Jadex: A Short Overview

L. Braubach,! A.Pokahr,! W.Lamersdorf!

Distributed and Information Systems Group, University of Hamburg, Germany
{braubach, pokahr, lamersd}@informatik.uni-hamburg.de

Abstract. Nowadays a whole bunch of different agent platforms ex-
ists that aim to support the software engineer in developing multi-agent
systems. Nevertheless most of these platforms concentrate on specific
objectives and therefore cannot address all important aspects of agent
technology equally well. A broad distinction in this field can be made be-
tween middleware- and reasoning-oriented systems. The first category is
mostly concerned with FIPA-related issues like interoperability, security
and maintainability whereas the latter one emphasizes rationality and
goal-directedness. In this paper the Jadex agent framework is presented,
which supports reasoning by exploiting the BDI model and is realised as
an extension to the widely used JADE middleware platform.

1 Introduction

Nowadays a whole bunch of different agent platforms exists that aim to support
the software engineer in developing multi-agent systems [10]. Nevertheless most
of these platforms concentrate on specific objectives and therefore cannot address
all important aspects of agent technology equally well. A broad distinction in
this field can be made between middleware- and reasoning-oriented systems.

The first category is mostly concerned with FIPA-related! issues that address
interoperability and various infrastructure topics such as white and yellow page
services. Hence agent middleware is an important buiding block that forms a
solid foundation for exploiting agent technology. Most middleware platforms
intentionally leave open the issue of internal agent architecture and employ a
simple task oriented approach. This approach allows to decompose the overall
agent behaviour into smaller pieces and attach them to the agent as needed.
Additionally the tasks themselves can be implemented in an object-oriented
language such as Java allowing the software developer to easily adapt to the
agent paradigm.

In contrast, reasoning-centered platforms focus on the behaviour model of a
single agent trying to achieve rationality and goal-directedness. Most successful
behaviour models are based on adapted theories coming from disciplines such as
philosophy, psychology or biology. Depending on the level of detail of the theory
the behaviour models tend to become complicated and can result in architec-
tures and implementations that are difficult to use. Especially when advanced

! http://www.fipa.org

artificial intelligence and theoretical techniques such as deduction logics are nec-
essary for programming agents, mainstream software engineers cannot easily take
advantage of agent technology.

In this paper the Jadex agent framework is presented, which supports easy to
use reasoning capabilities by exploiting the BDI model combining it with state-of-
the-art software engineering techniques like XML and Java. In section 2 reasoning
approaches for agents are sketched and the BDI fundamentals regarding the
individual concepts and their interrelationships are described. Section 3 explains
the design and implementation of the Jadex system by detailing the abstract
architecture and its integration into the JADE platform. A summary and an
outlook describing ongoing work and planned extensions conclude the paper.

2 Reasoning for Agents

To build agents with cognitive capabilities several architectures from different
disciplines like psychology, philosophy and biology can be utilised. Most cognitive
architectures are based on theories for describing behaviour of individuals. The
most influential theories with respect to agent technology are the Belief-Desire-
Intention (BDI) model, the theory of Agent Oriented Programming (AOP) [16],
the Unified Theories of Cognition (UTC leading to SOAR) [11,9] and the sub-
sumption theory [4]. Each of these theories has its own strengths and weak-
nesses and supports certain kinds of application domains especially well. The
Jadex reasoning engine is based on the BDI model due to its simplicity and folk
psychological background as explained further in the following.

2.1 BDI Foundations

The BDI model was conceived by Bratman as a theory of human practical reason-
ing [2]. Its success is based on its simplicity reducing the explanation framework
for complex human behaviour to the motivational stance [8]. This means that the
causes for actions are always related to the human desires ignoring other facets
of human recognition such as emotions. Another strength of the BDI model is
the consistent usage of folk psychologcial notions that closely correspond to they
way humans talk about behavioural aspects.

Beliefs are informational attitudes of an agent, i.e. beliefs represent the in-
formation, an agent has about the world it inhabits, and about its own internal
state. But beliefs do not just represent entities in a kind of one-to-one mapping;
they provide a domain-dependent abstraction of entities by highlighting impor-
tant properties while omitting irrelevant details. This introduces a personal world
view inside the agent: The way in which the agent perceives and thinks about
the world.

The motivational attitudes of agents are captured in desires. They represent
the agent’s wishes and drive the course of its actions. Desires need not necessarily
be consistent and therefore maybe cannot be achieved simultaneously. A “goal
deliberation” process has the task to select a subset of consistent desires (often

Algorithm 1 BDI-interpreter, taken from [15]

BDl-interpreter

Initialize-state();

repeat
options := option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

end repeat

referred to as goals). Actual systems and formal theory mostly ignore this step
(with the exception of 3APL [7,6]) and assume that an agent only possesses non-
conflicting desires. In a goal-oriented design, different goal types such as achieve
or maintain goals can be used to explicitly represent the states to be achieved
or maintaind, and therefore the reasons, why actions are executed [3]. When
actions fail it can be checked if the goal is achieved, or if not, if it would be
useful to retry the failed action, or try out another set of actions to achieve the
goal. Moreover, the goal concept allows to model agents which are not purely
reactive i.e., only act after the occurrence of some event. Agents that pursue
their own goals exhibit pro-active behaviour.

Plans are the means by which agents achieve their goals and react to oc-
curring events. Thereby a plan is not just a sequence of basic actions, but may
also include more abstract elements such as subgoals. Other plans are executed
to achieve the subgoals of a plan, thereby forming a hierarchy of plans. When
an agent decides on pursuing a goal with a certain plan, it commits itself (mo-
mentarily) to this kind of goal accomplishment and hence has established a so
called intention towards the sequence of plan actions. Flexibility in BDI plans
is achieved by the combination of two facets. The first aspect concerns the dy-
namic selection of suitable plans for a certain goal which is performed by a
process called “meta-level reasoning”. This process decides with respect to the
actual situation which plan will get a chance to satisfy the goal. If a plan is not
successful, the meta-level reasoning can be done again allowing a recovery from
plan failures. The second criteria relates to the definition of plans, which can be
specified in a continuum from very abstract plans using only subgoals to very
concrete plans composed of only basic actions.

2.2 BDI Realisation

Foundation for most implemented BDI systems is the abstract interpreter pro-
posed by Rao and Georgeff (see Fig. 1) [15]. At the beginning of every interpreter
cycle a set of applicable plans is determined for the actual goal or event from
the event queue. Thereafter, a subset of these candidate plans will be selected

for execution (meta-level-reasoning) and will be added to the intention struc-
ture. After execution of an atomic action belonging to some intention any new
external events are added to the event queue. In the final step successful and
impossible goals and intentions are dropped. Even though this abstract inter-
preter loop served as direct implementation template for early PRS systems, the
authors feel that it should nowadays be regarded more as an explanation of the
basic building blocks of a BDI system. Several important topics such as goal
deliberation and the distinction between goals and events are not considered in
this appraoch.

3 Jadex Architecture and Implementation

Addressing the need for an agent platform that supports both middleware and
reasoning, the approach chosen was to rely on an existing mature middleware
platform, which is in widespread use. The JADE platform [1] focuses on im-
plementing the FIPA reference model, providing the required communication
infrastructure and platform services such as agent management, and a set of de-
velopment and debugging tools. It intentionally leaves open much of the issues of
internal agent concepts, offering a simple task-based model in which a developer
can realise any kind of agent behaviour. This makes it well suited as a founda-
tion for establishing a reasoning engine on top of it. While the agent platform is
concerned with external issues such as communication and agent management,
the reasoning engine on the other hand covers agent internals. Therefore the
architecture is to a large extent independent from the underlying platform.

The following sections present the architecture and execution model of the
newly developed reasoning engine (see also [14]). Details about the integration
of the reasoning engine into the platform are described in a separate section.
Afterwards some tools are introduced which offer extended support for agent
debugging.

3.1 Architecture Overview

In Fig.1 an overview of the abstract Jadex architecture is presented. Viewed
from the outside, an agent is a black box, which receives and sends messages.
Incoming messages, as well as internal events and new goals serve as input to
the agent’s internal reaction and deliberation mechanism. Based on the results
of the deliberation process these events are dispatched to already running plans,
or to new plans instantiated from the plan library. Running plans may access
and modify the belief base, send messages to other agents, create new top-level
or subgoals, and cause internal events.

The reaction and deliberation mechanism is generally the same for all agents.
The behaviour of a specific agent is therefore determined solely by its concrete
beliefs, goals, and plans. In the following each of these central concepts of the
Jadex BDI architecture will be described in detail.

Agent

)
Adopted Goals

¥ Plan Library

Adopt/handie Goals Instantiate Plans, \—)

¥ Select for
Messages Reaction Execution . Messages o
Deliberation > | Running Plans o
~—
Evaluate State AN /

Dispatch (Sub-) [Goals / Events

Handle Events

N~

Belief Base
Belief/Condition Events

Query, Add,
Remove Facts

Fig. 1. Jadex abstract architecture

Beliefs One objective of the Jadex project is ease of usage. Therefore Jadex
does not enforce a logic-based representation of beliefs. Instead, ordinary Java
objects of any kind can be contained in the beliefbase, allowing to reuse classes
generated by ontology modelling tools or database mapping layers. Objects are
stored as named facts (called beliefs) or named sets of facts (called belief sets).
Using the belief names, the beliefbase can be directly manipulated by setting,
adding, or removing facts. A more declarative way of accessing beliefs and be-
liefsets is provided by queries, which can be specifed in an OQL?-like language.
The beliefs are used as input for the reasoning engine by specifying certain belief
states e.g. as preconditions for plans or creation conditions for goals. The engine
monitors the beliefs for relevant changes, and automatically adjusts goals and
plans accordingly.

Goals Jadex follows the general idea that goals are concrete, momentary de-
sires of an agent. For any goal it has, an agent will more or less directly engage
into suitable actions, until it considers the goal as being reached, unreachable,
or not desired any more. Unlike most other systems, Jadex does not assume that
all adopted goals need to be consistent to each other. To distinguish between
just adopted (i.e. desired) goals and actively pursued goals, a goal lifecycle is
introduced which consists of the goal states option, active, and suspended [3].

2 www.odmg.org

When a goal is adopted, it becomes an option that is added to the agent’s desire
structure. A deliberation mechanism is responsible for managing the state tran-
sitions of all adopted goals (i.e. deciding which goals are active and which are
just options). A sophisticated goal deliberation mechnism is not yet available,
therefore currently the Jadex engine automatically activates all options. Addi-
tionally, some goals may only be valid in specific contexts determined by the
agent’s beliefs. When the context of a goal is invalid it will be suspended until
the context is valid again.

Based on the general lifecycle described above, Jadex supports four types
of goals, which exhibit different behaviour with regard to their processing as
explained below. A perform goal is directly related to the execution of actions.
Therefore the goal is considered to be reached, when some actions have been
executed, regardless of the outcome of these actions. An achieve goal is a goal
in the traditional sense, which defines a desired outcome without specifying how
to reach it. Agents may try several different alternative plans, to achieve a goal
of this type. A query goal is similar to an achieve goal. Its outcome is not
defined as a state of the world, but as some information the agent wants to
know about. For goals of type maintain, an agent keeps track of the desired state,
and will continuously execute appropriate plans to re-establish the maintained
state whenever needed. More details about goal representation and processing
in Jadex can be found in [3].

Plans The reasoning engine handles all events such as the reception of a mes-
sage or the activation of a goal by selecting and executing appropriate plans. In-
stead of performing ad-hoc planning for each event, Jadex uses the plan-library
approach to represent the plans of an agent. For each plan a plan head defines
the circumstances under which the plan may be selected and a plan body spec-
ifies the actions to be executed. The most important parts of the head are the
goals and /or events which the plan may handle and a reference to the plan body.
The agent programmer decomposes concrete agent functionality into separate
plan bodies, which are predefined courses of action implemented as Java classes.
Object-oriented techniques and existing Java IDEs can be exploited in the de-
velopment of plans. Plans can be reused in different agents, and can incorporate
functionality implemented in other Java classes e.g., to access a legacy system.
To access functionality of the Jadex system, a Java API is provided for basic
actions such as sending messages, manipulating beliefs, or creating subgoals.

Agent Definition To create and start an agent, the system needs to know
the properties of the agent to be instantiated. The initial state of an agent is
determined among other things by the beliefs, goals, and the library of known
plans. Jadex uses a declarative and a procedural approach to define the com-
ponents of an agent. The plan bodies have to be implemented as ordinary Java
classes that extend a certain framework class, thus providing a generic access to
the BDI specific facilities. All other concepts are specified using an XML lan-

01 </

02 A simple translation agent for translating words from English to German.

03 >

04 <agent xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-instance"

05 xsi:noNamespaceSchemaLocation=""http://jadex.sourceforge.net/jadex.xsd"
06 name="ta"

07 package="jadex.examples.tutorial'>

09 <imports>
10 <import>jadex.util.*</import>
11 </imports>

13 <plans>

14 <plan name="egtrans'>

15 <constructor>new EnglishGermanTranslationPlan()</constructor>
16 <filter>EnglishGermanTranslationPlan.getEventFilter()</filter>

17 </plan>
18 </plans>
19

20 <beliefs>

21 <beliefset name=""egwords" class=""Tuple">
22 <fact>new Tuple("milk", "Milch")</fact>
23 <fact>new Tuple("cow", "Kuh")</fact>
24 <fact>new Tuple("cat", "Katze")</fact>
25 <fact>new Tuple("'dog", "Hund")</fact>
26 </beliefset>

27 </beliefs>

29 <expressions>

30 <expression name="query_egword'>

31 SELECT ANY $wordpair.get(1)

32 FROM S$wordpair in $beliefbase.egwords
33 WHERE $wordpair.get(0)==Seword

34 </expression>

35 </expressions>

37 </agent>

Fig. 2. Example agent definition file

guage that follows the Jadex meta-model specified in XML schema? and allows
for creating Jadex objects in a declarative way. For the purpose of reusability
Jadex supports a flexible module-concept called capability [5], which enables the
packaging of functionally related entities (beliefs, goals and plans) into a cluster.
Capabilities exhibit a clearly defined interface and therefore can be nested al-
lowing an agent being composed of predefined functionalities. Within the XML
capability or agent definition files, the developer can use expressions to specify
designated properties. The language for these expressions is Java extended with
OQL constructs that facilitate e.g. the specification of queries. In addition to
the BDI components some other information is stored in the definition files e.g.,

3 www.w3.org/XML/Schema

01 package jadex.examples.tutorial;

02

03 import ...

04

05 /** Plan for translating an English word to German.

06 * Requires the following message format: translate english_german <eword>.*/
07 public class EnglishGermanTranslationPlanB2 extends ThreadedPlan {

08

09 /** The plan body. */

10 public void body() {

11 StringTokenizer stok = new StringTokenizer(

12 ((RMessageEvent)getlnitialEvent()).getMessage().getContent(), "' '");

13 if(stok.countTokens()==3) {

14 stok.nextToken();

15 stok.nextToken();

16 String eword = stok.nextToken();

17 String gword = (String)getQuery(''query_egword'").execute("eword", eword);
18 if(gword!=null) {

19 System.out.println(" Translating from english to german: "+eword+" - '"+gword);
20

21 else {

22 System.out.println("'Sorry, word is not in database: "+eword);
23 }

24 3

25 else {

26 System.out.println("'Sorry, format not correct.");

27

28 }

29

30 /** Get the event filter. */

31 public static [Filter getEventFilter() {

32 MessageTemplate mtl = MessageTemplate.MatchPerformative(ACLMessage. REQUEST);
33 MessageTemplate mt2 = new MessageTemplate(

34 new MatchStartContentLiteral("'translate english_german'));

35 return new MessageFilter(MessageTemplate.and(mtl, mt2));

36 }

37}

Fig. 3. Example agent translation plan

default arguments for launching the agent or service descriptions for registering
the agent at a directory facilitator.

In Fig.2 an example for an agent definition file is depicted. It shows the
type declaration of a simple translation agent that can translate words from
English to German. In the agent tag (lines 4-7) the type name “ta” and package
name “jadex.examples.tutorial” are defined. Additionally the URL to the Jadex
schema is declared for validation purposes. For reasons of simplicity this agent
only consists of one plan, one belief, and one expression.

The plan declaration (lines 14-17) is used to define under which circum-
stances (the filter tag) an intention (plan instance) is created for a declared plan
body (the constructor tag). In this case the filter object is defined as return
value of a static method invocation (line 16) and hence it is necessary to inspect

this method to reveal that whenever the agent receives a message containing a
translation request, a new plan instance of the Java class “EnglishGermanTrans-
lationPlan” is created. This plan uses the agent’s personal dictionary stored as
belief set “egwords” (lines 21-26) to figure out the translation of a word. There-
fore the translation plan applies the predefined query with the English word as
parameter (line 30-34) to find the adequate German word.

In Fig. 3 the corresponding plan body code is depicted (lines 9-28). Most of
this code is used for testing the message format and extracting the content. The
extracted English word is supplied as parameter for the query that fetches the
translated word (line 17).

3.2 Execution Model

For a complete reasoning engine several additional components are necessary.
The core of a BDI architecture is obviously the mechanism for plan selection.
Plans not only have to be selected for goals, but for internal events and incoming
messages as well. To collect the incoming messages and forward them to the plan
selection mechanism a specialised component is needed. Another mechanism is
required to execute selected plans, and to keep track of plan steps to notice
failures. In Jadex, all of the required functionality is implemented in cleanly
separated components. The relevant information about beliefs, goals, and plans
is stored in data structures accessible to all these components.

Fig.4 shows the interrelations between those components. The functional
elements of the execution model can also be found in the abstract BDI inter-
preter presented in section 2.2. The difference between Jadex and the abstract
interpreter is, that in Jadex these functionalities are carried out independently
by three distinct components (message receiver, dispatcher, scheduler). The mes-
sage receiver performs the get-new-external-events() operation, by taking ACL mes-
sages from the platform’s message queue and creating Jadex events which are
placed in the event list. The dispatcher continuously consumes the events from
the event list and builds the applicable plan list for each event, corresponding to
the option-generator() function. The dispatcher also selects plans to be executed -
similar to deliberate(options) - and places the selected plans in the ready list after
associating the selected plans to the corresponding events or goals, like it is done
in update-intentions(selected-options). Finally the scheduler takes the plans from
the ready list and executes them, as done by the execute() operation. Note, that
the drop-impossible/successful-attitudes() operations are not part of the execution
model, because in Jadex those operations are carried out on-the-fly, whenever
there are relevant changes in the agent’s beliefs.

3.3 JADE Integration

To easily integrate the Jadex engine into JADE agents, a wrapper agent class
is provided, which creates and initialises an instance of the Jadex engine with
the beliefs, goals and plans from an agent definition file. The above mentioned
components of the reasoning engine are implemented in three JADE behaviours,

’ JADE message queue k """"""""" » JADE behaviours
Jadex Agent /UCL messages

Message Y Select message

receiver
Create event
for message

Event list
Internal /goal events

Dispatcher Y Select event

Find applicable Capabilities/planbases
candidates
Select Meta-level reasoners
candidates

I J

Ready list
Scheduler Y Select intention

Execute
‘ plan step

Fig. 4. Jadex execution model

which are automatically created and added to the wrapper agent. In addition,
there is a simple timing behaviour with the purpose to add timeout events to
the event list (e.g. when awaited messages do not arrive). Implementing the
functionalities into separate behaviours provides a clean design and allows for
flexible replacement of the behaviours with custom implementations, e.g. alter-
native scheduling mechanisms could be tried out, using modified versions of the
corresponding behaviours.

The Jadex project facilitates a smooth transition from developing conven-
tional JADE agents to employing the mentalistic concepts of Jadex agents. All
available JADE functionality can still be used in Jadex plans. Moreover, it is pos-
sible to use some of the Jadex functionality e.g., the belief base or the goal base,
from conventional JADE behaviours. To use JADE behaviours in conjunction
with Jadex plans the message receiver behaviour supports filtering of incoming
ACL messages (see Fig.4 at the top). It is necessary to sort out those messages
which are handled by plans and therefore have to be dispatched to the internal
Jadex system and keep the other messages available for the JADE behaviours.

3.4 Tool Support

As a Jadex agent is still a JADE agent all available tools of JADE can also
be used to develop Jadex agents. Most of the JADE platform deals with the
external view of an agent, which does not differ between conventional JADE
agents and Jadex agents. Only the JADE introspector agent is of limited use,
because it only shows the four Jadex standard behaviours and not the agent’s
plans. To enable a comfortable testing of Jadex agents two new tool agents have
been developed: the debugger and the logger agent.

4 |I'Itl'ﬂ5p9l5‘ﬂl for ‘:a"-yz 3 lopper0GYSISSTANT 3: 1099/JADL - Logger Agent
Actons
Tabs
_ _ vy Hee v%% nam PR pcex
| 9 BE"E'hESE‘ O Goakase ‘ 3 Planbase | o Debugger | = £ AgergPrationms a|[Seqmres | Loplewsl | Agent Mestage | SeceClass | Sousceblel |
O Goalview - shoves subgoal struicture & £ VSIS TAFFY 1099an | || [I2 D [Loghperca®. Bekel iessted jden tmom . bicy .
L : T L Liogferi 100 Esbel revem | des ensmpl_ body
nmyr v By B 8 uaun-Container 1 i Loghomri1@Welkel oo aden suamcl.. body
B a@VEISSTAFT | fyg 3 (Loghgeri 1 Bekel revtrm pden. casiopl_ bty
Marme Kind Processi.. Life... Plan B woggero@veissT |([& O (Loghgentans_ kel nasted | den saangl body
/& carry2 B Logagenagves | |3 FRIE [Logfigent 1. _akel .. pecdes o oy
c. 24 FINE Loghgeri 108 Eobel revom . yden enampd by
& conbass e | e e
O di_kesp_registered#l maintain idle active B Logagenti@ver | o FME (Loggmrt 1@ Bkl resem_ yoden emml by
= O walk_aroundi2 perform in_process active B ogvsssTArFs | [o Loghoeri16_ekel ieseted_acex exsmei_ bocly
O miove_desth10 achieve in_process active B loggerd-on-Main- : i"; JLoghoen® Batal ncus. pdes suamol. ooy
o ! i B Loghgentagveic i [Loghouri 15 _Bckel rvem e cnmpd_ by
- watch targets#3 perform in_process active - | Tt LoghgeriT_Wskal rcoses e panmpl biocy
= P dicap £ WD [LogAgenia® Bekel iessted dex caamcl by
3 Goabase LogAgent @ SISS TAFES 105900 (45 e Lofioeni 100 Bslel resem, e smamei_ bocly
 Bomave Logagent | @VESSTAFFS 103auaD |4 i [Loghgeni1® Wekel ncomm, ides susmgd bodr
e saass | opApentagVEISSTAFFS 1098:40 | FNE Linggurt 1 kel rerem _ yades. emopl_ becky -
| {Log-Livai=FINE AND AgantsLogAgent] ~) O [Log-LivaiziF 0 AND AgenisLog.
e [Loghgenil* | 1
NFO Loggunt
< »
< >
fprotsad List | Logagent

Fig. 5. Debugger and logger screenshots

The debugger’s purpose is twofold. First, it supports the visualization and
modification of the internal BDI concepts (see Fig. 5 left hand side) thus allowing
inspection and reconfiguration of an agent at runtime. Secondly, it simplifies
debugging through a facility for the stepwise agent execution. In the step mode
it is possible to observe and control each event processing and plan execution
step having detailed control over the dispatcher and scheduler. Hence it can be
easily figured out what plans are selected for an event or goal.

A big problem in debugging agent systems consists in the amount and se-
quence of outputs the agents produce typically on the console. With the help of
the logger the agent’s outputs can be directed to a single point of responsibil-
ity at runtime. In contrast to simple console outputs the logger agent preserves
additional information about the output such as its time stamp and its source
(the agent and method). Using these artefacts the logger agent offers facilities
for filtering and sorting messages by various criteria allowing a personalised view
to be created (see Fig.5 right hand side).

4 Conclusion and Outlook

This article presented an approach to the integration of an agent middleware
with a reasoning engine to combine the advantages of both strands. An overview

of the BDI model was given, and the design and realization of the Jadex BDI
engine as an extension to the widely used JADE agent platform was described.
The Jadex system allows for the construction of rational agents, which exhibit
goal-directed (as opposed to task-oriented) behaviour. The construction of Jadex
agents is based on well-established software engineering techniques such as XML,
Java and OQL enabling software engineers to quickly exploit the potential of the
mentalistic approach. The Jadex project is also seen as a means for researchers
to further investigate which mentalistic concepts are appropriate in the design
and implementation of agent systems. Future improvements will address mainly
two directions: architecture and tool-support.

In contrast to other BDI agent systems Jadex supports an explicit and declar-
ative representation of goals. We plan to utilize this explicit representation by
improving the BDI architecture with a generic facility for goal deliberation which
alleviates the necessity for designing agents with a consistent goal set. Addition-
ally the explicit representation will allow us to investigate task delegation by
considering goals at the inter-agent level. The tool support of Jadex currently
focusses on the testing phase supplying a debugger and a logger agent. To achieve
a higher degree of usability is is planned to support the design phase as well with
a graphical modeling tool based on the MDA-approach.*

Currently the system is used as the basis of the research project MedPAge
[12,13], which deals with agent-based management of hospital logistics. Addition-
ally, the system is used in several internal teaching and some third-party projects.
The current version 0.921 of the Jadex system is available at the projects home
page http://jadex.sourceforge.net.

Acknowledgements. This work is partially funded by the German priority re-
search programme 1083 Intelligent Agents in Real-World Business Applications.

References

1. F. Bellifemine, G. Rimassa, and A. Poggi. JADE — A FIPA-compliant agent frame-
work. In 4th International Conference on the Practical Applications of Agents and
Multi-Agent Systems (PAAM-99), pages 97-108, London, UK, December 1999.

2. M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachusetts, 1987.

3. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for
BDI Agent Systems. In Proceedings of the Second Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMASO04),
2004.

4. R. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal
of Robotics and Automation, 2(1):24-30, March 1986.

5. P. Busetta, N. Howden, R. Ronnquist, and A. Hodgson. Structuring BDI Agents
in Functional Clusters. In N. R. Jennings and Y. Lespérance, editors, Intelligent
Agents VI, Proceedings of the 6th International Workshop, Agent Theories, Archi-
tectures, and Languages (ATAL) ’99, pages 277-289. Springer, 2000.

4 http://www.omg.org

®

10.

11.
12.

13.

14.

15.

16.

M. Dastani and L. van der Torre. Programming BOID Agents: a deliberation lan-
guage for conflicts between mental attitudes and plans. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS’04), 2004.

M. Dastani, B. van Riemsdijk, F. Dignum, and J.J. Meyer. A Programming Lan-
guage for Cognitive Agents: Goal Directed 3APL. In Proceedings of the First Work-
shop on Programming Multiagent Systems: Languages, frameworks, techniques, and
tools (ProMAS03), 2003.

D. Dennett. The Intentional Stance. Bradford Books, 1987.

J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar,
an architecture for human cognition. Invitation to Cognitive Science, 4, 1996.

E. Mangina. Review of Software Products for Multi-Agent Systems.
http://www.agentlink.org/resources/software-report.html, 2002.

A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Distributed Patient
Scheduling in Hospitals. In G. Gottlob and T. Walsh, editors, Proceedings of the
FEighteenth International Joint Conference on Artificial Intelligence (IJCAI-03).
Morgan Kaufmann, 2003.

T. O. Paulussen, A Zoller, A. Heinzl, A. Pokahr, L. Braubach, and W. Lamersdorf.
Dynamic Patient Scheduling in Hospitals. In M. Bichler, C. Holtmann, S. Kirn,
J. Miiller, and C. Weinhardt, editors, Coordination and Agent Technology in Value
Networks. GITO, Berlin, 2004.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP — in search of innovation, 3(3):76-85, 2003.
A. Rao and M. Georgeff. BDI Agents: from theory to practice. In V. Lesser,
editor, Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95), pages 312-319. The MIT Press: Cambridge, MA, USA, 1995.

Y. Shoham. Agent-oriented programming. In D. G. Bobrow, editor, Artificial
Intelligence Volume 60, pages 51-92, Elsevier Amsterdam, The Netherlands, 1993.

