
Jadex: A BDI-Agent System Combining
Middleware and Reasoning

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Abstract. Nowadays a whole bunch of different agent platforms exists that aim to
support the software engineer in developing multi-agent systems. Nevertheless most
of these platforms concentrate on specific objectives and therefore cannot address all
important aspects of agent technology equally well. A broad distinction in this field
can be made between middleware- and reasoning-oriented systems. The first category
is mostly concerned with FIPA-related issues like interoperability, security and main-
tainability whereas the latter one emphasizes rationality and goal-directedness. In this
paper the Jadex agent framework is presented, which supports reasoning by exploiting
the BDI model and is realized as an extension to the widely used JADE middleware
platform.

1. Introduction

Nowadays a whole bunch of different agent platforms exists that aim to support the soft-
ware engineer in developing multi-agent systems [16]. Nevertheless most of these plat-
forms concentrate on specific objectives and therefore cannot address all important as-
pects of agent technology equally well. A broad distinction in this field can be made
between middleware- and reasoning-oriented systems.

The first category is mostly concerned with FIPA-related1 issues that address in-
teroperability and various infrastructure topics such as white and yellow page services.
Hence agent middleware is an important buiding block that forms a solid foundation for
exploiting agent technology. Most middleware platforms intentionally leave open the is-
sue of internal agent architecture and employ a simple task oriented approach. In contrast,
reasoning-centered platforms focus on the behaviour model of a single agent trying to
achieve rationality and goal-directedness. Most successful behaviour models are based
on adapted theories coming from disciplines such as philosophy, psychology or biology.

1http://www.fipa.org



2 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Depending on the level of detail of the theory the behaviour models tend to become com-
plicated and can result in architectures and implementations that are difficult to use. Espe-
cially when advanced artificial intelligence and theoretical techniques such as deduction
logics are necessary for programming agents, mainstream software engineers cannot eas-
ily take advantage of agent technology.

In this paper the Jadex agent framework is presented, which builds upon an exist-
ing middleware agent platform and supports easy to use reasoning capabilities. It adopts
the BDI model and combines it with state-of-the-art software engineering techniques like
XML and Java. In the following, section 2 motivates the need for agent-oriented middle-
ware. In section 3 reasoning approaches for agents are sketched and the BDI fundamen-
tals regarding the individual concepts and their interrelationships are described. Section 4
explains the design and implementation of the Jadex system by detailing the abstract ar-
chitecture and several implementation aspects. In section 5 the approach taken by Jadex is
classified and compared to other approaches - in particular to the JACK agent framework.
A summary and an outlook describing ongoing work and planned extensions conclude
the paper.

2. Agent Middleware

Agent orientation builds on concepts and technology of distributed systems. The para-
digm shift towards autonomous software components in open, distributed environments
requires on the one hand new standards to ensure interoperability between applications.
On the other hand new middleware products implementing these standards are needed
to facilitate fast development of robust and scalable applications. Agents can be seen as
application layer software components using middleware to gain access to standardized
services and infrastructure.

The Foundation for Intelligent Physical Agents (FIPA) [22] ist an international non-
profit organization providing standards for heterogeneous interacting agents and multi-
agent systems. Since 1997 a number of specifications have been released which are re-
placed or updated frequently. The work on specifications focuses on application as well
as middleware aspects. Specifications related to applications provide systematically stud-
ied example domains with service and ontology descriptions. The middleware-related
specifications address in detail all building blocks required for an abstract agent platform
architecture. This includes mechanisms for agent management, as well as infrastructure
elements such as directory services and message delivery. Besides, there are extensive
specifications on the syntactic and sematic layer, to provide a unified basis for agent com-
munication and interaction.

The FIPA specifications have been implemented in a number of agent platforms and
interoperability among those platforms has been shown, for example in the agentcities
network.2 In addition to the FIPA specifications, several platforms also address further
middleware issues and provide specialized solutions e.g. for security, persistency, or mo-
bility. Although the available middleware platforms therefore provide a solid basis for

2http://www.agentcities.net



Jadex: A BDI-Agent System Combining Middleware and Reasoning 3

developing open, interoperable agent systems, not all important aspects of agent develop-
ment are supported equally well. The middleware platforms provide generic abstractions
for application independent distribution and communication issues, but most of them real-
ize a simple task-based agent model. This approach allows to decompose the overall agent
behaviour into smaller pieces and attach them to the agent as needed. Additionally the
tasks themselves can be implemented in an object-oriented language such as Java allow-
ing the software developer to easily start using agent paradigm. Once agent applications
become more complex, another abstraction layer is needed to support the implementa-
tion of high-level decision processes inside the agents. Such abstractions are provided by
cognitive agent architectures as described in the next section.

3. Reasoning for Agents

To build agents with cognitive capabilities several architectures from different disciplines
like psychology, philosophy and biology can be utilized. Most cognitive architectures are
based on theories for describing behaviour of individuals. The most influential theories
with respect to agent technology are the Belief-Desire-Intention (BDI) model, the theory
of Agent Oriented Programming (AOP) [25], the Unified Theories of Cognition (UTC
leading to SOAR) [17, 15] and the subsumption theory [6]. Each of these theories has its
own strengths and weaknesses and supports certain kinds of application domains espe-
cially well. The Jadex reasoning engine is based on the BDI model due to its simplicity
and folk psychological background as explained further in the following.

3.1. BDI Foundations

The BDI model was conceived by Bratman as a theory of human practical reasoning [3].
Its success is based on its simplicity reducing the explanation framework for complex
human behaviour to the motivational stance[10]. This means that the causes for actions
are always related to the human desires ignoring other facets of human recognition such as
emotions. Another strength of the BDI model is the consistent usage of folk psychological
notions that closely correspond to the way people talk about human behaviour.

Beliefsare informational attitudes of an agent, i.e. beliefs represent the information,
an agent has about the world it inhabits, and about its own internal state. But beliefs do not
just represent entities in a kind of one-to-one mapping; they provide a domain-dependent
abstraction of entities by highlighting important properties while omitting irrelevant de-
tails. This introduces a personal world view inside the agent: The way in which the agent
perceives and thinks about the world.

The motivational attitudes of agents are captured in desires. They represent the
agent’s wishes and drive the course of its actions. Desires need not necessarily be con-
sistent and therefore maybe cannot be achieved simultaneously. A “goal deliberation”
process has the task to select a subset of consistent desires (often referred to as goals).
Actual systems and formal theory mostly ignore this step (with the exception of 3APL
[9, 8]) and assume that an agent only possesses non-conflicting desires. In a goal-oriented
design, different goal types such as achieve or maintain goals can be used to explicitly
represent the states to be achieved or maintained, and therefore the reasons, why actions



4 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Algorithm 1 BDI-interpreter, taken from [23]

BDI-interpreter
Initialize-state();
repeat

options := option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

end repeat

are executed [5]. When actions fail it can be checked if the goal is achieved, or if not, if it
would be useful to retry the failed action, or try out another set of actions to achieve the
goal. Moreover, the goal concept allows to model agents which are not purely reactive i.e.,
only act after the occurrence of some event. Agents that pursue their own goals exhibit
pro-active behaviour.

Plans are the means by which agents achieve their goals and react to occurring
events. Thereby a plan is not just a sequence of basic actions, but may also include more
abstract elements such as subgoals. Other plans are executed to achieve the subgoals of
a plan, thereby forming a hierarchy of plans. When an agent decides on pursuing a goal
with a certain plan, it commits itself (momentarily) to this kind of goal accomplishment
and hence has established a so called intention towards the sequence of plan actions.
Flexibility in BDI plans is achieved by the combination of two facets. The first aspect
concerns the dynamic selection of suitable plans for a certain goal which is performed by
a process called “meta-level reasoning”. This process decides with respect to the actual
situation which plan will get a chance to satisfy the goal. If a plan is not successful,
the meta-level reasoning can be done again allowing a recovery from plan failures. The
second criteria relates to the definition of plans, which can be specified in a continuum
from very abstract plans using only subgoals to very concrete plans composed of only
basic actions.

3.2. BDI Realization

Foundation for most implemented BDI systems is the abstract interpreter proposed by
Rao and Georgeff (see algorithm 1) [23]. At the beginning of every interpreter cycle a
set of applicable plans is determined for the actual goal or event from the event queue.
Thereafter, a subset of these candidate plans will be selected for execution (meta-level-
reasoning) and will be added to the intention structure. After execution of an atomic action
belonging to some intention any new external events are added to the event queue. In the
final step successful and impossible goals and intentions are dropped. Even though this
abstract interpreter loop served as direct implementation template for early PRS systems
[14], nowadays it should be regarded more as an explanation of the basic building blocks



Jadex: A BDI-Agent System Combining Middleware and Reasoning 5

of a BDI system. Several important topics such as goal deliberation and the distinction
between goals and events are not considered in this approach.

4. Jadex Realization

The following sections present the motivation, architecture and execution model of the
newly developed reasoning engine Jadex (see also [21]). Details about the integration of
the reasoning engine into the platform are described in a separate section. Afterwards
some tools are introduced which offer extended support for agent debugging.

4.1. Motivation and Project Background

In the context of the MedPAge project the need for an agent platform was identified that
would support FIPA-compliant communication with a high-level agent architecture such
as BDI. The MedPAge (“Medical Path Agents”) project is part of the German priority
research programme 1083 Intelligent Agents in Real-World Business Applicationsfunded
by the Deutsche Forschungsgemeinschaft (DFG). In cooperation between the business
management department of the University of Mannheim and the computer science de-
partment of the University of Hamburg, the project investigates the advantages of using
agent technology in the context of hospital logistics [18, 19]. The Jadex project started in
December 2002 to provide the technical basis for MedPAge software prototypes devel-
oped in Hamburg.

Addressing the need for an agent platform that supports both middleware and rea-
soning, the approach chosen was to rely on an existing mature middleware platform,
which is in widespread use. The JADE platform [2] focuses on implementing the FIPA ref-
erence model, providing the required communication infrastructure and platform services
such as agent management, and a set of development and debugging tools. It intentionally
leaves open much of the issues of internal agent concepts, offering a simple task-based
model in which a developer can realize any kind of agent behaviour. This makes it well
suited as a foundation for establishing a reasoning engine on top of it. While the agent
platform is concerned with external issues such as communication and agent management,
the reasoning engine on the other hand covers agent internals. Therefore the architecture
is to a large extent independent from the underlying platform.

4.2. Architecture Overview

In Fig. 1 an overview of the abstract Jadex architecture is presented. Viewed from the
outside, an agent is a black box, which receives and sends messages. Incoming messages,
as well as internal events and new goals serve as input to the agent’s internal reaction and
deliberation mechanism. Based on the results of the deliberation process these events are
dispatched to already running plans, or to new plans instantiated from the plan library.
Running plans may access and modify the belief base, send messages to other agents,
create new top-level or subgoals, and cause internal events.

The reaction and deliberation mechanism is generally the same for all agents. The
behaviour of a specific agent is therefore determined solely by its concrete beliefs, goals,



6 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

FIGURE 1. Jadex abstract architecture

and plans. In the following each of these central concepts of the Jadex BDI architecture
will be described in detail.

4.2.1. Beliefs. One objective of the Jadex project is ease of usage. Therefore Jadex does
not enforce a logic-based representation of beliefs. Instead, ordinary Java objects of any
kind can be contained in the beliefbase, allowing to reuse classes generated by ontology
modelling tools or database mapping layers. Objects are stored as named facts (called
beliefs) or named sets of facts (called belief sets). Using the belief names, the beliefbase
can be directly manipulated by setting, adding, or removing facts. A more declarative way
of accessing beliefs and beliefsets is provided by queries, which can be specifed in an
OQL3-like language. The beliefs are used as input for the reasoning engine by specifying
certain belief states e.g. as preconditions for plans or creation conditions for goals. The
engine monitors the beliefs for relevant changes, and automatically adjusts goals and plans
accordingly.

4.2.2. Goals. Jadex follows the general idea that goals are concrete, momentary desires
of an agent. For any goal it has, an agent will more or less directly engage into suitable
actions, until it considers the goal as being reached, unreachable, or not desired any more.
Unlike most other systems, Jadex does not assume that all adopted goals need to be con-
sistent to each other. To distinguish between just adopted (i.e. desired) goals and actively

3Object Query Language, see http://www.odmg.org



Jadex: A BDI-Agent System Combining Middleware and Reasoning 7

pursued goals, a goal lifecycle is introduced which consists of the goal states option, ac-
tive, and suspended[5]. When a goal is adopted, it becomes an option that is added to
the agent’s desire structure. A deliberation mechanism is responsible for managing the
state transitions of all adopted goals (i.e. deciding which goals are active and which are
just options). A sophisticated goal deliberation mechnism is not yet available, therefore
currently the Jadex engine automatically activates all valid options. Some goals may only
be valid in specific contexts determined by the agent’s beliefs. When the context of a goal
is invalid it will be suspended until the context is valid again.

Based on the general lifecycle described above, Jadex supports four types of goals,
which exhibit different behaviour with regard to their processing as explained below. A
performgoal is directly related to the execution of actions. Therefore the goal is consid-
ered to be reached, when some actions have been executed, regardless of the outcome of
these actions. An achievegoal is a goal in the traditional sense, which defines a desired
outcome without specifying how to reach it. Agents may try several different alternative
plans, to achieve a goal of this type. A querygoal is similar to an achieve goal. Its out-
come is not defined as a state of the world, but as some information the agent wants to
know about. For goals of type maintain, an agent keeps track of the desired state, and
will continuously execute appropriate plans to re-establish the maintained state whenever
needed. More details about goal representation and processing in Jadex can be found in
[5].

4.2.3. Plans. The reasoning engine handles all events such as the reception of a mes-
sage or the activation of a goal by selecting and executing appropriate plans. Instead of
performing ad-hoc planning for each event, BDI systems like Jadex use the plan-library
approach to represent the plans of an agent. For each plan a plan head defines the circum-
stances under which the plan may be selected and a plan body specifies the actions to be
executed. In Jadex, the most important parts of the head are the goals and/or events which
the plan may handle and a reference to the plan body.

The agent programmer decomposes concrete agent functionality into separate plan
bodies, which are predefined courses of action implemented as Java classes. Object-
oriented techniques and existing Java IDEs can be exploited in the development of plans.
Plans can be reused in different agents, and can incorporate functionality implemented
in other Java classes e.g., to access a legacy system. To access functionality of the Jadex
system, a Java API is provided for basic actions such as sending messages, manipulating
beliefs, or creating subgoals.

4.3. Agent Definition

To create and start an agent, the system needs to know the properties of the agent to be
instantiated. The initial state of an agent is determined among other things by the be-
liefs, goals, and the library of known plans. Jadex uses a declarative and a procedural
approach to define the components of an agent (see Fig. 2). The plan bodies have to be
implemented as ordinary Java classes that extend a certain framework class, thus pro-
viding a generic access to the BDI specific facilities. All other concepts are specified in
a so called agent definition file (ADF) using an XML language that follows the Jadex



8 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

FIGURE 2. Composition of a Jadex agent

meta-model (described in [20]) specified in XML schema4 and allows for creating Jadex
objects in a declarative way. Within the XML agent definition files, the developer can use
expressions to specify designated properties. The language for these expressions is Java
extended with OQL constructs that facilitate e.g. the specification of queries. In addition
to the BDI components some other information is stored in the definition files e.g., de-
fault arguments for launching the agent or service descriptions for registering the agent at
a directory facilitator.

4.3.1. Capabilities. For the purpose of reusability Jadex supports a flexible module-
concept called capabilities [7], which enables the packaging of functionally related en-
tities (beliefs, goals and plans) into a cluster. A capability definition, written as a separate
XML document, is therefore very similar to an agent definition, and usually represents
a certain application functionality required by several different agents (e.g., a generic
negotiation mechanism). A capability provides a separate namespace for the elements
contained within, and therefore avoids name-clashes with other capabilities. Agents can
be composed of any number of capabilities, that in turn may contain subcapabilities. For
advanced settings it is even possible to add or remove single capabilities at runtime.

Each capability exhibits to the superordinated capability a clearly defined interface
by distinguishing e.g. between goals or beliefs that can be used from the outside, and
those that are only visible to the capability itself. A fundamental difference to the original
capability concept of Busetta et al. is that to be used, an element of an inner capability
must be explicitly referenced in the scope of the outside capability or agent (see Fig. 3).
This reference, that acts as a proxy of the original element at runtime, is conceptually
treated as a first level element with its own name.

The explicit declaration of references induces some specification overhead com-
pared to the original capability concept, but offers several advantages. The concept of
a capability as a scopefor elements is cleaner on the conceptual and implementation

4http://www.w3.org/XML/Schema



Jadex: A BDI-Agent System Combining Middleware and Reasoning 9

FIGURE 3. Capability concept

level, as there are only relationships between elements of the same capability. For exam-
ple, a plan will only handle goals and events of its own scope. Expressions, used e.g. in
queries or goal parameters only access beliefs defined locally in the capability. Because
the references to elements of inner capabilities are specified in the declarative XML doc-
uments, and not inside Java plan code, consistency can be checked at design time (e.g.,
if referenced beliefs exist and have the correct type). The usage of referenced elements is
transparent to the plan programmer. References can be accessed in the same way as lo-
cally defined elements of the same type. This also means, that one does not need to know,
which capability actually implements a referenced element.

4.3.2. Example Agent. In Fig. 4 an example for an agent definition file is depicted. It
shows the type declaration of a simple translation agent that can translate words from
English to German. In the agent tag (lines 4-7) the type name “ta” and package name
“jadex.examples.tutorial” are defined. Additionally the URL to the Jadex schema is de-
clared for validation purposes. For reasons of simplicity this agent only consists of one
plan, one beliefset, and one expression (predefined query).

The plan declaration (lines 14-17) is used to define under which circumstances (the
filter tag) an intention (plan instance) is created for a declared plan body (the constructor
tag). In this case the filter object is defined as return value of a static method invocation
(line 16) and hence it is necessary to inspect this method to reveal that whenever the
agent receives a message containing a translation request, a new plan instance of the
Java class “EnglishGermanTranslationPlan” is created. This plan uses the agent’s personal
dictionary stored as belief set “egwords” (lines 21-26) to figure out the translation of a
word. Therefore the translation plan applies the predefined query with the English word
as parameter (line 30-34) to find the adequate German word.

In Fig. 5 the corresponding plan body code is depicted (lines 9-28). Most of this code
is used for testing the message format and extracting the content. The extracted English
word is supplied as parameter for the query that fetches the translated word (line 17).



10 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

FIGURE 4. Example agent definition file

4.4. Execution Model

For a complete reasoning engine several different components are necessary. The core of
a BDI architecture is obviously the mechanism for plan selection. Plans not only have to
be selected for goals, but for internal events and incoming messages as well. To collect
the incoming messages and forward them to the plan selection mechanism a specialized
component is needed. Another mechanism is required to execute selected plans, and to
keep track of plan steps to notice failures. In Jadex, all of the required functionality is
implemented in cleanly separated components. The relevant information about beliefs,
goals, and plans is stored in data structures accessible to all these components.

Fig. 6 shows the interrelations between those components. The functional elements
of the execution model can also be found in the abstract BDI interpreter presented in



Jadex: A BDI-Agent System Combining Middleware and Reasoning 11

FIGURE 5. Example agent translation plan

section 3.2. The difference between Jadex and the abstract interpreter is, that in Jadex
these functionalities are carried out independently by three distinct components (mes-
sage receiver, dispatcher, scheduler). The message receiver performs the get-new-external-
events() operation, by taking ACL messages from the platform’s message queue and cre-
ating Jadex events which are placed in the event list. The dispatcher continuously con-
sumes the events from the event list and builds the applicable plan list for each event,
corresponding to the option-generator() function. The dispatcher also selects plans to
be executed - similar to deliberate(options) - and places the selected plans in the ready
list after associating the selected plans to the corresponding events or goals, like it is
done in update-intentions(selected-options). Finally the scheduler takes the plans from
the ready list and executes them, as done by the execute() operation. Note, that the drop-
impossible/successful-attitudes() operations are not part of the execution model, because



12 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

FIGURE 6. Jadex execution model

in Jadex those operations are carried out on-the-fly, whenever there are relevant changes
in the agent’s beliefs.

4.5. JADE Integration

To easily integrate the Jadex engine into JADE agents, a wrapper agent class is provided,
which creates and initializes an instance of the Jadex engine with the beliefs, goals and
plans from an agent definition file. The above mentioned components of the reasoning
engine are implemented in three JADE behaviours, which are automatically created and
added to the wrapper agent. In addition, there is a simple timing behaviour with the pur-
pose to add timeout events to the event list (e.g. when awaited messages do not arrive). Im-
plementing the functionalities into separate behaviours provides a clean design and allows
for flexible replacement of the behaviours with custom implementations, e.g. alternative
scheduling mechanisms could be tried out, using modified versions of the corresponding
behaviours.

The Jadex project facilitates a smooth transition from developing conventional JADE
agents to employing the mentalistic concepts of Jadex agents. All available JADE func-
tionality can still be used in Jadex plans. Moreover, it is possible to use some of the Jadex



Jadex: A BDI-Agent System Combining Middleware and Reasoning 13

FIGURE 7. BDI introspector and logger screenshots

functionality e.g., the belief base or the goal base, from conventional JADE behaviours.
To use JADE behaviours in conjunction with Jadex plans the message receiver behaviour
supports filtering of incoming ACL messages (see Fig. 6 at the top). It is necessary to sort
out those messages which are handled by plans and therefore have to be dispatched to the
internal Jadex system and keep the other messages available for the JADE behaviours.

4.6. Tool Support

As a Jadex agent is still a JADE agent all available tools of JADE can also be used to
develop Jadex agents. Most of the JADE platform deals with the external view of an agent,
which does not differ between conventional JADE agents and Jadex agents. Only the
JADE introspector agent is of limited use, because it only shows the four Jadex standard
behaviours and not the agent’s plans. To enable a comfortable testing of Jadex agents two
new tool agents have been developed: the BDI introspector and the logger agent.

The introspector’s purpose is twofold. First, it supports the visualization and mod-
ification of the internal BDI concepts (see Fig. 7 left hand side) thus allowing inspection
and reconfiguration of an agent at runtime. Secondly, it simplifies debugging through a
facility for the stepwise agent execution. In the step mode it is possible to observe and
control each event processing and plan execution step having detailed control over the
dispatcher and scheduler. Hence it can be easily figured out what plans are selected for an
event or goal.

A big problem in debugging agent systems consists in the amount and sequence of
outputs the agents produce typically on the console. With the help of the logger the agent’s
outputs can be directed to a single point of responsibility at runtime. In contrast to simple
console outputs the logger agent preserves additional information about the output such
as its time stamp and its source (the agent and method). Using these artefacts the logger
agent offers facilities for filtering and sorting messages by various criteria allowing a
personalized view to be created (see Fig.7 right hand side).



14 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

FIGURE 8. Classification of Agent Platforms

5. Related Work

In Fig. 8 a general overview of several existing agent platforms is given with respect to the
dimensions application area (research vs. industrial use) and technical focus (middleware
vs. BDI approach).5 From this classification can be seen that there currently is almost no
connection between middleware and BDI systems. Especially for industrial use of agent
technology it is of importance that middleware aspects like interoperability and security
as well as aspects for rational decision making are equally well supported. Against this
background a combination of both research strands seems to be promising approach.

To close the gap between middleware and reasoning two fundamentally different
approaches exist. One possibility is to build agent platforms on top of an established in-
dustry standard for component oriented software engineering like Java J2EE and therefore
integrate agent technology in application server environments. Typical representatives for
this approach are Agentis6 and Whitesteins TAP1.7 The other possible approach is based
on existing (FIPA-compliant) middleware agent platforms and enhances them with BDI-
specific characteristics. Examples for this approach are Nuin [11] and Jadex.

Both integration techniques have different advantages and disadvantages, hence
there is not a single predominant solution. General advantages of the application server
approach are that industry-grade tools are available and can be utilized to ensure several

5References to all depecited agent platforms can be found on the Jadex project page:
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/links.php
6http://www.agentissoftware.com/
7http://www.whitestein.com/pages/index.html



Jadex: A BDI-Agent System Combining Middleware and Reasoning 15

business critical properties like availability and fault-tolerance. In addition also develop-
ment and management tools can be reused to a certain degree. The main drawback of this
approach is that is relies on standards for software components that have some similari-
ties with agents, but still need to be adapted to the agent paradigm. On the contrary, using
existing agent middleware as foundation for reasoning has the advantage of being in line
with the FIPA-agent standards, but the available tools do not offer the same degree of
maturity yet. Due to the primary application domain of Jadex in which FIPA-compliant
communication is an essential criterion, Jadex took the latter approach and is currently
realized as a loosely coupled add-on to a middleware agent platform.

Jadex and JACK

Concerning the available BDI-concepts, Jadex is most similar to the commercial JACK
agent platform [13]. Therefore, Jadex will be compared with JACK in the following in
more detail.

On the conceptual level the JACK agent platform strictly adopts the BDI interpreter
cycle by Rao and Georgeff (see section 3.2) and provides a new agent programming lan-
guage (JAL) extending Java with BDI-specific file types (agents, capabilities, events, be-
liefs, plans) and declaratice statements. Therefore all of the aforementioned file types
including the plans are realized as JACK Framework classes which have to be extended
to build an application. JACK programs are compiled to normal Java files with a precom-
piler and can subsequently be translated to Java classes using the normal Java compiler. In
addition to agent-centered BDI concepts, JACK also supports agent teams with the Sim-
pleTeams approach [12]. The runtime infratructure of JACK consists of an environment
for agent execution and proprietary message transport. Management agents for yellow
and white pages services are not available. Further on, JACK offers tool support for the
developement of agents with an integrated development environment (IDE) including a
graphical plan editor which allows for visual plan construction. Debugging agent appli-
cations is alleviated with runtime tools for stepwise plan execution and observing agent
communications.

In contrast to JACK, Jadex does not adhere to the traditinal BDI interpreter in a strict
manner, but defines separated responsibilities for the important parts of the deliberation
cycle. Also different from JACK, Jadex does not define a new agent programming lan-
guage, but uses a BDI metamodel defined in XML-schema for agent definition and pure
Java as implementation language for plans avoiding the need for a precompiler. Jadex
supports the same core BDI concepts (except the team concepts) as JACK and addition-
ally introduces several extensions. Most interestingly is the extension concerning explicit
goal types, which alleviates the disadvantage of treating goals only in the form of simple
events [5] and which is the basis for goal deliberation. Because Jadex is based on JADE it
exhibits all of its middleware features such as FIPA-compliant communication, manage-
ment agents for yellow and white pages services, security and persistency mechanisms.
The same applies for tool support, which means that all of the JADE tools can be used
with Jadex agents as well. Furthermore, Jadex provides additional debugging support with
the debugger and logger tools, but currently lacks visual tools for agent development.



16 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

6. Conclusion and Outlook

This article presents an approach to the integration of an agent middleware with a rea-
soning engine to combine the advantages of both strands. A motivation for agent-oriented
middleware and an overview of the BDI model was given, and the design and realization
of the Jadex BDI engine as an extension to the widely used JADE agent platform was
described. The Jadex system allows for the construction of rational agents, which exhibit
goal-directed (as opposed to task-oriented) behaviour. The construction of Jadex agents is
based on well-established software engineering techniques such as XML, Java and OQL
enabling software engineers to quickly exploit the potential of the mentalistic approach.
The Jadex project is also seen as a means for researchers to further investigate which
mentalistic concepts are appropriate in the design and implementation of agent systems.
In addition to its usage in context of the MedPAge project in Hamburg, several other in-
stitutes have used Jadex to implement research systems. E.g., the Technical University of
Karlsruhe has used Jadex to implement an experimental system for representing norms
in multi-agent systems [24] and at the Delft University of Technology, Jadex was used
realize a personal travel assistant application [1].

The current version is Jadex 0.921, which can be freely downloaded under LGPL
license8 from the project homepage http://jadex.sourceforge.net/. It is termed a beta stage
release, what means that it has reached considerable stability and maturity to be used
in experimental settings, but compatibility between releases is not guaranteed. Ongoing
work currently focuses on two aspects of the system: Extensions to internal concepts and
additional tool support. On the conceptual level extensions to the basic BDI-mechanisms
are developed, such as support for planning, teams, and goal deliberation. In contrast
to other BDI agent systems Jadex supports an explicit and declarative representation of
goals. It is planned to utilize this explicit representation by improving the BDI architecture
with a generic facility for goal deliberation which alleviates the necessity for designing
agents with a consistent goal set. Additionally the explicit representation allows to inves-
tigate task delegation by considering goals at the inter-agent level.

Work on tools mainly addresses the usability of agent technology as a mainstream
software engineering paradigm. The tool support of Jadex currently focusses on the testing
phase supplying a debugger and a logger agent. To achieve a higher degree of usability
it is planned to support the design phase as well with a graphical modeling tool based
on the MDA-approach.9 Additionally, tools for documenting agents and deployment of
multi-agent applications are being developed [4].

Acknowledgement

This work is partially funded by the German priority research programme 1083 Intelligent
Agents in Real-World Business Applications.

8http://www.gnu.org/copyleft/lesser.html
9Model-Driven Architecture, see http://www.omg.org



Jadex: A BDI-Agent System Combining Middleware and Reasoning 17

References
[1] M. Beelen. Personal Intelligent Travelling Assistant: a distributed approach. Master of science

thesis, Knowledge Based Systems group, Delft University of Technology, 2004.

[2] F. Bellifemine, G. Rimassa, and A. Poggi. JADE – A FIPA-compliant agent framework. In 4th
International Conference on the Practical Applications of Agents and Multi-Agent Systems
(PAAM-99), pages 97–108, London, UK, December 1999.

[3] M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, Cambridge,
Massachusetts, 1987.

[4] L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf. Deployment of Distributed
Multi-Agent Systems. In Fifth International Workshop on Engineering Societies in the Agents
World (ESAW 2004), 2004.

[5] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI Agent
Systems. In Proceedings of the Second Workshop on Programming Multiagent Systems: Lan-
guages, frameworks, techniques, and tools (ProMAS04), 2004.

[6] R. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal of Robotics
and Automation, 2(1):24–30, March 1986.

[7] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents in Functional
Clusters. In N. R. Jennings and Y. Lespérance, editors, Intelligent Agents VI, Proceedings of
the 6th International Workshop, Agent Theories, Architectures, and Languages (ATAL) ’99,
pages 277–289. Springer, 2000.

[8] M. Dastani and L. van der Torre. Programming BOID Agents: a deliberation language for
conflicts between mental attitudes and plans. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS’04), 2004.

[9] M. Dastani, B. van Riemsdijk, F. Dignum, and J.J. Meyer. A Programming Language for Cog-
nitive Agents: Goal Directed 3APL. In Proceedings of the First Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMAS03), 2003.

[10] D. Dennett. The Intentional Stance. Bradford Books, 1987.

[11] I. Dickinson and M. Wooldridge. Towards practical reasoning agents for the semantic web.
Technical Report HPL-2003-99, Hewlett Packard Laboratories, May 15 2003.

[12] A. Hodgson, R. Rönnquist, and P. Busetta. Specification of Coordinated Agent Behavior (The
SimpleTeam Approach). In Proceedings of the Workshop on Team Behaviour and Plan Recog-
nition at IJCAI-99, Stockholm, Sweden, 1999.

[13] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents - Summary
of an Agent Infrastructure. In Proceedings of the 5th ACM International Conference on Au-
tonomous Agents, 2001.

[14] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A High Level Supervision and Control
Language for Autonomous Mobile Robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 43–49, Minneapolis, April 1996.

[15] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar, an architecture
for human cognition. Invitation to Cognitive Science, 4, 1996.

[16] E. Mangina. Review of Software Products for Multi-Agent Systems.
http://www.agentlink.org/resources/software-report.html, 2002.

[17] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.



18 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

[18] T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Distributed Patient Scheduling
in Hospitals. In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03). Morgan Kaufmann, 2003.

[19] T. O. Paulussen, A Zöller, A. Heinzl, A. Pokahr, L. Braubach, and W. Lamersdorf. Dynamic
Patient Scheduling in Hospitals. In M. Bichler, C. Holtmann, S. Kirn, J. Müller, and C. Wein-
hardt, editors, Coordination and Agent Technology in Value Networks. GITO, Berlin, 2004.

[20] A. Pokahr and L. Braubach. Jadex User Guide, 2003.

[21] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-Infrastructure for
JADE Agents. EXP – in search of innovation, 3(3):76–85, 2003.

[22] S. Poslad and P. Charlton. Standardizing Agent Interoperability: The FIPA Approach. In
M. Luck et al., editor, 9th ECCAI Advanced Course, ACAI 2001 and Agent Links 3rd Euro-
pean Agent Systems Summer School, EASSS 2001, Prague, Czech Republic, July 2001, pages
98–117. Springer-Verlag: Heidelberg, Germany, 2001.

[23] A. Rao and M. Georgeff. BDI Agents: from theory to practice. In V. Lesser, editor, Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS’95), pages 312–319.
The MIT Press: Cambridge, MA, USA, 1995.

[24] T. Schubert. Normen zur Überwachung und Steuerung autonomer Multi-Agenten Systeme.
Diplomarbeit, Institut für Programmstrukturen und Datenorganisation, Fakultät für Informatik,
Universität Karlsruhe (TH), 2004. (in German).

[25] Y. Shoham. Agent-oriented programming. In D. G. Bobrow, editor, Artificial Intelligence Vol-
ume 60, pages 51–92, Elsevier Amsterdam, The Netherlands, 1993.

Lars Braubach
Distributed and Information Systems Group
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg
Germany
e-mail: braubach@informatik.uni-hamburg.de

Alexander Pokahr
Distributed and Information Systems Group
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg
Germany
e-mail: pokahr@informatik.uni-hamburg.de

Winfried Lamersdorf
Distributed and Information Systems Group
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg
Germany
e-mail: lamersd@informatik.uni-hamburg.de


