
Electronic Contract Negotiation as an Application Niche for Mobile Agents1

Frank Griffel, M. Tuan Tu, Malte Münke,
Michael Merz, Winfried Lamersdorf

Miguel Mira da Silva

University of Hamburg University of Évora
{griffel,tu,muenke,merz,lamersd}@informatik.uni-hamburg.de mms@dmat.uevora.pt

1 Appeared in: Proc. EDOC - International IEEE Workshop on Enterprise Distributed Object Computing, Surfer’s Paradise, Australia, Oct. 1997

Abstract
In this paper we propose electronic contract

negotiation — a sub-part of the more general area of
electronic commerce — as an example application for
mobile agents. We start by presenting a set of
requirements that an application should fulfill in order to
take advantage of mobile agents and show that not all
distributed applications meet these requirements. We then
present contract negotiation, an example of an
application that can potentially take full advantage of
mobile agents. The paper also contains an introduction to
a mobile agent system being developed at Hamburg
University and show how it can be used to implement
contract negotiation.

1. Introduction

The mobile agent (MA) paradigm has been gaining
increasing attraction for the past 4 years. Its
anthropomorphic idea is appealing to designers of
distributed software systems: software programs that are
able to migrate autonomously across the network during
execution and to communicate with other agents and their
hosts so that they can fulfill tasks on behalf of their
principals.

Despite all this interest and consequent research
efforts which even have produced some commercial
products, there is a constant lack of applications for these
mobile agents. One reason is that agents appear in a very
competitive market: there are many other existing and
proved mechanisms for cooperation and coordination in
distributed systems, such as message passing, remote
procedure call, code on demand [3], tuple spaces [22], or
remote execution (e.g. stored procedures).

In fact, mobile agents have not gained any significant
share of today’s middleware market for developing
distributed applications yet and before we really start the

paper, it is interesting to analyze their main weaknesses
and compare these with other (existing) technologies:

Mobile agent technology is not mature enough. There
are several open issues that have not been addressed
sufficiently yet. Examples include security, termination,
persistence, or how to tackle network (remote) references.
Although several MA systems that have been
implemented by the research community and some
commercial products are now available, e.g. Voyager [24]
or Telescript [13], these issues still need more
investigation. Furthermore, activities of standardization
consortia such as the OMG have resulted in work on
facilities for mobile agent systems [25]. So, instead of
solving the problem ourselves in this paper — for some
hints to our own approach see section 5 though —, we just
assume that agent technology will eventually mature and
converge to a standard model (as happened to RPC within
the CORBA context).

Mobile agents require a large effort to be integrated
into legacy applications. The execution environment for
mobile agents may require additional setup effort in order
to prepare the local computing environment to participate
as a host for mobile agents. For example, an engine needs
to be installed and local applications need to be
“wrapped” such that they can be accessed by visiting
agents and exchange data with them. However, an engine
may be installed at run-time if it is required, by using Java
as the programming environment (except for a
bootstrapping kernel). When interfaces between mobile
agents and local applications finally become a standard,
this adaptation effort will probably be much reduced.

Application domains where mobile agents will succeed
have not been identified. The existing communication
and cooperation techniques are already suitable for most
distributed application areas. In this context, the MA

technology has to prove higher efficiency or lower costs,
something that somehow justifies the setup costs of
deploying an MA environment.

The first issue will probably be solved by itself as
research goes on and commercial products are refined.
Regarding the second issue and assuming Java as the
programming environment, it will also become more and
more irrelevant as Java and its associated libraries (RMI,
JDBC, etc.) become ubiquitous. In this paper we will then
concentrate on the third issue and, in particular, identify a
setting of technological and economic parameters under
which an ‘economical niche’ exists for mobile agents.

The rest of this paper is organized as follows. The
next section presents an overview of mobile agents to
emphasize issues that are important for this paper. Section
3 proposes a number of requirements for applications that
can benefit from mobile agents and explains why not all
distributed applications are suitable for mobile agents.
Electronic contract negotiation, the example application,
is then described in section 4, together with a description
how agents can be used in this context. In section 5 we
give a brief overview of the OSM agent system, an
architecture that is being built at Hamburg University to
support mobile agents and applications based on them.
Finally, in section 6 we show features of these agents
being used as ”active contracts“ to support a contracting
process. The paper concludes with an outlook on our
future work in section 7.

2. An overview of mobile agents

We define a mobile agent as an encapsulation of
code, data, and execution context that is able to migrate
autonomously and purposefully within computer networks
during execution.

An agent is able to react sophisticatedly on external
events. It may be persistent in the sense that it can suspend
execution and keep local data in stable storage. After
resuming activity, an agent's execution is continued — but
not necessarily at the same location.

Mobile agents are alleged to provide suitable
techniques for the implementation of electronic market
systems [5,9]. These systems allow both demanders and
suppliers of services and goods to exchange them freely
based on electronic contract settlement and execution. In
this paper we will use this application domain to
determine the minimum set of facilities required from the
mobile agent system.

2.1. Execution state

In the following, the term persistent execution state
— as a postulated basis for migration technology —

means that the agent should comprise a control flow
definition at a coarse level of granularity. This allows not
only persistent programming languages like Napier88 [26]
and PJava [1] to be capable of representing mobile agents
but also conventional systems like plain Java which may
be able to provide only object-level persistency.

The main difference between these approaches is a
matter of granularity at that an execution may be
interrupted, migrated, revived and continued. An object-
level persistency allows for choosing individual methods
of an object as a control hook (continuation points after
the object has been revived). This kind of ”persistency“
can be achieved right out-of-the-box by usual serialization
techniques (like those offered by Java [27]) avoiding
additional tools and proprietary environments.

On the other hand, truely persistent languages allow
for more fine-grained execution hooks, even within
individual methods. Having individual object persistence
at a micro-level may not be enough to save the whole
execution extent of an object system.

Here, we argue that the limitation to an object level
does not really impose any constraints on the agent
functionality since a reasonable activity usually comprises
at least one method invocation — a high-level operation.
Also, we like to avoid complex infrastructures like
complete object stores — having in mind the potential
”Internet consumer“ sitting in front of her favorite
browser doing home shopping.

On the other hand, recognizing the need for saving
relationships between objects — especially in the case
where a mobile agent’s internal structure and/or the data it
carries have to be quite complex — we will propose a
lightweight solution to this problem by introducing the
OSM profile in section 5.1.

For now, the conclusion from this seems to be a
broad possible spectrum for mobile agent implementations
spanning the two extremes:

• Agents as first-class values in persistent
programming languages [17]

• Agents as data objects in traditional languages
(including Java) [5, 24, 37].

The latter approach has a certain similarity to
‘programming by composition’. For example, to factor out
control flow definitions, workflow-management systems
use petri nets or finite automata, etc. (at the macro level).
The so-called “agent” is actually just a data structure that
is interpreted by each (local) engine in order to invoke a
coarse-grained function at the respective network site.
This approach does not require any sophisticated language
support, however, the main disadvantage lies in the
necessity to factor-out any program logic to the stationary
server — even simple arithmetic operations.

A well-balanced compromise of the previous two
extremes would blend the advantages of mobile code with
those of persistent data structures that determine control
flow. In this case, local operations can still be performed
efficiently by the agent code, but migrations will only be
possible from distinct migration hooks that define the next
entry point and indicate to the executing engine that a
transfer of the agent is requested.

2.2. Examples of mobile agents

Having such a large design space for MA systems, it
is interesting to take a brief look at some existing
architectures. This is by no means a full review but should
rather give the reader some hints for further reading.

One of the first Java based MA systems widely used
by many researchers now is the MOLE architecture [27].
One of its main disadvantages is the inability to transfer
executable code within exchanged messages but using
special ”code servers“ instead. Besides adding another
infrastructural component, this requires additional
communication.

Of course Telescript, the very early commercial
approach to MA systems, still influences emerging
architectures. One interesting, often missed point is the
fact that it actually does not move code but only execution
state, assuming the code which this state belongs to is
right in place.

Another interesting architecture is the Ara platform
[29] offering a fine-grained view on execution flows. The
developers promise the ability to migrate at any point
within the execution, actually resulting in migrating
processes. Since a further goal is the use of different
programming languages with this system, the resulting
object extent that have to be moved may get quite large
raising communication costs.

The IBM Aglets [5] system also is a quite famous
MA system now. There are some severe restrictions of
this Java based architecture regarding the feasibility of
message passing and collaboration. Aglets only allow
sending string encoded messages to stationary agents at
formerly known URLs. Also, one cannot move regular
Java objects with this system.

A relative new approach can be found with
Objectspace’s Voyager that promises to overcome some
restrictions of other known systems. Besides addressing
some problems of traditional distributed object
programming (e.g. garbage collection, mobility,
replication), this system aims at supporting mobile agents
using Java again. Especially, the messaging system is very
flexible, offering oneway, synchronous and future
semantics. The coupling between regular objects and
agents and their communication possibilities is very tight,
but the persistency problem is not really covered. Voyager

does not comprise a complete agent infrastruture but
rather offers the building blocks to develop a such one.

Pjava [1] naturally has drawn attention to it as a
potential basis for building MA systems. But it has to
prove its suitability yet, especially, one has to take a close
look at its persistency model. For now, no agent system
based on it seems to exist.

Finally, there is our own mobile agent system,
described in some detail in section 5.

2.3. Application domains for mobile agents

Many suggestions of potential application domains
for MAs emerged from the research community as well as
from industry. Our point is that although most (or all) of
them are perfectly realizable by exploiting today’s
technology, doing so is not very meaningful in every case
or could be done with traditional techniques.

Suggested areas for MA usage comprise network and
configuration management as well as information retrieval
or quality of service analysis and assurance. Further fields
are controlling manufacturing processes, supporting
multimedia, or overcoming heterogeneity.

In the next section, we try to identify some
measurable aspects that may allow for better estimation of
mobile agents’ suitability in such application domains.

3. When to use mobile agents

In this section, we will identify several factors that
influence the applicability of certain technologies on
building distributed applications. Of special interest is the
use of mobile agent technology in an electronic commerce
context [10,18].

3.1. Requirements

This list of factors is neither exhaustive nor does it
provide an exact quantitative means to formalize a utility
measure for mobile agents. The resulting multi-
dimensional space is just used to seek an area where MA
appear as the most suitable technology.

Communication and bandwidth costs. We have always
assumed that our agents will “roam the Internet” but
Internet access is possible through several channels today.
Some users will use a modem dial-in at zero telephone
costs and at a flat rate of ca. 20,-- USD. This mode allows
communication at a fraction of a cent per minute. On the
other hand, communication costs increase when access
takes place through cellular phone networks such as the
GSM protocol for mobile phones in Europe. Here, tariffs
vary between 0.05 USD and 1 USD per minute,

depending on the different price policies. At the extreme
position, a satellite-based system such as Iridium [30] may
be considered, where one can expect per-minute costs of
up to 3,-- USD.

Proportionally inverse to the per-minute costs is
usually the available bandwidth for data communication.
For example, an ISDN line allows for bi-directional
communication at 64 kbit/s. GSM supports 9.6 kbit/s and
in the case of Iridium a throughput of 2.4 kbit/s is most
likely.

Therefore, the cost per kilobyte/s seems to be a
suitable cost measure for this consideration. In table 1 we
show the broad range of communication costs depending
on the underlying technology. We assumed an average
agent size of 100 Kb, including code, data, execution
state, and serialization overhead).

Technology Bandwidth (kb/s) Cost per 100Kb ($)
ISDN 64 0.01 - 0.05 (15 sec)
GSM 9.6 0.08 - 1.6 (1.6min)
Satellite 2.4 21 (7 min)

Tab. 1: Range of communication costs

Although communication tariffs vary between countries
and providers, this comparison provides a survey of the
possible cost spectrum. It further considers the net transfer
time of the agent, not idle time without data transmission.

Agent size. The size of the migrating agent strongly
influences communication costs. Therefore, its size should
be reduced as far as possible but without compromising
too much the local processing time, storage space and
other costs. We can distinguish between two factors that
influence the agent size: the complexity of the carried
agent application code and the underlying MA
technology.

If the agent requires a huge amount of program code,
even the “best” MA technology won’t be able to effect a
significant reduction in code size compared with the
others. (The same is true for normal applications.)
However, taken an application with a small share of code,
MA technologies significantly vary in the size of
externalized data objects. If the MA platform uses a
commercially available object database system such as
ObjectStore [31] then the overhead will be tremendous
since the physical layout of object stores is optimized for
rapid disk access and an efficient mapping to the physical
disk. This may lead to a store size of several hundred
kilobytes although no application data has been stored yet.
For example, an “empty” Napier88 store has been 15 MB
in size but in Pjava it is now 500 KB. As an additional
factor, pre-allocated index tables can further increase the
size.

Object serialization [27] marks the opposite end of
the spectrum: an object structure that has been
externalized to a standard representation usually reduces
the overhead to 10-50% even when accompanied by a
lightweight meta-information container like the profile
presented in section 5.1. It is important to note that one
cannot dispense with this additional information if
consistent inter-object relations have to be guaranteed
after remote revival. Therefore, there are no further
savings regarding the overhead are possible if we want a
full-featured MA system. For example, the minimum
agent size that could be achieved with OSM agents at
Hamburg University is 20 KB taking notice of the
movement of all Java application classes — no code
(despite the agents’ engine) is therefore presumed at the
remote target. A compression may further reduce this to 8
KB. Therefore, the range in size of an agent typically
extends from 8 KB to several 100 KB.

Concerning agent technology, we also have many
choices. For example, we can transmit plain byte-code or
compressed byte-code as the Java JAR technology does.
We can transmit machine code if the architectures are the
same on the source and target machines [7]. We can even
transmit part of the agent or none at all (just a reference
possibly as small as a byte) if its code was already copied
in a previous migration, or we can use “migration by
substitution” [16,17] if the agent uses standard libraries or
previously copied pieces of code and other constant data.

There are also many intermediate schemes between
transmitting the entire transitive closure (as we propose)
and executing the agent on the source machine as Kato
[32] proposes, either specified by the application
programmer or done automatically by the system [17].
However, it should be clear that all these compromises
increase the computational complexity, CPU and space
costs, or both.

Number of hosts involved. In this paper we roughly
distinguish between N = 2 and N >= 2, where N is the
number of machines involved. In the case of exactly two
parties the agent doesn’t need to maintain a node list since
it just migrates to the “other host”. In the second case the
agent system needs a certain logic that determines the next
target for migration. This address may be part of the agent
code or obtained during execution.

The case in which N = 2 can therefore be subsumed
under the category of remote execution. Since in this case
the only (one) continuation hook is known formerly, there
is no need to distinguish a choice of entry points.
Therefore, the N = 2 case mainly resembles the situation
conventionally found in remote method call scenarios:
The one transition in execution triggered by moving to the
other host could be just a remote call to that exact host.

Mobile agents are thus much more useful in
situations where communications between N > 2 partners
are required to be coupled only in an indirect way
(stipulated by ad-hoc decisions, set-up costs or
organizational policies, for example) not allowing for
calling each other directly.

Value of the commercial transaction. Generally
speaking, a higher transaction volume allows for higher
transaction costs: in the case of ‘micro-transactions’ we
assume a transaction volume of up to 5 USD. Under this
assumption, transaction costs (i.e., costs that arise from
the execution of a transaction, not from the product price
itself) are tolerable when they remain significantly less
than 10% of the transaction volume. Therefore,
synchronous communications that require several minutes
to complete a commercial transaction turn out to be
commercially unfeasible. MAs, however, help to reduce
these costs significantly since communication links are
established only for the asynchronous agent transfer.
But even if we assume four transfers of agents that weigh
100 KB between business partners, communication costs
of up to 1,6 USD drive the transaction value up to at least
16 USD.
This implies that an MA infrastructure may only be used
either in the context of inexpensive broadband access or
in mobile communication environments for high-volume
transactions. For the first case, we stated that low
communication costs also allow for synchronous or non-
agent-based communication with out significantly higher
costs. However, in the second case of higher transaction
volumes MAs appear beneficial due to their better
bandwidth utilization.

Relaxation of ACID properties. Distributed transaction
support can be used to enforce consistency in order to
assure the ACID properties (Atomicity, Consistency,
Isolation, Durability) for all peers involved [33].
However, this semantics is acquired at the costs of
communication overhead and reduced efficiency: the
underlying transaction protocol requires a tremendous
number of message exchanges if each agent transfer is to
be secured under a transaction. For example, the 2-phase-
commit protocol requires an overhead of at least 2*N
messages for each application message that is sent to N
nodes.

But it does not have to be like that. The overhead
may be reduced for the application field of
asynchronously migrating agents [34], yet it appears as a
realistic estimation that transactions will duplicate or
triplicate the number of messages required.

As a conclusion, applications that are recoverable
without transaction support appear to fit better to the MA
approach — as to any other distribution technology —

due to the reduction of communication costs. Despite this,
considering splitable and joinable agents like those
presented in section 5.4, at least some of the advantages of
transactional behaviour may be utilized, e.g. the
assumption that some action irrevocably took place (see
also section 6).

Agent execution environment. In order to allow arbitrary
partners to cooperate by using mobile agents, the setup
cost of the required execution needs to be minimal and, if
possible, none at all. Systems such as Telescript or other
systems that depend on proprietary technology require
particular knowledge and effort for setting up a local
environment (an engine). Ideally, the agent environment
should be loaded on demand and use a programming
system that is supported by every computer or at least
easy to acquire and install.

Today, Java seems to be the most available and
appropriate language to match this requirement. So we
propose that an agent system intending to be used in real
application contexts should be built on top of standard
Java and its standard libraries (such as object serialization,
RMI and JDBC) or at least equally ubiquitiously available
software.

Level of autonomy. The literature on mobile agents often
introduces autonomy as one of the indispensable features
of mobile agents. However, if one argues in the context of
a requirement definition, it should be phrased slightly
different: if the application context required control
activities between principal and agent, other
communication paradigms may suit better. Tasks that can
be accomplished by an isolated agent and the logic of its
code appear as the domain for mobile agent applications.

Two different levels of autonomy should be
distinguished. Firstly, the level of communication
autonomy which concerns inter-agent communication,
migration, and application access. Secondly, decision
autonomy concerning the communication results. The
second case implies knowledge of agents concerning the
universe of discourse. This autonomy, however, falls into
the domain of intelligent agents and is not further
investigated in this paper although there is some ongoing
research at Hamburg University’s distributed systems
group concerning ”intelligently“ negotiating agents.

Level of repetition. A tight coupling between two
business partners justifies higher setup costs for the
communication software. If, however, sporadic
cooperation prevails, these setup costs may prevent any
cooperation from taking place.

Mobile agents allow to ship the required application
code to each respective network node. This makes the
mobile agent approach more suitable for sporadic

cooperation between distributed software applications.

Summary. Taking these factors into consideration shows
that mobile agents are suitable for applications under the
following conditions:

• High costs of bandwidth
• Small agent size
• Communication between many partners
• Medium to high transaction volumes
• Non-transactional communication support
• Ubiquitous execution environments
• High level of autonomy
• Sporadic communication

Obviously, the problem is to find applications that
fulfill as many of these requirements as possible! In the
next section we attempt to fill that gap by proposing
contract negotiation as one such application. But prior to
that, let us explain better why past attempts of using
mobile agents have failed.

3.2. Design issues

Several example application areas have been
proposed for the utilization of the mobile agent paradigm
[8,9,35,36,37]. However, they still need to be validated
against the requirements listed above. Approaches that
raise the communication overhead also raise costs at the
same time, so that the benefit of mobile agents compared
to traditional approaches diminishes. Respectively, each
measure that reduces bandwidth utilization should be
evaluated in the light of these considerations.

In the mobile agent research field, efforts are now
being spent on the fields enumerated below.

Management issues. Controlling remote software
applications is already difficult, but controlling agents
raises many new issues which in turn require additional
communication overhead. For example, tracing the current
location usually leads to a message exchange between the
monitoring node and the current or past agent host. If this
communication is considered as indispensable, then the
designer may simply replace agents with an RPC
mechanism or stored procedures. The benefit of mobile
agents is reduced even further if active control is required
for agent management.

External termination of agents. Sometimes an agent has
to be stopped and terminated by a managing application
that resides on a different host. This requirement first
implies information about the agent’s current location,
secondly, it assumes that the agent’s autonomy can be
overridden by the principal’s control. However, if the
agent’s task is characterized as too complex to be tackled

by the agent software itself (e.g. if a certain level of
autonomy is not given) — the mobile agent approach
shouldn’t be chosen, since one of the strengths of the MA
approach is the ability to act on behalf of a principal
which should include a meaningful termination behavior.

Security issues. Security has several flavors in the MA
field. For example, agents can be authenticated when
arriving at a place, the local engine may prove its
benevolence through certificates, data may need to be
encrypted on both sides, and inter-agent communication
could be additionally secured against repudiation.

However, research efforts are still required in order
to maintain privacy, authenticity, and non-repudiation. As
an example, it is currently very difficult to avoid that an
agent’s privacy be assured against a hostile execution
environment.

 The more security support is enhanced, the more
communication overhead has to be considered. Therefore,
setting up an organizational or social environment for
mutual trust seems to be more adequate than driving
“security overhead” to the limits [38]. However, this
should be understood as another niche definition: if the
application requires a certain security level, mobile agents
should not be used!

Payment methods. Finally, electronic commerce
applications may require payment activities between
agents. The need for payments indicates that agent
communication takes place between organizations and
possibly between business partners from different
domains of trust. Taking that into consideration, if cash is
used for sporadic commercial transactions the problem
gets much worse if electronic coins can be accessed by
hostile engines or agents.

On the other hand, if authorization is required from
the paying agent, the communication overhead may again
counteract the benefits of using mobile agents. Similar to
the security question, designers of a mobile agent system
should address this problem at the organizational level
and not by technical issues alone.

Summary. As a conclusion, we could say that the design
of a mobile agent system requires a very sensible and
integrative consideration of organizational and technical
solutions. Some researchers recommend means of social
control [38] that help to punish the villains and to approve
fair players among the agent society. In fact, a well-
balanced combination of both aspects — technical and
social — seems to be most promising.

3.3. A niche?

After evaluating the design space and illustrating
some of the potential problems of „over-designing“
mobile agent systems, now the question occurs: What
could be the niche for the mobile agent approach?

Generally, the MA paradigm is appropriate for all
applications that coordinate sporadically established
mobile user groups through asynchronous communication.
For example, several games only need to pass control
between human players and do not need to transfer
extensive program logic and application data. Each player
pays for the individual transfer of control by establishing a
communication link for the transfer of an agent.

Another application field is the negotiation of
contracts among business transaction participants: Here, a
consortium is established that consists of individual
participants who intend to agree on an electronic contract.
This application scenario will be illustrated in the next
section.

4. Electronic contract negotiation

Electronic contract negotiation falls in the much
more general area of electronic commerce, which is itself
an on-line version of business transactions either between
companies or between a company and the general public.

Example of a contract. A South American company
delivers coffee to a German importer. A French exporter
delivers TV sets to the coffee supplier and the German
company pays to the French one a certain amount of
money. Such barter activities occur in international trade.
The co-operation of multiple participants entails a chain
of steps to settle a contract between them.

4.1. Business transactions

The subject of a business transaction is the exchange
of goods or services between the parties involved. This
could be a purchase where money is exchanged for a
good. Generally, transactions may involve the exchange of
money, services, or goods in any combination. The
contracting parties may also exchange these goods in
arbitrary order such that complex processes occur.

In general, a business transaction consists of three
main phases (see figure 1).
1. in the information phase partners examine other

participants’ profiles or product offers, after which
they either decide to:

• give up (maybe to move on to another seller) or
• negotiate the transaction;

2. during the negotiation phase certain properties of a
service/product description are adjusted, and the
outcome of this phase may either be:

• the abortion of negotiation (end of transaction) or
• an agreement; and finally after signing the

agreement;

3. the execution phase is entered.

Product
Catalogue

Information Negotiation Service Execution

Range of
Policies,
Options

Fig 1.: The three typical phases in a business
transaction.

4.2. An application for contract negotiation

An application for electronic contract negotiation is
designed to support contracting parties in negotiating
contracts.

Contracts as mobile objects. In this kind of application,
a contract represents a data object that is accessed by the
negotiating partners. During the negotiation phase, the
contract data object circulates between the participants.
Traditional concurrency control mechanisms coordinate
accesses to the contract such that its consistency is
preserved.

After receiving the contract, each party has the
opportunity to change clauses or insert additional ones. A
contract clause contains a number of standard
informations:

• specifying the price of an offered service;
• describing the order of service exchanges between

the partners; and
• defining the support services that are to be used by

all transaction parties.

As an alternative, the contract could be stored at one
host and be updated by any partners using distributed
mechanisms such as RPC or Web technology. However,
this centralized approach does not correspond to the
whole idea of workflow that is fundamental to the contract
negotiation, in which partners actually “own” the contract
and explicitly send it to the other partners for review. A
contract carrying agent can have a clear responsibilty and
role for dealing with the contract while even avoiding
explicit locking mechanisms.

Services to support negotiation. Support services [11]
can be generally classified by the functions they supply.
Some of these functions (payment and notary) have been
involved in the scenario sketched in Figure 2.

Other services may be distinguished as
complementary functions such as quality assertion
services, which certify a distinct quality of service
property to the client, or protocol validation services,
which allow to restrict both client and server to a calling
sequence (or life-cycle) originally specified by the server
as a part of an augmented service description.

Support Service Layer

Contract Access Layer

Contract Service Layer

CUI

Coffee
Exporter

Contract

PaymentPaymentNotary

TV-Sales Application

Market Participants
GSM

Network

Coffee
Importer

Internet

Fig 2.: Support services for contract negotiation

Many more support services may emerge that cannot
be covered at design time by an electronic market system
architecture. Therefore, a flexible naming schema and
access method are required that allow for the registration
of newly introduced support service classes at run-time
[19].

The problem remains how to define the interface to
each service so that an application that was not designed
to use it can make use of it now that it is available.

4.3. An application niche for mobile agents

To illustrate the usefulness and applicability of MAs
for contract negotiation, we take a more detailed look on
how the scenario outlined at the beginning of this section
may be supported by a mobile agent.

The South Amercian company wants to sell coffee,
so they set up an agent giving him an initial contract
template including offered quantities and indicate a barter
deal by requesting to be refunded with color TV sets. This
agent may then visit some online-marketplaces in search
for coffee demanders, finding ultimately the German
company.

The Germans indeed show their interest by extending
the contract saying they like to have some coffee and are
prepared to pay a lot money for it. For manipulating the
contract’s contents mechanisms offered by the agent are
used ensuring consistent use and interpretation of
negotiated issues. In this way, no concurrency problems
accessing the contract can occur.

As a matter of the level of autonomy allowed — as
part of the South American company’s policies — the
agent may deny the money offer and insist on delivering
TVs by making a local decision or returning to South
America where the contract’s current state may result in
the same decision (and the agent is again returned to
Germany).

Since the Germans really like coffee, they think of
ways to establish the contract. Therefore, they may tell the
agent to visit some marketplace again in search for
someone offering TVs for money. Now the agent finds the
French company, shows her the current contract and asks
if they like to participate. The French company’s interest
in the deal results in splitting the agent (see also section
5.3.) and sending the agents to Germany and South
America respectively to signal its participation.

Both companies denote the expected buying and
selling values (represented by money or TV sets) in their
respective agents (remember the split!). Concurrency
problems resulting from this shared editing of the contract
may be avoided in two ways. First, the agent’s protocol
(see also section 6) could assure only different contract
parts, i.e. those that are their ”own“, be edited by different
participants. Second, a unification process [15] could be
initiated when the agents join again — they do this by
returning to the French company having a complete
contract afterwards.

Alternative to participating the French company as an
additional prime-contractor in the ongoing negotiation, the
German company could also try to establish a sub-
contract with it, hiding the existence of the coffee
provider and eventually profiting more from the deal.
However, such a strategy must be sophisticated enough to
ensure both „halves of the deal“ and therefore has in
principle a lower probability of success.

The last step of the whole business transaction is the
settlement of the agreed contract. This could be supported
by using the agent (still carrying the contract) as a
controlling entity to a workflow system assuring the
correct order of deliveries and refunding. There is a strong
relationship between negotiation protocols, negotiation
strategies and workflow descriptions that has to be
explored further by ongoing research.

Despite a lot of missing details the above scenario
should illustrate the principal ideas and some of the
resulting requirements to a supporting architecture
allowing for the application niche of electronic contract
negotiation.

This niche exists since a (medium sized) company
like the South American in the above example may only
have access to low bandwidth communication lines. Thus,
they cannot afford a full-time presence in the Internet.
Also, the French company may offer such TVs only once
(or sporadically) since it was a clearance sale. Therefore,
it is not profitable to keep up an established
communication infrastructure needing it just once.

Mobile agents seem to fit ideally into scenarios with
such preconditions — which are not too unrealistic
noticing that thousands of (even the smallest) companies
will like to participate in the emerging global electronic
market.

5. OSM: An implementation of mobile agents

In order to be able to experiment with the ideas
described above, we have implemented a prototype of a
mobile agent system based on Java that has been devised
in the scope the OSM project at Hamburg University [20].

5.1. Service profile

The mobile agent system is based on a mechanism
called service profile that is both a persistent and movable
data object where the data may consist of code and some
meta-information. The original requirement to the service
profile was the ability to describe any service that can be
offered in the electronic market. Each service profile
comprises:

• the server interface specification to allow for
remote access;

• service representation to the user, that is, GUI
elements (leading to self-presenting profiles); and

• a specification of the valid method invocation
sequences allows for checking (semantically)
correct usage.

Since the profile is transferred to and processed at
the user’s local computer, it must be possible to serialize
all profile elements. This means that the service profile in
its current state can also be made persistent. The session
with the server can therefore be resumed later, probably
on a different host.

It must be noted that a control description can also be
embedded in the profile. The form of the description may
be chosen from a wide range of concepts (from a petri net
assuming an evaluator up to coordinating Java classes) in
a flexible way. Thus the profile can be used not only as a

passive service offer specification but also as an active
component in a workflow or mobile agent system, as will
be described in the rest of this section.

5.2. Embedding agents

Although we have stressed the importance to use as
many ubiquitous building blocks as possible for a widely
usable MA system, this requirement cannot be fulfilled
entirely since there has to be at least a certain level of
standardized conventions. Nonetheless, for the sake of
flexibility and autonomy, such conventions should be
minimized as much as possible. Especially, a programmer
of an agent should be free using any (Java) classes he
wants for constituting the agent. Otherwise, the agent’s
personalization may be restricted or it may suffer from
some functional constraints.

The OSM profile outlined above allows an agent to
carry some meta-information about the classes it uses with
it. Therefore, it is sufficient to agree upon the name of just
one main class used to create the first object in an agents
”life“. This implies the following execution sequence for
(re-)building agents. First, a class with a known
(standardized) name, say ”Agent“, is loaded and
instantiated. The new instance receives a reference to the
profile it was extracted from to be able to build up the
complete agent using whatever classes it (but not the
environment!) knows about.

5.3. Agent migration

The mechanism described above means that all
information necessary for a migrated agent to restore its
old state and to continue execution is available to it at the
remote location. Thus, the following agent migration
procedure is supported. During its exceution the agent
writes all information neede at remote locations into its
profile. Since the agent writes the data itself, it also knows
how to retrieve that information afterwards.

Then, bootstapping a migrated agent looks as
follows. On the indication of an incoming agent, a remote
agent-engine creates an assembler object that actually
receives the agent and sets it up passing it references to
the engine and the profile. If the agent needs some
information from the environment it uses these references
to contact the engine assuming some functionality to
access environmental information is offered there. Due to
this indirection, a better level of security is achieved since
the locally installed engine can be specified, tested and
controlled by local authorities.

An important feature of the OSM agents is their
ability to split. Splitting means that an agent is cloned
several times. However, local variables of each instance
can be overwritten after cloning. Thus, depending on the

state information the agents further execution may be
carried out differently.

Often, some or all of the created ”subagents“ need to
be synchronized for a later join to exchange information,
for example about collected contractual issues. Therefore,
an agent is able to identify another agent that it is wating
for by means of that agent’s unique identifier — the way
the OSM agent system names agents internally for now.
Since it may not be desirable that an agent gains access to
the information about what other agent are present at a
specific location, this synchronization is done indirectly
again, i.e. by a so called synchronizer object being part of
the engine.

5.4. Agent communication

After being synchronized (no matter if it is with
formerly splitted subagents or a completely different
agent) agents may communicate. Since it cannot be
predicted and all the more shouldn’t be fixed what
information can be exchanged by the agents, a very
generic communication technique is desirable.

A first idea is to require a reference to the potential
communication partner (by asking the engine) and to cast
this reference to the actual agent type. This approach
assumes that the communicating agents are informed
about their respective implementation details. Especially,
in the case of formerly spitted agents, this is not too
unrealistic. However, the current Java serialization
package [27] does not allow casting such references to the
actual agent’s type even if the types are equal. Thus, the
current implementation uses a more pragmatic,
nonetheless generic, approach by utilizing a method
”communicate“ with a parameter of type ”Object“. It
should be noted, that since the agent communication does
not involve third parties (like the engine), it can be kept
confidential and be considered a secure channel.
Credentials that authorize and authenticate one agent to
the other could be passed as part of the given ”Object“
parameter.

6. Contracts as OSM agents

The described OSM mobile agent system is the basis
for modelling contracts and their negotiation. The most
important feature of the agents used is their layered
architecture. Built upon a basic communication layer they
include a strategy manager module and a negotiation
protocol plug-in. The former for now is a policy [15]
controlled pool of known negotiation strategies. We are
planning to add dynamic action selection following the
model of Maes [39] later. The latter is basically a finite

automaton representing a distinctive negotiation protocol
[40].

The idea is to ”plug“ such a protocol module into an
agent. During a negotiation process the agent has to
follow the represented protocol by all his communication
messages being filtered through the negotiation protocol
plug-in. Therefore, the agent is bound to a specific
protocol and cannot ”cheat“ other negotiation partners
that presume a specific negotiation protocol (since they
obey it themselves). At the same time the plug-in assures
(at least) syntactically correct negotiation messages. Such
protocol modules may be offered and certified by a
service of the electronic market system. It is important
that an agent can trust such a plug-in since it becomes part
of the agent’s communication channel.

Each negotiation protocol needs a syntax which is
able to express certain message semantics. We have
choosen a subset of the widely adopted KQML [4] for
now, but may move to a more ”pragmatic“ solution in the
future. Since the contract is the main item being
negotiated in our application scenarios its contents are
tagged using the same syntactical elements, e.g. ACCEPT,
REJECT or DENY areas that could be filled in by the
negotiating participants.

The contract’s contents may be arbitrarily complex
since the profile’s genericity allows for great expressive
power. The contract itself is just stored as ordinary Java
objects. To keep things simple and running participants
may use policies [15] — basically first-order predicate
logic expressions in a lean disjunctive normal form
supplemented by some modal operators — to denote their
offers and requests. But the generic view on a contract as
a container allows for many other possible ”description“
techniques.

In addition to the control of the negotiation process
by the protocol plug-ins, the agents (since being active
code) may observe the contracts they carry and assure
consistency on their contents. Since at any time exactly
one and only one agent ”owns its“ contract, no centralized
concurrency control (e.g. locking etc.) is necessary for
accessing the contract.

The described possibility to split an agent even
allows to imitate some advantages of transactional
behaviour. Unless a contractor (visited by a subagent) has
filled in some required items in the negotiated contract the
carrying agent would not arrive at a joining place.
Therefore, if the agent returns, one can be sure that
contractor has committed itself to some obligation. Simply
speaking, an agent wouldn’t be there if it hasn’t done its
job.

Two interesting points remain to be noted here. First,
by utilizing the profile concept an agent not only can carry
a contract but also a user interface customized to the
contract’s contents as a visual aid for human users — an

idea anticipated by OSMs Generic Client [20]. Second,
regarding world-wide inter-organizational negotiation, the
mobile agents autonomy helps collaborating across time
zones. Thus, a negotation process may take place 24 hours
a day by an agent migrating to locations during their
individual business hours.

5.4. Evaluation

The criteria identified in Section 3 are applied now to
evaluate the contract negotiation domain as an application
niche for mobile agents.
• High costs of bandwidth are given due to the possible

cellular phone connection of some participants or due
to their low-bandwidth modem connection.

• If the agent is able to extract those contract items that
are required or the target participant, it can keep a
reasonable size.

• More than two partners are involved which pass the
contract among each other in arbitrary direction and
driven by a negotiation protocol.

• The transaction costs (Tons of coffee and TVs) are
high enough to allow scope for communication across
cellular phone connections.

• The overall contract negotiation may not be
considered as a single transaction since inconsistencies
are limited to manually correctable paragraphs of the
contract.

• Java Virtual Machines are available for all
technological platforms involved: PCs and cellular
phones. The ubiquitous execution environment is
therefore given.

• The agent migrates due to a negotiation protocol that
is ”plugged-in“. Although this dependency counteracts
autonomy, the agent still acts autonomously regarding
the participants of the contract negotiation.

• The communication takes place sporadically, since this
individual deal has not been done before and is not
likely to be done in the future. Therefore, ad-hoc
communications through MAs prevail.

7. Conclusion and future work

This paper is based on the hypothesis that “mobile
agents” is a programming paradigm that is not applicable
for all communication fields except for a very limited area
in the space of all distributed applications. In this
contribution we propose a set of economic and technical
requirements that can be used to check whether an
application can take advantage of mobile agents or should
instead be implemented using some other technology of

practical importance (message passing, distributed
databases, CORBA brokerage, Web http).

We have then described an application that meets
these criteria described before: contract negotiation for
electronic commerce.

Ongoing research in the field of distributed systems
support for electronic commerce at Hamburg University
— called OSM — has been illustrated and finally how we
plan to use OSM to implement on-line contract
negotiation.

For example, the current mobile agent
implementation already supports agent migration between
computers and invocation of local functions. One of their
specialized application that is currently being
implemented is to present a user interface for contract
access. This will permit to coordinate a group of
transaction participants to settle a set of parameters and
policies for the following execution phase.

By using the Java language, any Internet user with a
Web browser is able to get involved in the contract
negotiation process.

Although we decided to deploy a useful first
approach [12] to create an architecture that is applicable
to business scenarios right now by concentrating on the
more technical aspects of communication, there is also
ongoing research at Hamburg University concerning
conceptual work to enhance mobile agents’ autonomy by
giving them more ”intelligence“ [41]. Especially,
negotiation abilities will be improved by self-adaptive
decision making strategies and controlling policies [15].
Also, some further research to gain a clear understanding
of the conception of persistence and its role in and
influence on mobile agent architectures seems to be
necessary.

References
[1] M.P. Atkinson, M. Jordan, L. Daynès, S. Spence, Design
Issues for Persistent Java: A Type-safe, Object-oriented,
Orthogonally Persistent System, In M.P. Atkinson, D. Maier, V.
Benzaken, editors: Proc. of the Seventh International Workshop
on Persistent Object Systems, Cape May, New Jersey, USA,
May 29-31, 1996, Morgan Kaufmann Publishers, 1996.

[2] M.P. Atkinson, L. Daynès, M. Jordan, T. Printezis, S.
Spence, An Orthogonally Persistent Java, SIGMOD Record,
December 1996.

[3] K. Arnold, J. Gosling, The Java Programming Language,
Addison-Wesley, The Java Series, ISBN 0-201-63455-4, 1996.

[4] H. Chalupsky, T. Finin, R. Fritzson, D. McKay, S.
Shapiro, G. Wiederhold: An overview of KQML: A knowledge
query and manipulation language. Technical Report,
April 1992.

[5] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Paris, G.
Tsudik: Itinerant Agents for Mobile Computing. IBM Research
Report RC 20010.

[6] Jordan, M.: Early Experiences with Persistent Java. In:
Proc. of the First International Workshop on Persistence and
Java, University of Glasgow, 1996.

[7] F. Knabe, Language Support for Mobile Agents, Carnegie
Mellon University, Pittsburgh, PA 15213, USA, December
1995.

[8] E. Kovács: Advanced Trading Service Through Mobile
Agents. In: Proc. Trends in Distributed Systems ‘96, Aachen
1996, pp. 112-124.

[9] T. Magedanz, K. Rothermel, S. Kruse: Intelligent Agents:
an Emerging Technology for Next Generation
Telecommunications?. In: Proc. IEEE INFOCOM, San
Francisco, USA, March 1996.

[10] M. Merz, K. Müller-Jones, W. Lamersdorf: Agents,
services, and electronic markets — how do they integrate?. In:
A. Schill, O. Spaniol, editors, Proc. of the International
Conference on Distributed Platforms ICDP ‘96, February 1996.

[11] M. Merz, T. Tu, W. Lamersdorf: Dynamic Support
Service Selection for Business Transactions in Electronic
Service Markets. In: Proc. of the Intl. Workhop on Trends in
Distributed Systems, Aachen 1996, Springer, Berlin, Heidelberg
New York 1996, pp. 183-195.

[12] O. Etzoni: Moving up the information food chain:
Deploying softbots on the world wide web. In: Proc. of AAAI-
96 (Abstract of invited talk), 1996.

[13] J.E.White: Telescript Technology: The Foundation for the
Electronic Marketplace. White Paper, General Magic, Inc., 1994

[14] T. Finin, R. Fritzson, D. McKay, R. McEntire: KQML as
an Agent Communication Language. In: Proc. of the Third
Conference on Information and Knowledge Management
(CIKM ’94), ACM Press, November 1994.

[15] M.T. Tu, F. Griffel, M. Merz, W.Lamersdorf: Generic
Policy Management for Open Service Markets, accepted for
publication in the Proc. of the DAIS’97 workshop, Cottbus,
Germany, 1997.

[16] M. Mira da Silva, Models of Higher-order, Type-safe,
Distributed Computation over Autonomous Persistent Object
Stores, PhD thesis, University of Glasgow, 1996.

[17] M. Mira da Silva, M.P. Atkinson, A. Black, Semantics for
Parameter Passing in a Type-complete Persistent RPC,
Proceedings of the 16th International Conference on Distributed
Computing Systems (Hong-Kong, May, 1996), IEEE Computer
Society Press, 1996.

[18] M. Merz: Elektronische Dienstemärkte - Modelle und
Mechanismen zur Unterstützung von Handelstransaktionen in
offen verteilten Systemen. PhD thesis., University of Hamburg,
November 1996.

[19] M. Merz, T. Tu, W. Lamersdorf: Dynamic Support
Service Selection for Business Transactions in Electronic
Service Markets. In: O. Spaniol, C. Linnhoff-Popien, B. Meyer
editors, Proc. TREDS - Intl. Workshop on Trends in Distributed
Systems, October 1996.

[20] Home Page of the Open Service Model project at the
University of Hamburg, http://osm-www.informatik.uni-
hamburg.de, 1996/97.

[22] Javasoft, Inc.: JavaSpace Specification, Revision 0.3,
www.javasoft.com, March 1997.

[23] W. Lamersdorf: Datenbanken in verteilten Sytemen —
Konzepte, Lösungen, Standards, Vieweg, Germany 1995.

[24] ObjectSpace, Inc.: Voyager Core Package Technical
Overview, www.objectspace.com, March 1997.

[25] D. Chang, S. Covaci: The OMG Mobile Agent Facility —
A Submission, pp. 98-110, In [42].

[26] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A.
Dearle, G.N.C. Kirby, D.S. Munro: The Napier88 reference
manual release 2.0. Technical Report FIDE/94/104, ESPRIT
Basic Research Action, Project Number 6309 — FIDE2, 1994.

[27] Sun Microsystems, Inc.: Object Serialization,
www.javasoft.com, 1996/97.

[28] M. Strasser, J. Baumann, F. Hohl: MOLE - A Java based
mobile agent system, In J. Baumann, C. Tschudin, J. Vitek,
editors: Proc. of the Second ECOOP Workshop on Mobile
Object Systems (Linz, Austria, July 8-9, 1996), dpunkt,
Germany, 1996.

[29] H. Peine, T. Stolpmann: The Architecture of the Ara
Platform for Mobile Agents, pp. 50-61, In [42].

[30] Motorola, Inc.: http://www.mot.com/General/Events/
TELECOM/95/Press/PR951001_44372.html

[31] C. Lamb, G. Landis, J. Orenstein, D. Weinreb.
ObjectStore. Communications of the ACM, 34(10):51-63,
October 1991.

[32] K. Kato, K. Toumura, K. Matsubara, S. Aikawa, J.
Yoshida, K. Kono, K. Taura, T. Sekiguchi: Protected and secure
mobile object computing in Planet, In: Proc. of Second ECOOP
Workshop on Mobile Object Systems, July 1996.

[33] J. Gray, A. Reuter: Transaction Processing - Concepts and
Techniques, Morgan Kaufmann Publishers, 1993.

[34] F. Morais de Assis Silva, S. Krause: A Distributed
Transaction Model based on Mobile Agents, pp.198-209, [42].

[36] M. Baldi, S. Gai, G. Picco: Exploiting Code Mobility in
Decentralized and Flexible Network Management, pp. 13-26,
[42].

[35] L.A.G. Oliveira, P.C. Oliveira, E. Cardozo: An Agent-
Based Approach for Quality of Service Negotiation and
Management in Distributed Multimedia Systems, pp. 1-12, [42].

[37] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel:
Coummunication Concepts for Mobile Agent Systems, pp. 123-
135, In [42].

[38] L. Rasmusson, A. Rasmusson, S. Jansson: Reactive
Security and Social Control. http://www.sics.se/~ara/
index.shtml, September 1996.

[39] P. Maes: The dynamics of action selection. In: Proc. of
IJCAI-89, pp. 991-997, Detroit, Michigan, August, 1989.

[40] T.W. Sandholm, V.R. Lesser: Issues in automated
negotiation and electronic commerce: Extending the contract net
framework. In: Proc. of the First International Conference on
Multiagent Systems (ICMAS-95), San Fransisco, June 1995.

[41] C. Sierra, P. Faratin, N.R. Jennings: A Service-Oriented
Negotiation Model between Autonomous Agents, In M. Boman,
W. Van de Velde, editors: Proc. Of the 8th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’97, Ronneby, Sweden, May 1997), LNAI 1237, pp.
17-35, Springer 1997.

[42] K. Rothermel, R. Popescu-Zeletin, editors: Proc. of the
First International Workshop on Mobile Agents, Berlin,
Germany, April 1997, LNCS 1219, Springer 1997.

