects are stored as named facts (called beliefs) or named sets of facts
(called belief sets). Operations against the beliefbase can be issued in
a descriptive set-oriented query language. Moreover, the beliefbase is
not only a passive data store, but takes an active part in the agent’s
execution, by monitoring belief state conditions. Changes of beliefs may

4 The Jadex BDI Reasoning Engine

Figure 1.1. Jadex abstract architecture

therefore directly lead to actions such as events being generated or goals
being created or dropped.

Goals. Unlike traditional BDI systems, which treat goals merely as a
special kind of event, goals are a central concept in Jadex. Jadex follows
the general idea that goals are concrete, momentary desires of an agent.
For any goal it has, an agent will more or less directly engage into suitable
actions, until it considers the goal as being reached, unreachable, or not
desired any more. Unlike most other systems, Jadex does not assume
that all adopted goals need to be consistent to each other. To distinguish
between just adopted (i.e. desired) goals and actively pursued goals,
a goal lifecycle is introduced which consists of the goal states option,
active, and suspended (see Fig. 1.2). When a goal is adopted, it becomes
an option that is added to the agent’s desire structure. Application
specific goal deliberation mechanisms are responsible for managing the
state transitions of all adopted goals (i.e. deciding which goals are active
and which are just options). In addition, some goals may only be valid
in specific contexts determined by the agent’s beliefs. When the context
of a goal is invalid it will be suspended until the context is valid again.

Jadex supports four types of goals, which extend the general lifecy-
cle and exhibit different behaviour with regard to their processing as
explained below. A perform goal is directly related to the execution of
actions. Therefore the goal is considered to be reached, when some ac-

Architecture 5

Figure 1.2. Goal lifecycle

tions have been executed, regardless of the outcome of these actions. An
achieve goal is a goal in the traditional sense, which defines a desired
outcome without specifying how to reach it. Agents may try several
different alternative plans, to achieve a goal of this type. A query goal
is similar to an achieve goal. Its outcome is not defined as a state of the
world, but as some information the agent wants to know about. For goals
of type maintain, an agent keeps track of the desired state, and will con-
tinuously execute appropriate plans to re-establish the maintained state
whenever needed. More details about goal representation and processing
in Jadex can be found in [7].

Plans. Plans represent the behavioural part of an agent and are
composed of a head and a body part. The plan head specification is
similar to other BDI systems and mainly specifies the circumstances
under which a plan may be selected, e.g. by stating events or goals
handled by the plan and preconditions for the execution of the plan.
Additionally, in the plan head a context condition can be stated that
must be true for the plan to continue executing. The plan body provides
a predefined course of action, given in a procedural language. This course
of action is to be executed by the agent, when the plan is selected for
execution, and may contain basic actions provided by the system, such
as sending messages, manipulating beliefs, or creating subgoals.

Capabilities. Capabilities, introduced in [8], represent a grouping
mechanism for the elements of a BDI agent, such as beliefs, goals, plans,
and events. In this way, closely related elements can be put together into

6 The Jadex BDI Reasoning Engine

Figure 1.3. Jadex execution model

a reusable module, which encapsulates a certain functionality (e.g. for
interaction with a FIPA directory facilitator). The enclosing capability
of an element represents its scope, and an element only has access to
elements of the same scope (e.g. a plan may only access beliefs or handle
goals or events of the same capability). To connect different capabilities,
flexible import / export mechanisms can be used that define the external
interface of the capability (e.g. beliefs or goals visible to the outside).

1.2.3 Execution Model
This sections shows the operation of the reaction and deliberation

component, given the Jadex BDI concepts as described earlier. All of
the required functionality is assigned to cleanly separated components,
which will be explained in turn. Incoming messages are placed in the
agent’s global message queue by the underlying agent plattform. Before
the message can be forwarded the system, it has to be assigned to one or
more capabilities, which are able to handle the message. If the message

Language 7

belongs to an ongoing conversation (identified by a conversation-id as
part of the message), an event for the incoming message is created in the
capability executing the conversation. Otherwise, suitable capabilities
have to be found, which is done by matching the message against event
templates defined in the eventbase of each capability. These matching
templates are then used to create appropriate events in the scope of the
capabilities. In either case, the created events are subsequently added
the the agent’s global event list.

The dispatcher is responsible for selecting applicable plans for the
events from the event list. This is done in two steps: First, a list of ap-
plicable plans is generated by matching the event against the plan heads
as defined in the planbases of each capability. Only those capabilities
have to be considered, where the event is defined. The second step is to
select a subset of the applicable plans for execution. Regarding this step
several important questions arrive, such as if all of the applicable plans
should be excecuted concurrently, or if the event is posted to another
plan if the first plan fails [8]. The decision, which plan to execute is
called meta-level reasoning and may be as simple as selecting the first
plan from the list, or as complicated as finding and executing meta-plans
for the decision. In Jadex an event provides flexible settings to influence
processing on the basis of individual events. As a default, messages are
posted to only a single plan, while for goals, many plans are executed
sequentially until the goal is finished. Other internal events are posted to
all plans at once as they are considered only as a change notification and
no result is expected. After plans have been selected, they are placed in
the ready list, waiting for execution.

The execution of plans is performed by the scheduler, which selects
the plans from the ready list. Plans are executed step-by-step, whereby
the length of plan step depends on the context. A plan step is defined to
be any sequence of basic actions, until the plan waits explicitly or affects
the internal state of the agent. After each plan step the state of the agent
is properly updated (e.g. goals are checked for achievement or failure),
maybe leading to new internal or goal events. The dynamic plan step
length assures atomic agent state changes without limiting plan steps to
executing only a single predefined action.

1.3 Language
Jadex is neither based on a new agent programming language nor

does it employ or revise an existing one. Instead, a hybrid approach
is chosen, distinguishing explicitly between the language used for static
agent type specification and the language for defining the dynamic agent

8 The Jadex BDI Reasoning Engine

Figure 1.4. Jadex agent

behaviour. According to this dintinction, a Jadex agent consists of two
components: An agent definition file (ADF) for the specification of inter
alia beliefs, goals and plans as well as their initial values and on the other
hand procedural plan code (see Fig. 1.4). For defining ADFs an XML
language is used that follows the Jadex BDI metamodel specified in XML
Schema. In contrast, the procedural part of plans (the plan bodies) are
realized in an ordinary programming language (Java) and have access to
the BDI facilities of an agent through an application program interface
(API).

1.3.1 Specifications and Syntactical Aspects
The Jadex BDI meta model defined in XML Schema is very extensive

and hence cannot be presented completely in this paper (for a complete
introduction see [17]). Generally, the corresponding language was spec-
ified with two design priciples in mind. First design objective is the
support for strong typing and explicit representation of all kinds of ele-
ments, be it beliefs, goals or events. In consequence, this requires users
to write detailed ADFs, but in return allows for the realization of more
rigorous consistency checking of agent models. Additionally, at runtime
certain kinds of failures can be discovered more easily, e.g. the attempt of
storing a fact value in an undefined belief can be immediately reported.

Language 9

01: select expression ::= ”SELECT”(”ALL” | ”ANY” | ”IOTA”)?
02: (
03: (expression ”FROM”(”$” identifier ”IN” expression) (”,””$” identifier ”IN” expression)*)
04: | (”$” identifier ”FROM”expression)
05:)
06: (”WHERE” expression)?
07: (”ORDER””BY”expression (”ASC” | ”DESC”)?)?

Figure 1.5. OQL syntax in EBNF

Second design objective regards increasing the expressive power of
XML for the following purposes: The arbitrary complex creation of ob-
jects (e.g. values within beliefs or parameters), the description of boolean
conditions (e.g. when a certain goal should be dropped) and the con-
struction of queries (e.g. for retrieving values from the beliefbase). To
achieve this, an embedded language is used for specifying parts of the
agent model, not easily represented in XML. This expression language
is used for the interpretation of text elements within an ADF and has
been designed to fully comply with the syntax of Java expressions (right
hand side of assignments) extended with a subset of OQL (object query
language) instructions. The syntax of the OQL extension is depicted in
Fig. 1.5 in EBNF notation. It allows for query statements being created
in the well-known select-from-where form, whereby it can be additionally
specified if exactly one (iota), the first satisfying (any) or all satisfying
results are expected (line 1). In the from clause (lines 03-04) it is spec-
ified from which object set (line 4) or joined sets (line 3) results are
generated, whereby the identifiers define variables, which iterate over
the object sets specified as arbitrary expressions. These iterated values
are checked against the boolean where condition (line 6) and can possibly
be ordered (line 7).

In the following the essential BDI concepts as presented in Section
1.2.2 will be taken on and their realization on language level will be
detailed. These concepts are specified as part of an agent or capability
description in the same manner. In Fig. 1.6 (left hand side) the allowed
attributes and subtags of the agent tag are shown. Each agent type
is identified by a name and package declaration and can be provided
with a description text. In addition, the corresponding agent class and
runtime properties can be set. For most cases the default values are
sufficient and need not to be modified. It can be seen that besides the
subtags for the core BDI concepts (beliefs, goals, plans and events which
are explained below) several other elements can be declared. Most of
these elements (languages, ontologies, servicedescriptions and agentde-
scriptions) are FIPA related and facilitate agent communication resp.
the interaction with yellow page services. The remaining elements (im-

10 The Jadex BDI Reasoning Engine

Figure 1.6. Agent metamodel specification fragment (XML-schema)

ports, expressions, properties) are of less importance and only serve for
convenience and agent configuration purposes.

In Jadex beliefs are respresented in an object-oriented way allowing
arbitrary Java objects being stored as facts. Like all scoped elements,
beliefs and belief sets can be supplied with a name, a description text
and an exported flag. Exporting an element makes it accessible from the
outer scope (resp. a capability or an agent) and is turned off by default.
For beliefs and belief sets the Java class for facts must be defined. Besides
the type-relevant information, initial fact data can also be supplied for
configuring an agents mental state at creation time. The value of a fact
has to be stated in the expression language and can be declared as static
or dynamic, whereby dynamic facts are useful e.g. for representing values
continuously sensed from an environment or time-relevant aspects. Re-
calculation of such dynamic facts occurs on access and additionally in
fixed time intervals (using the update rate). At runtime, beliefs and
belief sets are accessable from within plans via operations on the belief
base and additionally by issuing OQL-like queries.

As described earlier in Jadex between four different goal types is dis-
tinguished (perform, achieve, maintain and query). All these goal types
are based on the generic life cycle and hence exhibit many common prop-
erties that are summarized in an abstract base goal type (see Fig. 1.7).
According to the life cycle, creation, drop and context conditions can be
specified as boolean expressions. Customization of goal types can be fur-
ther achieved by defining named in-, out- and inout-parameters that are
used to tranfer information between a goal’s originator and its process-

Language 11

Figure 1.7. Goal metamodel specification (XML-schema)

ing plans. Additionally, binding parameters can be used for generating
one goal instance for every possible binding. The runtime processing of
goals can be refined using the various BDI-flags, which inter alia control
if a goal is retried when a plan fails (retry), if meta-level reasoning is
used (mlreasoning) and if applicable plans are tried sequentially or in
parallel (posttoall). A complete explanation can be found in [17]. From
this abstract goal type all concrete types are derived. The simplest one
being the perform goal used for executing (possibly repeatedly) certain
actions, which does not require extra specification data. An achieve goal
extends this abstract goal type and adds support for the specification of
a target and a failure condition. The target condition is used for describ-
ing the world state this goal seeks to bring about as a boolean expression.
Similar, a boolean failure condition has the purpose to abort goal pro-
cessing in case its achievement has become impossible. The query goal
provides the same kind of conditions, but exhibits a slightly different
behaviour in that it is used for information retrieval purposes. Most
complex behaviour is exposed by the maintain goal type, which is used
to monitor a specific world state (maintain condition) and automatically
tries to reestablish this state whenever it becomes invalid. A boolean tar-
get condition can be used to refine the state that is tried to be restored.
Maintain goals are per se persistent and would remain inactive when
the monitored state is violated and could not be reestablished at once.
Hence, a maintain goal can be configured to retry re-establishment in
ceratin time intervals (recur and recurdelay). In addition to the specifi-
cation of the four types of goals, possibly parametrized initial goals can
be declared that will be created when the agent is born. At runtime,
goal instances can be created from within plans by referring to their

12 The Jadex BDI Reasoning Engine

type name. Typically, some parameter values need to be supplied before
a goal can be dispatched as top-level goal or as subgoal of the current
plan.

The declaration of plans in Jadex is very similar to other BDI systems
and requires the specification of the plan heads describing the circum-
stances under which a plan is applicable in the ADF. As plan trigger,
events (including messages and goals) and a belief state condition (for
data driven plans) can be provided; the pre- and context condition of a
plan can be specified as boolean expressions. To facilitate goal achieve-
ment with plans, it is sometimes advantageous to create several different
parametrized plan instances of a plan type and try them one after an-
other until a plan succeeds. For this purpose binding parameters can be
specified and used for plan configuration. Furthermore, the selection of
which plan is executed in response to an occurring trigger can be ad-
justed by setting a priority value. As part of the initial mental state of
an agent it can be further declared whether a plan is instantiated when
the agent is created (using the instant flag).

The plan body needs to be supplied as expression for the creation
of a suitable plan instance. Currently two different types of plan bod-
ies (threaded, and non-threaded) are supported, which both require a
Java class to be implemented. Non-threaded plan bodies have several
disadvantages compared to the threaded versions, but nonetheless make
sense in mobile scenarios as agent migration is provided. In Fig. 1.8 the
skeleton of an application plan is depicted. Mandatory is only the exten-
sion of a corresponding framework class (ThreadedPlan) and the imple-
mentation of the abstract body() method, in which the domain-specific
plan behaviour can be placed. In addition to the body method, three
other methods exist that optionally can be implemented. These meth-
ods are called when plan processing has finished according to the plans
final state. The passed() method is called when the body method runs
through, whereas the failure() method is invoked when an uncatched
exception is thrown within the body() method. Finally, the aborted()
method is called, when plan processing was interrupted from outside.
Two different abort cases can be distinguished, either when the corre-
sponding goal succeeds before the plan is finished or when the plans root
goal is dropped.

1.3.2 Software Engineering Issues
The overall goal of the Jadex project is to provide a sophisticated rea-

soning engine allowing to develop arbitrary complex intelligent agents.
Therefore, while trying to be as easily useable as possible, the system

Language 13

01: /** Plan skeleton for an application plan. */
02: public class SomePlan extends jadex.runtime.ThreadedPlan {
03:
04: public void body() {
05: // Plan code.
06: }
07:
08: public void passed() {
09: // Optional cleanup code in case of a plan success.
10: }
11: public void failure() {
12: // Optional cleanup code in case of a plan failure.
13: }
14: public void aborted() {
15: // Optional cleanup code in case the plan is aborted.
16: }
17: }

Figure 1.8. Plan skeleton of a ThreadedPlan

does not sacrifice expressiveness for simplicity. Nonetheless, software
engineering issues play an important role in the design of the system.

As stated earlier, a primary goal of the project is to facilitate a smooth
transition from mainstream object-oriented software development to an
agent oriented approach. This is achieved by resorting to established
techniques wherever possible. E.g., the system builds on Java and XML,
therefore the developer does not have to learn a new language. Another
great advantage is that the developer can continue to operate in a fa-
miliar environment. As the agent developer only has to create Java and
XML files, existing development environments such as Eclipse1 or In-
telliJ IDEA2 can be used to develop Jadex agents. In recent editions
of these environments, features such as on-the-fly checking and auto-
completion not only apply to Java code but can also easily be adopted
for XML ADF creation,3 therefore offering complete support for Jadex
agent development.

Moreover, the system provides advanced software engineering fea-
tures, such as reusability and consistency checking. The capability con-
cept allows to encapsulate agent functionality into a reusable module
while maintaining the abstraction level of BDI elements. The explicit
specification and strong typing of beliefs, goals, etc. facilitates consis-
tency checks to detect errors (e.g. spelling mistakes) as early as possible.

1http://www.eclipse.org/
2http://www.jetbrains.com/idea/
3In eclipse this is realized by the XMLBuddy plugin (see .http://xmlbuddy.com/).

14 The Jadex BDI Reasoning Engine

1.3.3 Example
To further explain the syntax and sematics of the Jadex agent lan-

guages, in this section a simple example is provided. The example does
only cover a small subset of the features of Jadex. Another example cov-
ering all different types of goals can be found elsewhere [7]. The example
presented here is a fully functional agent, taken directly from the current
Jadex distribution. Purpose of the agent is to establish given configura-
tions in a blocksworld environment, where colored blocks are placed in
stacks on top of a table. The example provides a graphical user interface,
where the user can visually create custom block configurations. The con-
figurations have to be established by the agent by moving the blocks. As
only clear blocks (without other blocks on top) can be moved, the agent
has to perform some ad-hoc planning. The implemented solution is very
simple, creating the stacks bottom-to-top, moving all obstructing blocks
to the table. Details of GUI handling are ommited in the following, as
they are not required to undestand the behaviour of the agent. First,
the model as given in XML will be described. Thereafter, the two plan
bodies used by the agent and written in Java will be presented.

The ADF of the agent is shown in Fig. 1.9, where tags (elements of
the Jadex metamodel) are in boldface, and embedded expressions are in
italics. The model starts with the declaration of the agent tag, specifying
the name and package of the agent (line 1). The package is used as
first place to resolve references to other files such as capabilites and Java
classes. More packages and files can be explicitly specified in the imports
section (lines 2-4). In this case the class java.lang.Color is imported,
because it is used to represent the color of a block.

The beliefs of the agent are given in the beliefs section (lines 6-
16). A belief “table” (lines 7-9) is used to represent the environ-
ment, which consists of a table on which blocks are located. As ini-
tial fact of the belief, an instance of the Table class (located in pack-
age jadex.examples.blocksworld) is created (line 8). The known blocks
are collected in a belief set “blocks” (lines 10-15). A number of blocks
(class Block) with different colors is initially created given by single fact
items (lines 11, 12, 13, . . .). Two blocks are created on top of the ta-
ble, while the third block is located on the first block (referenced by
table.allBlocks[0]).

The agent has three achieve goals, each with a name, parameters and
a corresponding target condition (lines 18-34). The “clear” goal (lines
19-22) represents the goal to clear (i.e. remove blocks located on top)
a block given in a parameter (line 20). The target condition (line 21)
refers directly to the isClear() method of this block. The “stack” goal

Language 15

01: <agent name=”Blocksworld” package=”jadex.examples.blocksworld”>
02: <imports>
03: <import>java.awt.Color</import>
04: </imports>
05:
06: <beliefs>
07: <belief name=”table” class=”Table”>
08: <fact>new Table()</fact>
09: </belief>
10: <beliefset name=”blocks” class=”Block”>
11: <fact>new Block(new Color(240, 16, 16), $beliefbase.table)</fact>
12: <fact>new Block(new Color(16, 16, 240), $beliefbase.table)</fact>
13: <fact>new Block(new Color(240, 240, 16), $beliefbase.table.allBlocks[0])</fact>
14: ...
15: </beliefset>
16: </beliefs>
17:
18: <goals>
19: <achievegoal name=”clear”>
20: <parameter name=”block” class=”Block” />
21: <targetcondition>$goal.block.isClear()</targetcondition>
22: </achievegoal>
23: <achievegoal name=”stack”>
24: <parameter name=”block” class=”Block” />
25: <parameter name=”target” class=”Block” />
26: <targetcondition>$goal.block.lower==$goal.target</targetcondition>
27: </achievegoal>
28: <achievegoal name=”configure”>
29: <parameter name=”configuration” class=”Table” />
30: <targetcondition>
31: $beliefbase.table.configurationEquals($goal.configuration)
32: </targetcondition>
33: </achievegoal>
34: </goals>
35:
36: <plans>
37: <plan name=”stack”>
38: <body>new StackBlocksPlan($event.goal.block, $event.goal.target)</body>
39: <trigger><goal ref=”stack”/></trigger>
40: </plan>
41: <plan name=”configure”>
42: <body>new ConfigureBlocksPlan($event.goal.configuration)</body>
43: <trigger><goal ref=”configure”/></trigger>
44: </plan>
45: <plan name=”clear”>
46: <bindings>
47: <binding name=”upper”>
48: select $upper from $beliefbase.blocks where $upper.getLower()==$event.goal.block
49: </binding>
50: </bindings>
51: <body>new StackBlocksPlan($upper, $beliefbase.table)</body>
52: <trigger><goal ref=”clear”/></trigger>
53: </plan>
54: </plans>
55: </agent>

Figure 1.9. Blocksworld agent model

16 The Jadex BDI Reasoning Engine

01: package jadex.examples.blocksworld;
02: import jadex.runtime.*;
03:
04: /** Plan to stack one block on top of another target block. */
05: public class StackBlocksPlan extends ThreadedPlan {
06: protected Block block;
07: protected Block target;
08:
09: public StackBlocksPaperPlan(Block block, Block target) {
10: this.block = block;
11: this.target = target;
12: }
13:
14: public void body() {
15: IGoal clear = createGoal(”clear”);
16: clear.getParameter(”block”).setValue(block);
17: dispatchSubgoalAndWait(clear);
18:
19: clear = createGoal(”clear”);
20: clear.getParameter(”block”).setValue(target);
21: dispatchSubgoalAndWait(clear);
22:
23: block.stackOn(target);
24: }
25: }

Figure 1.10. Java code for StackBlocksPlan

(lines 23-27) aims at placing a given block (line 24) on a target block
(line 25). Achieving this goals means that the block below the first block
is now equal to the target block as stated by the target condition (line
26). To establish a complete configuration of blocks on the table, the
“configure” goal (lines 28-31) is used. The desired configuration is given
as a parameter of type Table (line 29). The target condition (line 30-32)
refers to the configurationEquals() method implemented in the Table
class. No initial instances of these three goal types are defined in the
model. The agents starts idle, waiting for goals to appear, which are
created by the user through a GUI.

The goals are handled by the plans of the agent (lines 36-54). In this
example there is one plan for each goal, although this kind of one to
one mapping is not required. The plan head declarations of the first two
plans “stack” (lines 37-40) and “configure” (lines 41-44) are straightfor-
ward. The trigger (lines 39 resp. 43) defines when the plan is applicable,
in this case for goals of type “stack” and “configure”, respectively. The
body (lines 38, 42) defines how the plan body object is instantiated. In
both cases, the creation expression refers to parameters of the triggering
goal to supply the arguments for the Java constructor (cf. Figs. 1.10,
1.11). The “clear” plan definition is more complex, as the body of the

Language 17

01: package jadex.examples.blocksworld;
02: import jadex.runtime.*;
03:
04: /** Plan to to establish a given configuration of blocks. */
05: public class ConfigureBlocksPlan extends ThreadedPlan {
06: protected Table table;
07:
08: public ConfigureBlocksPaperPlan(Table table) {
09: this.table = table;
10: }
11:
12: public void body() {
13: Block[][] stacks = table.getStacks();
14: for(int i=0; i<stacks.length; i++) {
15: for(int j=0; j<stacks[i].length; j++) {
16: Block block = (Block)getBeliefbase().getBeliefSet(”blocks”).getFact(stacks[i][j]);
17: Block target = stacks[i][j].getLower()==table
18: ? (Table)getBeliefbase().getBelief(”table”).getFact()
19: : (Block)getBeliefbase().getBeliefSet(”blocks”).getFact(stacks[i][j].getLower());
20:
21: IGoal stack = createGoal(”stack”);
22: stack.getParameter(”block”).setValue(block);
23: stack.getParameter(”target”).setValue(target);
24: dispatchSubgoalAndWait(stack);
25: }
26: }
27: }
28: }

Figure 1.11. Java code for ConfigureBlocksPlan

“stack” plan is reused (see line 51) to move all blocks from the top of
the block to be cleared to the table. To resolve the parameters used for
body creation, a bindings declaration is used (lines 46-50). The variable
$upper is assigned to all blocks located on top of the given block (select
statement in line 48). For each of these variable assignments an instance
of the plan is created, assuring that all blocks are removed from the
given block.

The two plan bodies are shown in Figs. 1.10 and 1.11, repectively.
References to classes and methods provided by the Jadex engine are
shown in boldface. Both plan classes define a constructor which takes
the plan arguments and stores them in corresponding fields (lines 6-12
resp. 6-10) such that they are accessible from the body() methods, which
will be described in turn.

The body() method of the StackBlocksPlan (Fig. 1.10, lines 14-24)
first clears both blocks provided as arguments, and then moves the first
block on top of the other. To clear the first block, a goal of type “clear”
(cf. Fig. 1.9) is created (line 15) and the parameter is set to the block
(line 16). The dispatchSubgoalAndWait() method (line 17) forces the

18 The Jadex BDI Reasoning Engine

Figure 1.12. System realization

agent to adopt the goal, and halts the execution of the plan until goal
processing is finished. If the goal fails, an exception is thrown leading
to the whole plan to fail. Otherwise, the plan continues to clear the
target block in a similar fashion (lines 19-21). Finally, the plan stacks
the blocks on each other by calling the stackOn() method of the Block
class (line 23).

In the ConfigureBlocksPlan (Fig. 1.11), the body() method (lines 12-
25) consists of two loops through all stacks on the table, and all blocks
of each stack, as returned by the getStacks() method of the Table class
(line 13). This table object represents the desired target configuration.
The agent now has to look up the corresponding blocks in its beliefbase,
and then operate on this blocks such that they resemble the target con-
figuration. The lookup is simple for the block itself, as the corresponding
object can be directly from the belief set (line 16). The lookup of the
object below the block (lines 17-19) is somewhat more difficult, because
the block could be located directly on the table (line 18) or on top of
another block (line 19). To perform the actual changes to the retrieved
objects, a “stack” goal is created and dispatched (lines 21-24). Because
the loop processes the stacks bottom-to-top, the sequential execution of
all “stack”goals ensures that the final configuration resembles the desired
target configuration.

1.4 Platform
This section describes the Jadex platform, i.e. the system realisation,

and its integration into JADE. Figure 1.12 shows the essential com-

Platform 19

ponents required for developing and executing a Jadex agent, and high-
lights the dependencies between those components. The components are
distinguished in core system components (upper row) which realize the
reasoning engine, system interface components (middle row) that pro-
vide and define the access points to the system, and custom application
components (lower row) which have to be supplied by the agent devel-
oper. The links between the components can be categorized in runtime
dependencies (i.e. between components in the first two columns from the
left), dependencies that only apply during the agent startup phase (see
third column components), and dependencies resolved at design time
(right column).

We will describe the components starting from the right. Jadex is
based on a BDI metamodel defined in XML Schema (cf. Sect. ??). This
schema is on the one hand used to validate the agent models specified in
XML agent definition files (ADF). On the other hand, an XML databind-
ing framework4 is used to generate Java classes for the elements of the
metamodel and for reading model elements from XML. When an agent
is instantiated the generated agent type loader reads the user supplied
XML agent model and automatically creates the corresponding model
elements.

From these model elements instances are continuously created at run-
time, represented by instance elements. The main interpreter operates
on the current instance elements and executes plans to handle events and
goals. Plan executors are used to hide the details of plan implementation
types from the system. As a default there is a plan executor for execut-
ing plan code written in Java. Plan code may access any other applica-
tion code or third party libraries written in a suitable language. Both
plan and application code have access to the reasoning engine through a
BDI API. It is provided to plan and other application (e.g. GUI) code
by wrappers that encapsulate the instance elements, and ensure proper
synchronization and deadlock-avoidance when the API is called from the
plans, or from external threads respectively.

For integration into JADE, the platform management tool (RMA)
has been extended slightly to support launching of Jadex agents, by
selecting the corresponding agent model with a file chosser. The Jadex
interpreter itself is realized as a generic JADE agent. This generic agent
loads the agent model supplied at startup, and initializes the reasoning
engine according the settings given in the model (e.g. initial beliefs,
goals, and plans). The functionalities corresponding to the execution

4JBind Java-XML Data Binding Framework, see http://jbind.sourceforge.net/

20 The Jadex BDI Reasoning Engine

model components (cf. section 1.2.3), are implemented in separate JADE
behaviours, automatically running inside the agent. Using a reference to
the JADE agent object, Jadex plans have direct access to all operations
of the JADE API as well (e.g. for handling of FIPA ACL messages).

1.4.1 Available tools and documentation
The system distribution contains complete documentation materials

for quickstart and reference purposes. An introductory tutorial made
up of several exercises shows the usage of basic system features in a
step-by-step manner. Moreover, the distribution provides several exam-
ple applications including their commented source code. A user guide
provides a systematic overview of all features and also serves as a refer-
ence manual. In addition, Javadocs of the plan programming API and a
reference to the metamodel defined in XML Schema are provided. The
available tools are covered in a separate guide. Apart from the documen-
tation material included in the distribution, there are publically available
online tools kindly hosted by SourceForge.net, such as web forums for
discussion and support requests, a database for bug-reports and feature
requests, and a general mailing list with online archives.

As a Jadex agent is still a JADE agent, all runtime tools provided by
the JADE platform such as Sniffer and Dummy agent can also be used
with Jadex agents. To enable a comfortable testing of the internals of
Jadex agents additional tool agents have been developed. In Fig. 1.13 an
example application (marsworld) is depicted together with the logger and
introspector tools in a typical debugging session. The BDI introspector
(Fig.1.13 bottom left and right hand side) serves two purposes. First, it
supports the visualization and modification of the internal BDI concepts
thus allowing inspection and reconfiguration of an agent at runtime.
Secondly, it simplifies debugging through a facility for the stepwise agent
execution. In the step mode it is possible to observe and control each
event processing and plan execution step having detailed control over
the dispatcher and scheduler. Hence it can be easily figured out what
plans are selected for an event or goal.

With the help of the logger (see Fig.1.13 on the top right) the agent’s
outputs can be directed to a single point of responsibility at runtime. In
contrast to simple console outputs the logger agent preserves additional
information about the output such as its time stamp and its source (the
agent and method). Using these artefacts the logger agent offers facilities
for filtering and sorting messages by various criteria allowing a person-
alized view to be created. In addition to the tools already included in
the latest release, a tool for multi-agent application deployment is cur-

Platform 21

Figure 1.13. BDI introspector and logger screenshots

rently in development (see [4]), as well as a tool for on-line visualisation
of agent execution based on ideas from [12].

1.4.2 Standards compliance, interoperability
and portability

A driving factor for the development of Jadex was the need for a
FIPA-compliant platform supporting advanced BDI reasoning capabili-
ties. FIPA-compliance is achieved through the JADE platform, which
provides sophisticated implementations of all important FIPA specifica-
tions. The Jadex reasoning engine, realized on top of the JADE plat-
form, in itself only supports homogeneous (i.e. BDI) agents, but provides
interoperability with agents based on other models. Agents realized us-
ing the conventional JADE programming techniques can be executed
directly together with Jadex agents running on the same platform. In-
teroperability with other kinds of agents is straightforward as long as
those agents adhere to the FIPA standard. E.g. in an example applica-
tion, Jadex agents have been successfully connected to agents running on

22 The Jadex BDI Reasoning Engine

the CAPA platform [10], which provides a petri-net based computation
model for agents.

The reasoning engine is realized as a separate component, with only a
few dependencies to the underlying platform, mainly the integration of
the reasoning process to the platform execution model, and references
to the handling of messages. The integration into the execution model
involves, that methods of the message receiver, dispatcher and scheduler
component (cf. Fig. 1.3) be called at appropriate times, what should be
straightforward to implement in any agent programming environment.
Therefore, although its current implementation is coupled to JADE, the
reasoning engine can be easily integrated with other FIPA-compliant
agent platforms such as CAPA [10] or ADK5, given that they provide
a similar interface for message handling. It should also be possible in
principle to use the system in conjunction with other middleware envi-
ronments such as J2EE or .NET, when FIPA-compliance is not needed.
As these environments usually do not provide support for active ob-
jects, a simple execution model would have to be developed (e.g. using
a separate Java thread for each agent).

The engine was realized in Java 1.4 and includes the third party pack-
ages JBind for XML data binding and Apache Velocity6 for generating
the content of some tool dialogs. To support mobile devices, a port of
the engine is also available in a reduced version based on J2ME / CDC.
Moreover, all kinds of tools and libraries with a Java API can easily be
used to provide additional features. For example, in a larger project the
Cayenne database mapping framework7 was used to connect agents to a
relational database.

1.5 Applications supported by the language
and/or the platform

Jadex is a general purpose development environment for creating
multi-agent system applications, allowing to build agents with reactive
(event-based) and deliberative (goal-driven) behaviour. It is not bound
to a specific target domain, but has been used to realize applications in
different domains such as simulation, scheduling, and mobile computa-
tion. Jadex originated in the MedPAge (“Medical Path Agents”) project
[15, 16], which is part of the German priority research programme 1083
Intelligent Agents in Real-World Business Applications funded by the

5http://www.tryllian.com/
6http://jakarta.apache.org/velocity/
7http://objectstyle.org/cayenne/

Final Remarks 23

Deutsche Forschungsgemeinschaft (DFG). In cooperation with the busi-
ness management department of the University of Mannhein, the project
investigates the advantages of using agent technology in the context of
hospital logistics. In this project Jadex was used to realize a multi-
agent application for market-based negotiation of treatment schedules
[16], as well as for the simulation of a hospital model to test the ne-
gotiation mechanism [6]. In other contexts Jadex was used to realize
portable PDA-based applications. A personal mobile task planner was
developed, to test the Jadex J2ME port and to prove the usefulness of
BDI agents on mobile devices [11]. Elsewhere, in the PITA (“Personal
Intelligent Travel Assistant”) project at the Delft University of Technol-
ogy, Jadex was used to realize a prototype of a mobile personal travel
assistant application [2].

Besides building specific agent applications, Jadex has also been used
for teaching and research regarding agent oriented software development
in general. Due to its simple language based on well-known technolo-
gies such as Java and XML, and the extensive documentation material
and simple example applications, Jadex is well-suited for teaching pur-
poses. It has been successfully applied in several courses at the Univer-
sity of Hamburg, and is also evaluated by other institutes. Regarding
research in agent systems, the project is also designed as a means for
researchers to further investigate which mentalistic concepts are appro-
priate in the design and implementation of agent systems. The com-
bination of XML Schema with Java databinding techniques allows the
Jadex metamodel to be flexibly adapted and extended for experimenta-
tion purposes. While investigating different representations for beliefs,
goals and plans, the system has been applied to several well-known AI
problem domains (blocksworld, cleanerworld, mars robots, hunter-prey).
These applications are also included in the distribution. Moreover, the
Technical University of Karlsruhe has used Jadex to implement an ex-
perimental system for representing norms in multi-agent systems [21].

1.6 Final Remarks
In this chapter the Jadex BDI reasoning engine has been presented.

The realization of the system is motivated mainly by three factors.
Firstly, the system aims to combine the benefits of agent middleware
and internal agent reasoning processes. Secondly, it intends to enhance
the state-of-the-art BDI architecture by addressing some shortcomings
of current BDI agent platforms such as implicit goal representation and
thirdly, the system targets on making agent technology more easily us-

24 The Jadex BDI Reasoning Engine

able by exploiting current software engineering techniques such as XML,
Java and OQL.

The architecture of Jadex is in priciple similar to traditional BDI
systems, when event resp. goal processing is considered. Nevertheless,
conceptual differences exist mainly concerning the representation of BDI
core concepts and as well on language level. According to the usabil-
ity requirement, beliefs are expressed in an object-oriented way instead
of using logical formulae. Moreover, goals are represented as explicit
durable entities instead of relying on events. On language level, Jadex
differentiates between the description of runtime agent behaviour and its
static structure. Therefore, for each of these purposes different languages
are employed. The static agent structure is declared in an XML-dialect
following the Jadex BDI metamodel specified in XML-schema, whereas
ordinary Java is used for plan realization. BDI-specific facilities are made
accessable from within plan through an application program interface.

Ongoing work currently focuses on two aspects of the system: Exten-
sions to internal concepts and additional tool support. On the concep-
tual level extensions to the basic BDI-mechanisms are developed, such
as support for planning, teams, and goal deliberation. It is planned to
utilize the explicit representation of goals by improving the BDI archi-
tecture with a generic facility for goal deliberation which alleviates the
necessity for designing agents with a consistent goal set. Additionally
the explicit representation allows to investigate task delegation by con-
sidering goals at the inter-agent level. Work on tools mainly addresses
the usability of agent technology as a mainstream software engineering
paradigm. The tool support of Jadex currently focusses on the testing
phase supplying a debugger and a logger agent. To achieve a higher de-
gree of usability it is planned to support the design phase as well with a
graphical modeling tool based on the MDA-approach [1]. Additionally,
tools for documenting agents, visualizing agent behaviour within graphs
and deployment of multi-agent applications are being developed [4].

The current version is Jadex 0.921, which can be freely
downloaded under LGPL license from the project homepage
http://jadex.sourceforge.net/. It is termed a beta stage release, what
means that it has reached considerable stability and maturity to be
used in experimental settings, but compatibility between releases is not
guaranteed.

Acknowledgments
This work is partially funded by the German priority research pro-

gramme 1083 Intelligent Agents in Real-World Business Applications.

Final Remarks 25

Appendix: Summary
1(a) Reactive and deliberative behaviour is supported based on the BDI model and

the corresponding mental attitudes. In addition to the basic BDI intepreter
known from PRS systems, an explicit representation of goals is provided.

1(b) FIPA-compliant speech-act based communication is provided by the underlying
JADE platform.

1(c) Weak mobility is provided by the underlying JADE platform. When developing
mobile agents, some features of the system (e.g. thread-based plans) are not
available.

1(d) The language is easy to learn, as it is based on well known technologies such
as Java and XML. Experiments with students have shown that new users are
quickly able to develop their first agents.

1(e) No formal semantics is available.

1(f) The language is very general and allows to create different kinds of agent appli-
cations.

1(g) The system does not define a new langauge for programming agent behaviour,
but instead makes BDI-specific agent facilities availabe as application program
interface (API). Hence, the BDI feature set can be easily extended.

1(h) No path to formal verification is provided.

1(i) The XML language enforces strong typing. The plan language inherits the
software engineering and programming language principles of Java. In addition,
reusability is supported by the definition of agent-modules called capabilities.

1(j).i Embedding the agent language into a general purpose language is not necessary,
because the system cleanly separates the definition of an agent’s structure
and the definition of agent behaviour. The structure of an agent is defined
in a system specific XML dialect following a BDI-metamodel, while the agent
behavior is realized as plans coded directly in the general purpose programming
language Java.

1(j).ii The default plan language is Java and therefore allows accessing any other
application code or third party library written in Java. In addition, it is possible
to define wrappers that allow to execute plans written in other (e.g. visual)
languages.

2(a).i The documentation includes an introductory tutorial, a user guide which also
serves as a reference manual, and a guide to the available tools. Javadocs of
the plan programming API, and a reference to the metamodel defined in XML
Schema are provided, and the distribution includes several example applica-
tions with source.

2(a).ii The system is based on JADE 3.2 and runs on any platform that supports
Java 1.4. The distribution includes the third party packages JBind for XML
databinding and Apache Velocity for generating the content of some tool di-
alogs.

2(b) The system complies with the FIPA-standards as implemented by JADE.

2(c) The system is Open Source and carefully designed and documented to allow
easy and flexible extension of the provided functionality.

26 The Jadex BDI Reasoning Engine

2(d).i In addition to the tools provided by the JADE platform such as Sniffer and
Dummy Agent, the system supplies tools to inspect the beliefs, goals, and
plans of an agent at runtime, and to execute agents step-by-step. Moreover,
a Logger Agent allows to collect, filter, and view logging output produced by
the different agents of a multi-agent application.

2(d).ii Apart from the documentation material included in the distribution (e.g. user
guide and tutorial), there are publically available web forums for discussion and
support requests, a database for bug-reports and feature requests, and a general
mailing list with online archives.

2(d).iii No additional tools (apart from those provided by JADE) are yet available,
but a tool for multi-agent system deployment is currently in development.

2(e) All kinds of tools and libraries with a Java API can be used within Jadex. For
example, in a larger project the Cayenne database mapping framework was
used to connect agents to a relational database.

2(f) Although its current implementation is coupled to JADE, the reasoning engine
is designed to be used on top of any existing middleware. It can be easily
ported to other FIPA-compliant agent plattforms such as CAPA or ADK and
in principle to other middleware environments such as J2EE or .NET.

2(g).i The performance of the system regarding the number of agents and messages
is bounded by the performance of the underlying JADE platform. The compu-
tation cost induced by the reasoning engine highly depends on the complexity
of the agents.

2(g).ii The system is available as stable Open Source distribution and has already
been used in several 3rd party projects. Nevertheless, the set of features is
continuously evolving, and compatibility between releases is not guaranteed.

2(h).i The system realizes a specific internal agent architecture, and therefore itself
does not address heterogeneity, but it is possible to run Jadex agents on the
same platform as any other JADE agents. Openess is supported in principle
through FIPA-compliant communication, but not especially facilitated by the
design of the system.

2(h).ii Just like in JADE, agents are autonomous self-dependent entities with their
own thread of control. A hierarchical structure of agents is not supported, but
agents can be decomposed into hierarchically structured modules, which are
similar to agents, but do not have their own reasoning process.

2(h).iii The system includes a module for communication with a directory facilitator
(DF) and for using simple FIPA interaction protocols (e.g. request).

3(a) The system has been used mainly in research projects and teaching courses,
e.g. to realize a multi-agent application for market-based negotiation of pa-
tient treatment dates, as well as for the simulation of a hospital model. The
system has also been applied in mobile environments and to some well-known
AI problem domains such as blocksworld and cleanerworld.

3(b) The system is general purpose and not bound to a particular application do-
main.

References

[1] H. Becker. Realisierung eines metamodellbasierten Entwurf-
swerkzeuges für BDI-Agentensysteme. Diplomarbeit, Distributed
Systems and Information Systems Group, Computer Science De-
partment, University of Hamburg/Germany, 2005. (in German).

[2] M. Beelen. Personal Intelligent Travelling Assistant: a distributed
approach. Master of science thesis, Knowledge Based Systems group,
Delft University of Technology, 2004.

[3] M. Bratman. Intention, Plans, and Practical Reason. Harvard Uni-
versity Press, Cambridge, Massachusetts, 1987.

[4] L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf. De-
ployment of Distributed Multi-Agent Systems. In Fifth International
Workshop on Engineering Societies in the Agents World (ESAW
2004), 2004.

[5] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short
Overview. In Net.ObjectDays 2004: AgentExpo, 2004.

[6] L. Braubach, A. Pokahr, W. Lamersdorf, K.-H. Krempels, and P.-
O. Woelk. A Generic Simulation Service for Distributed Multi-
Agent Systems. In From Agent Theory to Agent Implementation
(AT2AI’04), 2004. to appear.

[7] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Rep-
resentation for BDI Agent Systems. In Proceedings of the Second
Workshop on Programming Multiagent Systems: Languages, frame-
works, techniques, and tools (ProMAS04), 2004.

[8] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Struc-
turing BDI Agents in Functional Clusters. In N. R. Jennings and
Y. Lespérance, editors, Intelligent Agents VI, Proceedings of the 6th
International Workshop, Agent Theories, Architectures, and Lan-
guages (ATAL) ’99, pages 277–289. Springer, 2000.

[9] D. Dennett. The Intentional Stance. Bradford Books, 1987.

28 The Jadex BDI Reasoning Engine

[10] M. Duvigneau, D. Moldt, and H. Rölke. Concurrent Architecture for
a Multi-agent Platform. In F. Giunchiglia, J. Odell, and G. Weiß, ed-
itors, Agent-Oriented Software Engineering III. Third International
Workshop, AOSE 2002, Bologna, Italy, July 2002. Revised Papers
and Invited Contributions, volume 2585 of LNCS. Springer, 2003.

[11] M. Harbeck. BDI-Agentensysteme auf mobilen Geräten. Diplomar-
beit, Distributed Systems and Information Systems Group, Com-
puter Science Department, University of Hamburg/Germany, 2004.
(in German).

[12] D. Lam and S. Barber. Debugging agent behavior in an imple-
mented agent system. In Second International Workshop on Pro-
gramming Multi-Agent Systems at the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages
45–56, 2004.

[13] E. Mangina. Review of Software Products for Multi-Agent Systems.
http://www.agentlink.org/resources/software-report.html, 2002.

[14] E. Norling. Folk Psychology for Human Modelling: Extending the
BDI Paradigm. In Proceedings of in the Third International Joint
Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2004), Ney York, USA, July 2004.

[15] T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl.
Distributed Patient Scheduling in Hospitals. In G. Gottlob and
T. Walsh, editors, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03). Morgan Kauf-
mann, 2003.

[16] T. O. Paulussen, A Zöller, A. Heinzl, A. Pokahr, L. Braubach,
and W. Lamersdorf. Dynamic Patient Scheduling in Hospitals. In
M. Bichler, C. Holtmann, S. Kirn, J. Müller, and C. Weinhardt, edi-
tors, Coordination and Agent Technology in Value Networks. GITO,
Berlin, 2004.

[17] A. Pokahr and L. Braubach. Jadex User Guide, Release 0.921, 2004.

[18] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing
a BDI-Infrastructure for JADE Agents. EXP – in search of innova-
tion, 3(3):76–85, 2003.

[19] S. Poslad and P. Charlton. Standardizing Agent Interoperability:
The FIPA Approach. In M. Luck et al., editor, 9th ECCAI Advanced
Course, ACAI 2001 and Agent Links 3rd European Agent Systems
Summer School, EASSS 2001, Prague, Czech Republic, July 2001,
pages 98–117. Springer-Verlag: Heidelberg, Germany, 2001.

REFERENCES 29

[20] A. Rao and M. Georgeff. BDI Agents: from theory to practice. In
V. Lesser, editor, Proceedings of the First International Conference
on Multi-Agent Systems (ICMAS’95), pages 312–319, San Francisco,
CA, USA, 1995. The MIT Press: Cambridge, MA, USA.

[21] T. Schubert. Normen zur Überwachung und Steuerung autonomer
Multi-Agenten Systeme. Diplomarbeit, Institut für Programmstruk-
turen und Datenorganisation, Fakultät für Informatik, Universität
Karlsruhe (TH), 2004. (in German).

