
DEMAC: A Distributed Environment for
Mobility Aware Computing

Christian P. Kunze

University of Hamburg, Department of Informatics
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany,

kunze@informatik.uni-hamburg.de,
http://vsis-www.informatik.uni-hamburg.de

Abstract. For ubiquitous respectively pervasive computing mobility is
one of the most important aspects. In the past, mobile devices became
more and more aware of their location and vicinity and communicated
rather loosely with each other. Therefore, mostly asynchronous commu-
nication paradigms were used in order to decouple temporally message
transport.
As such communication mechanisms seem suitable for single communi-
cation acts, they may not be sufficient, however, for more complex tasks
which consist of sequences of related communication acts. This holds par-
ticularly if the resulting operating sequence spans several mobile devices
in frequently changing vicinities.
Therefore, the approach taken by the ongoing dissertation project DEMAC
aims at a higher abstraction level for inter-device communication, espe-
cially for more complex user tasks. The concept as developed so far is
based on integrating processes into mobile system infrastructures and
on distributing their execution over different nodes in the network. For
this purpose, a middleware platform for context aware applications is
designed which allows for defining process schemas and which uses an
interpreter to execute the defined processes in a distributed manner.

1 The Challenges of Mobility in Pervasive Environments

In computer technology in general, two diametrical trends can be identified: On
the one hand side computers become more and more powerful and they decrease
in size. On the other side, the amount of connected items which are equipped
with processing units increases continuously and they penetrate ever more into
everyday life [1]. In recognition of this trend, e.g., Marc Weiser formulated his
vision of ”The Computer for the Twenty-First Century” [2] with the final goal
to make computers available to users at any time and place, but making this
access effectively invisible to them [3]

For these ubiquitous environments mobility is one of the central aspects to
cope with: Mobile users travel around and need access to their programs and
data from everywhere and at any time. But also devices are mobile and thus
able to form dynamic environments which share data and/or services. And even



the code can move because it may migrate among and be executed on devices
which form the mobile vicinity. However, supporting such mobility aspects on
systems level also leads to additional constraints and demands than in more
static distributed systems.

This paper introduces the dissertation project ”Distributed Environment for
Mobility Aware Computing” (DEMAC) which aims at developing a middleware
infrastructure to support the integration of mobile devices into ”classical” dis-
tributed environments in order to enable value added and process oriented ap-
plications.

The following subsections of this paper introduce the (broader and narrower)
problem domains; section 2 addresses related and previous work, and section 3
outlines the DEMAC system software solution. Finally section 4 concludes this
paper.

1.1 Integration of Mobility Constraints

Research in mobile computing has identified four constraints which are intrinsic
to mobility but different to traditional distributed systems: These are the re-
strictions of resources in comparison to static devices, the increased variability
in performance and reliability of wireless connections, the finite energy sources
to rely on, and the hazard of mobility itself. This caused the insight that mobile
systems can not provide as much transparency as systems in more statically
wired environments. In contrast, the moving elements have to be aware of the
changing vicinity and to react and adapt accordingly [4].

A first focus of Mobile Computing was on timely decoupling the communica-
tion of mobile systems because there is no guarantee that clients and servers are
reachable at the same time. System support for that lead to middleware systems
which mainly used asynchronous communication models - like message-passing,
tuple space based approaches, or sharing of replicated data [5].

A second important aspect of research based on the implications of mobil-
ity constraints is the realisation of awareness and adaptability. These systems
introduce the principal of reflection in order to make changes in the context
available to applications. In such systems, the context describes - for each en-
tity - the pieces of information which specify the situation of the entity and
are relevant for its behaviour [6]. This knowledge can either be presented to the
entity proactively by using adequate events or passively by providing a query
mechanism.

In summary: with asynchronous communication and location awareness some
restrictions of mobile clients’ resources can be allayed. Namely, an application
can retrieve and use services provided by other servers in its environment to
extend its own capabilities.

However, all these solutions have in common that they solve the problems in
mobile environments just for a single simple task or communication act because
they are realised on a relatively low conceptual level: The decoupling is isolated
for single interactions and only works under the assumption that clients and
servers can eventually connect in finite time again.



1.2 The Need for Decoupling on an Abstract Level

Most existing solutions in the field of mobile computing provide their support
from an application point of view. They offer mechanisms and techniques to fulfil
basic but rather simple tasks (cp. subsection 1.1). However, to step further to
the vision of ubiquitous computing the successful execution of the users’ (mostly
more complex) tasks must come into the focus. For this reason, future approaches
to system support for mobile computing should be based on such a more abstract
and user centric view.

On this abstraction level, complex user tasks can be regarded as sequences
or process of related simple tasks from the application centric view which are
managed by the mobile client. In consequence, a mobile client must be able to
reach and invoke all services which are needed to execute the complex task.
And as another implicit consequence, the client must be capable of handling all
intermediate results - regardless of their size and relevance to the expected final
output. This, however, leads to a single point of failure and a bottleneck during
execution time.

If, on such conditions, the mobile device is not constantly reachable while
performing a sequence of remote tasks, the execution time can expand fast and
will reach an unacceptable dimension quickly. As the client has, additionally,
to manage the whole control flow of the complex task, the quantity of possible
processes is limited by the capabilities of the mobile device. Since the user,
however, is, in mostly cases, just interested in the effects of a process and not in
it’s execution or intermediate results, the control flow - and with it the complex
task - can be transferred to other devices. In such a case, the user should also be
able to specify, next to the execution process, non-functional aspects like, e.g.,
security and other quality-of-service needs. These requirements should then be
taken into account by the remote execution unit and enforced on user’s behalf.
As this can not be done just using existing techniques additional concepts are
needed on the higher abstraction level of complex user tasks. These ones should
decouple the execution of processes not only in time but also in space.

2 Previous and Related Work

As mentioned before, much research in the field of middleware systems for mobile
computing is based on decoupling the communication of mobile clients and on
making them aware of their environment. Most of these systems provide asyn-
chronous communication paradigms and/or detailed descriptions of the device’s
vicinity. The work presented here uses these results as it is based on message-
oriented middleware systems for Mobile Computing - also integrating parts of
context-aware and event-based mechanisms.

In addition, such a middleware approach can also make use of current web
service technology - in particular workflow definition languages. At present, we
analyse if and to which scale the corresponding languages, e.g. BEPEL4WS or
XPDL, are also suited for use in system support architectures for mobile system.



The goal here is to find a compatible subset to allow for integrating the mobile
devices seamlessly into existing workflow environments.

Beyond that, this approach has also origins in distributed (multi-) agent
oriented computing : For instance, research done in this dissertation project so
far has demonstrated that it is actually possible to transfer a goal-directed agent
system (JADEX) to mobile clients. Although there are, of course, limitations to
the devices size it has been demonstrated in this research, that even for PDA-
size devices such an approach is possible [7]. This leads to options for integrating
goals - as described in [8] - as non-functional constraints and, in particular, to
the possibility to deliberate about different strategies to achieve these goals in
the most feasible way which is rather useful for a user centric approach: Different
types of goals like, e.g., achieve, maintain, or query goals, which define the user’s
task more precisely, have a direct influence on the execution of the associated
process.

As the middleware support proposed in this dissertation project uses remote
services as well as delegation of tasks and responsibility in a mobile and dis-
tributed environment, there is also a need to ensure the necessary levels of trust
in such remote services, based on, e.g., foreign user roles, and individual user
identities. Therefore, the DEMAC project also includes some research into digi-
tal identity management [9] and, as a consequence, identities should become an
integrated part of the context concept of the approach.

Finally, the dissertation project DEMAC is also influenced by previous re-
search in the area of system support for mobile computing in Hamburg which,
in earlier years, proposed and demonstrated the use of abstraction concepts for
the design of adoption and integration strategies in distributed mobile systems.
Also this research indicated that higher abstraction levels lead to fewer device
modifications and easier handlings of heterogeneity [10].

3 The DEMAC Approach

The dissertation project DEMAC aims at including a process oriented perception
into middleware system support for mobile computing. In this context, process
orientation means continuing consequently the decoupling of mobile applications.
More specifically, introducing an explicit description schema and an interpreter
for distributed processes in mobility aware computing environments allows for
decentralization of the control flow of mobile applications.

3.1 Decoupling via Delegation

The main idea to decouple applications on a higher user centric abstraction level
as discussed in subsection 1.2 is realised in this project by introducing a lean
description schema and a distributed execution mechanism for processes into the
middleware approach. This allows for delegation of the responsibility to perform
parts of a complex task to other nodes which can then perform the actual subtask
in a more suitable way. Based on such a spatial and temporal decoupling strategy



the control flow remains close to the service execution unit. In addition, with a
late service binding strategy, the mobile environment is able to support many
(parallel) jobs - even if the initiating device is not reachable or turned off. Such
mechanisms do not yet exist in current middleware approaches where just the
data transmission between client and service provider is decoupled by the use of
asynchronous communication techniques.

But since, in a user centric view, the execution is distributed, the application
as well as the user must be able to express functional and also non-functional
constraints like, e.g. security needs or quality-of-service parameters. Decoupling
via delegation provides such possibilities to enforce these requirements on behalf
of the user - even remotely - with appropriate security (and other) functions
even on unknown or suspect servers.

3.2 The DEMAC System Architecture Components

As system support for mobility aware computing, DEMAC proposes extensions
to an abstract middleware architecture which are based on four services compo-
nents (see figure 1) which are presented and described shortly in the following.

Fig. 1. Overview of the DEMAC middleware architecture

Asynchronous Transport Service The asynchronous transport service forms
the communication basis for all services and applications in the DEMAC archi-
tecture. This service abstracts from concrete transport protocols, like TCP/IP,
Bluetooth, or IrDA. On top of these the DEMAC transport mechanism provides
the ability to send and receive messages. As the transport service should work
asynchronously, messages are referenced by unique identifiers and delivered to



higher services or applications by using the ”observer pattern”. That means ap-
plications waiting for messages can register at the transport service and will be
informed about incoming messages.

As the service is independent from the transport protocol it uses its own
addressing schema. The used addresses are bound to a device and translated
into the concrete protocol specific address by the transport service. If the device
is reachable by different protocols, non-functional aspects like e.g. quality of
service attributes can be used to make an optimal choice.

Event Service The event service is used to provide announcements of changes
in the device’s internal and external states to the context service. A modification
of an attribute in the device, e.g. the loss of a connection or other quality of
service parameter, is transformed into an event and passed to all interested local
and remote clients. If external services should be informed the asynchronous
messages of the transport service are used to notify the remote event service.
Receiving such a foreign message the remote service generates a local event which
then is passed to its local context service.

Context Service The context service collects and maintains all information
about the context of the device. It acquires its knowledge either by events from
the event service or by direct message exchange using the transport service. But
towards the entities which uses the service it filters and partitions the information
and provides only the amount they need. These are next to quality of service
parameters also information about reachable devices and their services, location
parameter and data about other users and their identity.

Process Service The process service realises the integration of process man-
agement into the DEMAC architecture and thus the decoupling by delegation
discussed in subsection 3.1. It is comprised of two parts: The first one is a def-
inition of a schema in order to describe the execution process as well as the
users and applications non-functional demands. Using this schema, an applica-
tion is able to define a sequence of services, intermediary results which must be
achieved, and constraints for the execution. Thereby the services are referenced
by abstract handles to keep the definition short. The second part of the service
is an interpreter for process definitions. This unit has the duty to resolve and
execute processes. It can either invoke the service locally or delegate the pro-
cess to a remote process service. When delegating a process the description and
all necessary data is transferred to the remote unit by the use of the transport
service. Thereby the process service relies on the information provided by the
context service to find a device providing the needed service and to enforce the
non-functional demands and constraints.



3.3 State of the Project

The DEMAC project is still in an early state where just the presented abstract
architecture and the correlations and interconnections of single services have
been solidified. Now, more detailed research and specifications for each service
and a first prototypical implementation are in progress. After this basic imple-
mentation the system support services will be extended incrementally. In this
stage, also other state-of-the-art middleware techniques shall be considered, es-
pecially agent technologies like goal representation and deliberation to optimise
the execution of the user centric process. To get a perception in which scale
the agent-oriented techniques benefit such a process oriented middleware for
mobile computing, major parts of an existing (multi-) agent platform has been
transferred to mobile devices [7]. With this implementation the use of speech
act communication and deliberation of goals in mobile scenario is analysed and
the results are transferred to the DEMAC middleware approach. For an exam-
ple application process, an insurance company environment is used which covers
managing claims resulting from traffic accidents with mobile devices in a re-
mote and distributed fashion. This scenario could demonstrate major parts of
the advantages of the DEMAC architecture because it spans several mobile users
(assessors, insurance agents etc.) and static back office systems like the insurance
company or the garage.

4 Conclusion

This paper argues that existing approaches for mobile computing deal with the
limitations of mobile systems on a communication level which is too low for many
(especially complex) user applications. They basically decouple device communi-
cation in time only and support the ability to be aware of the device’s context. By
combining theses techniques, mobile clients may be able to make use of services
provided in their vicinity in a more application adequate ways. However, such de-
vice extensions are only suitable for single communication acts; for sequences of
remote service requests, however, more abstract concepts (and a corresponding
system support) are needed. The DEMAC approach as presented in this paper
solves this problem by integrating processes into a mobile middleware platform
and delegating the control flow of the whole remaining process to remote exe-
cuting units. In addition, such a delegation can be done recursively such that
the execution of the process is consequently distributed and spatially decoupled
from the mobile device. The assumption is that in cases where users are just
interested in the effects of their respective processes they usually do not care
about any details of the process execution as long as their functional and non-
functional goals are achieved. This is supported by the DEMAC middleware by
integrating non-functional constraints and options for goal representation into
the (traditional) process execution. All this lifts the main perspective within the
approach from a focus on rather basic application support to a more abstract
user centric view in which user’s tasks can be executed in most feasible and
cooperative ways.



References

[1] Mattern, F.: The vision and technical foundations of ubiquitous computing. Up-
grade 2 (2001) 2–6

[2] Weiser, M.: The computer for the twenty-first century. Scientific American 256
(1991) 94–104

[3] Weiser, M.: Ubiquitous computing. IEEE Computer Hot Topics (1993)
[4] Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceed-

ings of the Fifteenth ACM Symposium on Principles of Distributed Computing.
(1996)

[5] Mascolo, C., Capra, L., Emmerich, W.: Middleware for mobile computing (a
survey). In Gregori, E., Anastasi, G., Basagni, S., eds.: Networking 2002 Tutorial
Papers. Volume 2497. (2002) 20–58

[6] Lehmann, O., Bauer, M., Becker, C., Nicklas, D.: From home to world: Sup-
porting context-aware applications through world-models. In: Proceedings of the
2nd IEEE International Conference on Pervasive Computing and Communication
(PerCom 04). (2004)

[7] Harbeck, M.: BDI-Agentensysteme auf mobilen Geräten. Master’s thesis, Univer-
sity of Hamburg - Department of Informatics - Distributed Systems and Informa-
tion Systems Group (2004)

[8] Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for bdi
agent systems. In Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A.,
eds.: Proceedings of the Second International Workshop on Programming Multi-
Agent Systems. (2004) 9–20

[9] Baier, T., Kunze, C.P.: Identity-enriched session management. In Lamersdorf, W.,
Tschammer, V., Amarger, S., eds.: Building the E-Service Society: E-Commerce,
E-Business, and E-Government, IFIP, Kluwer Academic Publishers Dordrecht
(2004) 329–342

[10] Müller-Wilken, S., Lamersdorf, W.: Jbsa: An infrastructure for seamless mo-
bile systems integration. In Linnhoff-Popien, C., Hegering, H.G., eds.: Proc. 3rd
IFIP/GI International Conference on Trends towards a Universal Service Market
(USM 2000). Lecture Notes in Computer Science, Ludwig-Maximilians-University
Munich, Springer Verlag (2000) 164–175


