
Java-based Mobile Agents —
How to Migrate, Persist, and Interact

on Electronic Service Markets 1

B. Liberman, F. Griffel, M. Merz, W. Lamersdorf
Hamburg University - Department of Computer Science- Distributed Systems Group

[1liberma | griffel | merz | lamersd] @ informatik.uni-hamburg.de

Abstract
This paper presents a mobile agent approach that aims at satisfying the follow-
ing requirements of open Internet-based electronic service markets: the mobile
agent system should be usable by any Internet user without a need for specifi-
cally configurated non-standard software tools. It should reduce costs in mobile
computing environments and therefore enhance overall efficiency. It should suit
well to an electronic service market where local services are commercially of-
fered and business transactions predominate the interaction between customers
and suppliers.

As a part of the project OSM (Open Service Model), mobile agents are built on
top of two well-established technologies: CORBA and Java. The first is used as
a conceptual framework for interoperability, the latter as the programming envi-
ronment. Since Java does not provide the necessary persistency of execution
state, the concept of OSM service profiles is used to embed Java classes and to
transfer a coarse-grained execution context in a secure and efficient manner.

1 Introduction
Electronic service markets allow customers and suppliers to exchange services against
payment through business transactions [Mer96, Schm93]. It is assumed that both indi-
vidual and standardized services are offered in an electronic service market. However,
to satisfy evolution as one of the most fundamental requirement for the market
mechanism, the ability to gain ad-hoc visibility and availability — despite of a possi-
bly complex service offer — is an important precondition for service suppliers.

The OSM (Open Service Model) architecture aims at integrating the following
mechanisms that allow to perform business transactions in a flexible way:

• Generic user access to remote services is provided by a browsing tool, called the
generic client [MML94]. It supports customers to establish sessions with suppliers,
to integrate them visually at the desktop-level, and to store, transfer, and resume
sessions on different network sites.

• The ad-hoc configuration of supporting services such as payment, authentication,
or notary services. Each time a business transaction is to be established this con-

1 Published in Rothermel/Popescu-Zeletin: „Mobile Agents“, Proceedings MA97 Workshop, Berlin,
Springer LNCS #1219 1997

figuration takes place using a unified description technique and a matching mecha-
nism to specify the transaction partners’ needs.

• Value chains emerge in the following two ways: first, through the establishment of
mediators, i.e. services that provide service references to their clients. Mediators
may either supply a query interface (such as in the case of the trading service
[MML94]) or a browsing interface (on-line catalogues or directories). Secondly,
value chains may emerge by enriching, combining, or coordinating existing serv-
ices.

• The service profile is established as a common vehicle for service offer description
and as a persistent data store. This allows all involved OSM components to dy-
namically provide or obtain specific information in a well-structured way: traders
may process service type definitions, catalogues may extract icons and description
texts, or the generic client may obtain information on the support service require-
ments of the transaction partner [MTL96].

• Finally, the OSM architecture aims at supporting service negotiation between
client and server by structuring conversations into a limited set of speech-acts
[CFF+92]. This helps to reduce the complexity that is principally given when two
parties agree step-by-step on a set of service attributes and allows for a higher level
of automation.

It has been discussed in [MML96] that mobile agents fit to this architecture if they are
considered as value-added service providers: they are developed either by a service
supplier or a third party in order to utilize the call interface of a single server or a set
of servers that is necessary for a distinct task to be accomplished. To give an example,
information retrieval at remote database servers may be performed by a single mi-
grating agent visiting all appropriate database sites. Then, from a conceptual point of
view, the mobile agent provides to the customer the independence from server-specific
interfaces and semantics. It acts as a value-added service since the possibly complex
data query interfaces may be reduced to a simple user entry form that allows only to
enter some keywords. Also the possible heterogeneity of different database servers
may be hidden by the agent in this way. However, in contrast to an immobile value-
added server, the agent is able to actively interact with other agents to solve the given
problem cooperatively.

Another important domain which promotes appliance of mobile software appears in
connection with mobile computing. The nature of such an environment entails some
questions mobile agents are tailored to cope with. Concerning communication costs
particularly, the advantage of mobile agents lies in the minimizing of the on-line time
and therefore cost reduction.

The rest of this paper is organized as follows: section 2 gives an overview of the de-
sign space for mobile agent systems and motivates the selection of Java as the imple-
mentation language. Possible problems of this decision are discussed and the service
profile concept is introduced as a possible approach for their circumvention. Section 3
focuses on the chosen mobile agent architecture and some of its technical details. A
concise example in Section 4 illustrates the integration of the agent system within the

overall OSM architecture’s mechanisms in a typical scenario. The outlook summarizes
the resulting system and gives a perspective for future research directions.

2 Design choices for agent systems
Mobile agents are alleged to provide suitable techniques for the implementation of
electronic market systems that allow both demanders and suppliers of services and
goods to exchange them freely based on electronic contract settlement and execution
[CGH+95, MRK96]. This application domain determines the requirements which are
imposed on agents.

Definition:

In the following, we define a mobile agent as an encapsulation of code, data, and
execution context that is able to migrate autonomously and purposefully within com-
puter networks during execution.

An agent is able to react sophisticatedly on external events. It may be persistent in the
sense that it can suspend execution and keep local data in stable storage. After resum-
ing activity, an agent's execution is continued — but not necessarily at the same lo-
cation.

Designing agents

In the following, the term persistent execution state — as a postulated basis for mi-
gration technology — means that the agent should comprise a control flow definition
at a coarse level of granularity. This allows not only persistent programming language
systems to be capable of representing mobile agents but also conventional ones, which
may only be able to provide object-level persistency. These objects may control exe-
cution after a migrated agent has been revived at the target host. It must be noted that
this relaxation does not really impose any constraints on the agent functionality since a
reasonable activity usually comprises at least one method invoking — a high level
operation.

The possible spectrum for mobile agent implementations therefore spans:

1. Persistent programming languages such as Smalltalk (with a persistent image),
pJava [Jor96], or Telescript [Whi94]. Here, an abstract machine is used to execute
portable bytecode that may be transferred forth and back within the network. A
fine-grained migration capability is given since the agent may initiate migration at
any point of execution (at the micro-level). However, persistent programming lan-
guages usually require support by databases or object stores, which, in turn, repre-
sent a language-specific environment that is not ubiquitously given on each com-
puter in the network.

2. To factor out control flow definitions, workflow-management systems use petri
nets or finite automatons, etc. (at the macro level). No local processing is done by
the agent, which is, in fact, a data structure that is interpreted by each (local) en-
gine in order to invoke a coarse-grained function at the respective network site.
This approach does not require any sophisticated language support, however, the

main disadvantage lies in the necessity to factor-out any program logic to the sta-
tionary server — even simple arithmetic operations.

3. A well-balanced compromise of the previous two extremes seems to blend the
advantages of mobile code with those of persistent data structures that determine
control flow. In this case, local operations can still be performed efficiently by the
agent code, but migrations will only be possible from distinct migration hooks that
define the next entry point and indicate to the executing engine that a transfer of
the agent is requested.

In contrast to language-level persistence (as given, e.g., in the case of pJava), persis-
tence in Java is currently restricted to selected data objects that are manipulated
through dedicated library functions. For this reason, this approach is called library-
level persistence.

In the following, the third approach will be supported on the basis of Java. As a port-
able interpreted language, Java allows dynamical loading and binding of classes. The
importance of this feature in the agent system environment is derived from the re-
quirement of ad-hoc providing of individual services. Thus, the classes that provide
the server’s functionality can not be expected to be ubiquitous. Rather, they are tai-
lored to the server’s demands. Therefore a way must be found to load classes as they
are needed. In Java, classes that are referenced in an applet are loaded through the
network from the applet’s home site. Applying this to the mobile agent approach
means at least prolonged on-line sessions and successive connection attempts. This
evidently violates some of the basic mobile agent requirements. Other problems
emerging in this context will be explained in the next section. A better solution is to
support the packaging of a set of classes into a common transport vehicle. Here, the
OSM service profile appears as an appropriate persistency mechanism that provides
sufficient flexibility to embed Java classes as well as control flow objects.

Additionally, the following characteristics lead to the choice of Java as the language
environment for the mobile agent system implementation:

• ubiquity of the Java virtual machine and thus supporting environments,

• close integration into the World Wide Web infrastructure,

• sophisticated and standardized supporting libraries.

The following section discusses how mobile agents are represented in OSM, how
migration is effected, and how agents interact with one another. Finally, the overall
agent architecture is sketched.

3 The OSM mobile agent architecture
This section presents the fundamental ideas of a Java-based agent system that has been
devised in the scope the OSM project. Since the profile mechanism as a persistent and
movable storage plays the key role in the implementation a closer look is taken at this
technique first.

3.1 Service profile

The original requirement to the service profile was the ability to describe any services
that can be offered in the electronic market. This comprises the server interface, server
representation to the user (GUI elements) and eventually method invocation sequences
allowed. Since the profile is transferred to and processed at the user’s local computer,
it must be possible to serialize all profile elements. This means that the service profile
in its current state can also be saved on the user’s disk. The session with the server can
therefore be resumed later, probably on another host.

Since it can not be foreseen what elements are needed to describe a specified service
offer, the profile must be general enough to allow new types to be defined. This im-
plies that some meta information must be included in profile as well: for each element
it must be possible to dynamically determine its type and its name. For this, the profile
is structured as follows (see Fig. 1):

• There are three levels that make up the profile:

1. The meta information that describes standardized type constructors. Exam-
ples are OsmInteger, OsmRecord, OsmArray and s.o. These are also called
type objects.

2. The meta information about concrete types e.g. ClassRecord — a record
with two fields: name of type String and ClassDefinition of type Opaque.
The concrete types are created with the help of the type objects. Thus they
are called object types.

3. The actual information. This is constituted from the instances of the object
types. For example, there can be an instance „Agent“ of the type ClassRe-
cord.

• Every instance has a reference to its object type and vice versa. This enables dy-
namic inspection of the profile contents. Also, it promotes the standardization of
some elements other OSM components expect to find in the profile.

• A user is allowed to change the profile content in an individual manner. In the case
of profile serialization, all changes are saved persistently or transferred to another
location within the profile.

ClassRecordOpaque String

IOOIIIOIOIIO
OOIIIOOIIOI
OIIOIIIOOIIOIOOIIIOIOIIO

OOIIIOOIIOI
OIIOIIIOOIIO

“Agent”

“MyClass”

“MyFrame”

IOOIIIOIOIIO
OOIIIOOIIOI
OIIOIIIOOIIOProfile

instances

types

ProfileClassLoaderProfileClassLoader

“other”
“some other element“

Fig. 1: Internal profile structure

It must be noted that a control description can also be embedded in the profile. The
form of the description may be chosen from a wide range of concepts (from a petri net
assuming an evaluator, up to coordinating Java classes) in a flexible way. Thus the
profile can be used not only as a passive service offer specification but also as an
active component in a workflow or mobile agent system as will be described in the
rest of this section.

3.2 Standardization level

The introduction claimed that the usage of the agent system should not require any
special configurations but only ubiquitously available technology (Java virtual ma-
chines are considered as such. Manipulation of the virtual machine to implement an
agent system is not a choice in this paper). However, this cannot be fulfilled in its
entirety since it requires at least some standardized conventions. For the sake of flexi-
bility and autonomy it is desirable to minimize the level of such a standardization.
Especially the classes constituting an agent should not be standardized, since this
would restrict the personalization of an agent and may entail some operational con-
straints on its functionality. This implies that the agent must carry some meta infor-
mation about classes it uses with it. Although it is not advisable to standardize classes
themselves it is still possible to agree on a name of a main class that is used to create
the first object of the agent without a loss of operational autonomy. Names of other
classes whose objects may constitute the agent should not be standardized since it can
not be predicted how many classes can be involved and what semantics is associated
with them.

3.3 Embedding classes

What does this mean for the packaging of classes during agent migration? The sug-
gested general execution sequence for (re-)building an agent is as follows. At the
beginning, a class with a standardized name, say „Agent“, is loaded, and a new in-
stance of this class is instantiated. This instance receives also a reference to the profile
so it can build up itself up to the state it had before migration using other profile ele-
ments. Then the instance’s execution is started as a Java thread and continues until a
„move“ command is to be performed next, transferring the profile to the location
specified as a parameter of the „move“.

As a first idea, it appears reasonable to store Java „Agent“ class bytecode in the pro-
file and to let a Java class loader search for the class in the profile. For it, it is possible
to take advantage of the fact that all profile elements are named. This concerns both
meta information and instances. Assuming there is a standardized type „ClassRecord“
which describes a record with at least one field called „ClassDefinition“, a
„ProfileClassLoader“ can search for an instance called „Agent“. The opaque
„ClassDefinition“ contains the bytecode of the class that will be used to instantiate the
agent’s main object as a first step to revive it.

It is not difficult to generalize this algorithm: every class (say „MyClass“) which is
used in „Agent“ has to be stored as an instance „MyClass“ of the type „ClassRecord“.
This is continued recursively for other classes (e.g. classes used in „MyClass“). The

following code illustrates this algorithm as it is currently found in the implementation
of the profile class loader:
public Class LoadClass(String sClassName) {
...
OsmType ot = profile.getType("ClassRecord");
Enumeration en = ot.enumOverInst();
boolean proceed = true;
OsmInstance oi = null;

while(proceed)
 if(en.hasMoreElements()) {
 oi = (OsmInstance)en.nextElement();
 // the instance must have the same name as the class
 // e.g. sClassName="Agent"
 if((oi.getName()).equals(sClassName))
 proceed = false;
 else
 oi = null;
 } else
 proceed = false;
if(oi == null) {
 throw new ClassNotFoundException("Could not find class" +
sClassName);
}
// get the array of bytes that is the class’s byte code
OsmInstance oioClass = (OsmInstance) (
 (OsmRecordInstance)oi).getElement("ClassDefinition");
byte barClass[] = (byte [])oioClass.getValue();
// define the class
Class clDefinition = defineClass(barClass, 0, barClass.length);
return clDefinition;
...
}

There are several advantages of using this technique:

1. Only the „Agent“ class must be mentioned explicitly while searching for classes.
All other classes are found using the common Java mechanism: the class loader of
the object's class is asked if some type is unknown. This means, the programmer
does not have to worry about class loading provided all classes are stored in profile
under consistent names.

2. Class name conflicts are prevented: suppose, there are two agents that both have
objects of classes with the same name although the classes are different (say
„MyFrame“). Since the Java loading mechanism uses a different loader for each
class applying the wrong class is avoided. Some approaches to implement Java-
based agent systems suggest to find out whether all necessary classes are present at
the remote host before the actual agent is transferred [Kov96]. The question here is
how to cope with the situation where a wrong class with the correct name is found
at the destination. Additionally, this approach requires prolonged online communi-
cation, a fact which contradicts to the agent-oriented paradigms.

Using this profile class loader concept, the general scenario can be refined as follows.
The profile class loader returns the „Agent“ class and the system creates an instance of
the class. The result of the operation is casted to a predefined interface (say

„BaseAgentInterface“) which is indeed a part of a fixed convention. Note however,
that the agent code can still be any class that implements this Java interface. The inter-
face provides a method to revive the agent. This means, all information that is neces-
sary for the agent to restore its old state and to continue execution is passed to it. This
mechanism is described in more detail in the next two subsections.

3.4 Agent migration

The problem of state recovering occurs only in the context of agent migration. Before
an agent is transferred to another location it must be converted into a form that

• is platform independent

• preserves the current agent state

• preserves the agent's integrity

The profile mechanism fulfills all these requirements. Thus, the following agent mi-
gration procedure is supported. During its execution the agent writes all information
that it will need at other locations in its profile. This information will be available after
the transmission has taken place. Since the agent writes the data itself, it knows where
it will find it within the profile afterwards. After the profile has successfully arrived at
the specified new location the local (old) agent thread is terminated. The further exe-
cution will take place at the destination host.

All components involved in agent processing are listed below (see also Fig. 2). These
actually constitute the current OSM agent system.

• The Engine: receives agents, manages them and allows for their communication.
The class Engine must provide a functionality defined by a „BaseEngineInterface“
which is subject to standardization.

• The Assembler: created by the engine on the agent arrival, sets up the agent for
execution.

• The ProfileClassLoader: created by the assembler, locates and loads agent’s
classes.

• The Dispatcher: created by the engine, is responsible for agent splitting.

• The Forwarder: created by the engine or dispatcher in the case the agent wants to
move.

• The Synchronizer: created by the engine, responsible for agent synchronization.

Compared to the „all-in-one-engine“ approach, this structuring avoids bottlenecks and
allows for higher autonomy and security as shown below. The following, more de-
tailed discussion, aims at making the cooperation of these components clearer.

p r o f ile

e n g in e
p r o f i le

a s s e m b le r

d is p a tc h e r

fo r w a r d e r

p r o f i le

a s s e m b le r
p r o f ile

a s s e m b le re n g in e

fo r w a r d e r

e n g in e p r o f i le
p r o f ile

a g e n t

a s s e m b le r

a g e n t

a g e n ta g e n t

a g e n t

c o m m u n ic a te

N E T W O R K

N E T W O R K

p r o f i l e

p r o f i le

p r o f ile

N e w Y o rk

T o k y o

F ra n k fu r t

fo r w a r d e r

Fig. 2: Agent System Components

Bootstrapping

On indication of an incoming agent, the engine creates an assembler object that actu-
ally receives the agent and sets it up. The information passed to the agent by the as-
sembler includes the reference to the engine and to the profile. The corresponding
agent method is called „reviveAgent“ and is part of the
„BaseAgentInterface“. This method is overloaded in a manner that the agent
fetches the information which is relevant to its state from the profile. If the agent
needs some information from the environment (at the new location) it contacts the
engine. The agent presumes that the engine provide certain functionality to access the
environment. Due to this indirection, a better level of security is achieved since the
locally installed engine can be specified, tested and controlled by the local service
provider — who should trust it then without being afraid of direct manipulation of his
environment by incoming agents. At the end of the „reviveAgent“ method, the
agent starts its execution as a Java thread. A „run“ method determines the next activ-
ity to be performed by the agent. The local activity continues until a „move“ method
is invoked. Another way to terminate execution is to call the „destroy“ method
being part of the „BaseAgentInterface“. All resources associated with the agent
and managed by the engine are freed then and the agent's thread is destroyed.

The next paragraphs describe other methods provided by
„BaseAgentInterface“. These constitute the fundamentals for inter-agent con-
currency and communication approaches.

Concurrent agent inter-working

It was claimed above that electronic markets present the domains where agents can be
employed as „value-adders“ by simplifying service access or combining more than
one service automatically within a single task given to them. Additionally, electronic

markets are constituted from naturally concurrent business processes which corre-
spond well to inter-agent concurrency.

In the OSM agent system, inter-agent concurrency is implemented based on the „agent
splitting“ approach. Splitting here means that an agent is cloned several times. How-
ever, local variables of each instance can be overwritten before or after cloning, so
they are not necessarily equal. Thus, depending on these variables, the further execu-
tion may be carried out differently. All instances created differ at least in their identi-
fiers. Also, their destinations can be distinct. These can influence the decision about
the next activity to be performed after transport. If the agent does not supply any
names, the instances are named uniquely by the engine.

A „split“ method passes all necessary information to the engine that actually initi-
ates the splitting process: The engine creates a dispatcher object which manages the
further splitting. For the actual transfer, a forwarder is employed. Figure 2 illustrates
this sequence. The receiving engine does not distinguish between the original agent
and the clones.

Often, some or all of the created subagents need to be synchronized in order to ex-
change information collected. For it, it is necessary to make an agent wait for another
one. This can be another subagent created by an earlier split or it can be a completely
different agent. In any case, the agent must be able to identify the other agent it is
waiting for. In the OSM agent system, the agent's unique identifier is currently used
for this. Since it may not be desirable that the agent is able to access the information
about what agents are present at the local host, the synchronization is carried out indi-
rectly by a synchronizer object. For this, the agent invokes a
„synchronizeAgents“ method being part of the „BaseEngine-Interface“
again. Then it suspends itself.

The engine creates a synchronizer object and passes to it information about which
agent is waiting, which agent is being expected to arrive and information about all
agents at this location. If agents being expected have not arrived yet, the synchronizer
periodically fetches information about present agents from the engine. As soon as the
agent awaited arrives or after a specified timeout the synchronizer wakes up the wait-
ing agent. It is anticipated that the agents synchronize themselves in order to exchange
some data. This means, after the synchronization, agents will probably set up commu-
nication with each other.

Inter-Agent Communication

Since it can not be predicted what information should be exchanged by the agents, it is
desirable to develop a very generic communication technique. A first idea is to require
a reference to the communication partner from the engine and then to cast the refer-
ence from the „BaseAgentInterface“ to the actual agent type. This approach supposes
that the communication entities are informed about the implementation details of each
other. This is not too unrealistic, especially in the case of formerly splitted agents.
However, the current serialization package implementation does not allow such refer-
ences to be casted to the agent's actual type although the types are equal. Thus, in the
current agent system implementation, a less elegant but generic approach is utilized. A
method „communicate“ (with a parameter of type „Object“) is provided by the

„BaseAgentInterface“. It should be noted, that the agent communication does not
involve third instances like the engine. Therefore it can be kept confidential and be
considered as a secure channel. As a part of the given object parameter, credentials
could be passed that authorize and authenticate one agent to the other.

This subsection closes the discussion about the OSM agent system functionality. As it
is stated above, agents present a technique that seamlessly fit into electronic market
technologies. This is illustrated by the example in the next section showing where the
other concepts of the OSM environment may support the use of agent.

4 An information retrieval scenario
For now, the usual way to find some information, e.g., about stone-age wooden-made
tools is by asking a user’s favorite search engine. The OSM infrastructure could in-
stead offer a catalogue of specialized agents. The choice of the agent that seems to be
most appropriate is done with the generic client which may also be used to parame-
terize the agent by the contents of the user’s request. The agent’s own program analy-
ses the request and determines that at least two different areas of interest are involved.
Therefore it splits itself and one of the clones migrates to a site containing a historical
database in New York and the other visits a technical library in Tokyo (see also Figure
2). After arrival, these agents contact the sites’ local resources and retrieve informa-
tion they are interested in. This process also involves the OSM payment supporting
services since the information resources might be offered commercially. This in turn
includes the OSM security features to keep the information delivered confidential.
Since the historical database is a rather large one, the first agent may like to send some
intermediate results to Tokyo where the information is merged with those retrieved by
the second agent. This transfer could be done by a different agent (say an information
messenger). Finally the Tokyo agent goes back to the user’s home at Frankfurt and
reports its result to the user.

5 Conclusion and outlook
This paper gave a view of the motivation for Java-based mobile agent systems and
some important implementation aspects. It was shown how agent persistence, migra-
tion, synchronization, and communication have been integrated into an electronic
market architecture.

The most important features of the OSM mobile agent system can be summarized as
follows. A minimal standardization level is given that does not hinder the customer in
highly individualized application development. Also class naming autonomy is guar-
anteed for agents. By encapsulating its own classes, the agent is able to warrant a
certain level of security.

This contribution emphasized the question of agent persistency and interaction. Fur-
ther aspects, such as the authentication infrastructure, payment aspects, or agent-based
negotiation support are addressed by the OSM architecture, but not discussed in detail.
On the other hand, the question of agent programming tools still remains open: In the
current version, an agent is programmed manually — including design and manipula-

tion of the control flow. One of the next tasks is thus to ease the work of the pro-
grammer on control flow specification by applying special software tools. These tools
will then be a part of the overall OSM agent development environment.

6 References

[CFF+92] H. Chalupsky, T. Finin, R. Fritzson, D. McKay, S. Shapiro, G. Wiederhold:
"An overview of KQML: A knowledge query and manipulation language".
Technical Report, April 1992

[CGH+95] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Paris, G. Tsudik: "Itinerant
Agents for Mobile Computing". IBM Research Report RC 20010

[Jor96] Jordan, M.: „Early Experiences with Persistent Java“. In Proc. of the first In-
ternational Workshop on Persistence and Java, University of Glasgow, 1996

[Kov96] E. Kovács: Advanced Trading Service Through Mobile Agents. In: Proc.
Trends in Distributed Systems ‘96, Aachen 1996, pp. 112-124

[MRK96] T. Magedanz, K. Rothermel, S. Kruse: "Intelligent Agents: an Emerging
Technology for Next Generation Telecommunications?". In: Proc. IEEE IN-
FOCOM, San Francisco, USA, März 1996

[Mer96] M. Merz: "Elektronische Dienstemärkte - Modelle und Mechanismen zur
Unterstützung von Handelstransaktionen in offen verteilten Systemen". Diss.,
Universität Hamburg, November 1996

[MML94] M. Merz, K. Müller-Jones, W. Lamersdorf: „Service Trading and Mediation
in Distributed Computing Systems". In: L. Svobodova, Ed., Proc. 14th 'Inter-
national Conference on Distributed Computing Systems', Poznan, Poland,
IEEE Computer Society Press, 1994, S. 450-457

[MML96] M. Merz, K. Müller-Jones, W. Lamersdorf: „Agents, services, and electronic
markets — how do they integrate?“. In: A. Schill, O. Spaniol, Ed., Proc. In-
ternational Conference on Distributed Platforms ICDP ‘96, Feb. 1996

[MTL96] M. Merz, T. Tu, W. Lamersdorf: „Dynamic Support Service Selection for
Business Transactions in Electronic Service Markets". In: Proc. Intl. Workhop
on Trends in Distributed Systems, Aachen 1996, Springer, Berlin, Heidelberg
New York 1996, pp. 183-195

[Schm93] B. Schmid: "Electronic Markets". In: Wirtschaftsinformatik, 35 (1993) 5, S.
465-480.

[Whi94] J.E. White: „Telescript Technology: The Foundation for the Electronic Mar-
ketplace“. White Paper, General Magic, Inc., 1994

