Goal Representation for BDI Agent Systems

Lars Braubach!, Alexander Pokahr!, Daniel Moldt?, and Winfried Lamersdorf!

! Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany
{braubach , pokahr, lamersd}@informat ik.uni-hamburg.de
2 Theoretical Foundations of Computer Science
Computer Science Department, University of Hamburg
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany
moldt@informatik.uni-hamburg.de

Abstract. Agent-oriented system development aims to simplify the con-
struction of complex systems by introducing a natural abstraction layer
on top of the object-oriented paradigm composed of autonomous inter-
acting actors. One main advantage of the agent metaphor is that an
agent can be described similar to the characteristics of the human mind
consisting of several interrelated concepts which constitute the internal
agent structure. General consensus exists that the Belief-Desire-Intention
(BDI) model is well suited for describing an agent’s mental state. The
desires (goals) of an agent represent its motivational stance and are the
main source for the agent’s actions. Therefore, the representation and
handling of goals play a central role in goal-oriented requirements analy-
sis and modelling techniques. Nevertheless, currently available BDI agent
platforms mostly abstract from goals and do not represent them explic-
itly. This leads to a gap between design and implementation with respect
to the available concepts. In this paper a generic representation of goal
types, properties, and lifecycles is developed in consideration of existing
goal-oriented requirements engineering and modelling techniques. The
objective of this proposal is to bridge the gap between agent specifica-
tion and implementation of goals and is backed by experiences gained
from developing a generic agent framework.

1 Introduction

When designing and building agent applications the developer is confronted with
several intricate issues, ranging from general aspects such as development pro-
cesses and tools to concrete design decisions like how agents should act and inter-
act to implement a certain application functionality. These issues are addressed
in the Jadex research projectld which aims to provide technical and conceptual
support for the development of open multi-agent systems composed of rational

! mttp://vsis-www.informatik.uni-hamburg.de/projects/jadex

R.H. Bordini et al. (Eds.): PROMAS 2004, LNAI 3346, pp. 44651 2005.
(© Springer-Verlag Berlin Heidelberg 2005


http://vsis-www.informatik.uni-hamburg.de/projects/jadex

Goal Representation for BDI Agent Systems 45

and social agents. One main topic of the project is reviewing and extending
concepts and software frameworks for developing goal-directed agents following
the BDI model. With respect to goals in agent systems the topic poses several
interesting questions, which can be categorised into representational, processing,
and deliberation related issues

Representation:
1. Which generic goal types and properties do exist?
2. Which goal states do exist during a goal’s lifetime?
3. Which structures can be used to represent goal relationships?

Processing:
4. How does an agent create new goals and when does it drop existing ones?
5. How does an agent reason and act to achieve its goals?
6. Which mechanisms do exist to delegate goals to other agents?

Deliberation:
7. What are the possible agent’s attitudes towards its goals?
8. How can an agent deliberate on its (possibly conflicting) goals to decide
which ones shall be pursued?

In the following the meaning of these questions will be shortly sketched. Regard-
ing the representational aspect it is of interest which classifications of goals exist and
which generictypesofgoalscanbededuced fromtheliteratureand fromimplemented
systems. Additionally, itisrelevant which properties are exhibited by goalsin general
and specific goal types in particular. The second question refers to the goal lifecycle
regarding the fact that goals can be in different states from the agent’s point of view.
On the one hand goals may differ in the agent’s attitude towards them (see also ques-
tion seven). This means that an agent e.g. sees some of its goals merely as possible
options, which are currently not pursued in favour of other goals, and sees others
as active goals, which it currently tries to achieve. On the other hand the goals may
expose different processing states with respect to their type and achievement state.
The third point focuses on the relationships between goals themselves, and between
goals and other concepts. Relationships between goals are used for goal refinement
purposes and for deliberation issues by making explicit how one goal (positively or
negatively) contributes to another goal. The relationships to other concepts mainly
influence creation and processing of goals, as discussed by the next two questions.

The aspect of goal processing comprises all mechanisms for goal handling
during execution time. The initial question is how an agent comes to its goals and
in what situations it may drop existing goals [I1,[19,23]. Intimately connected
with this issue are deliberation aspects like the goal and intention commitment
strategies, which define the degree of reconsideration an agent exposes. Extensive
considerations about different intention commitment strategies can be found in
descriptions of the IRMA agent architecture [6,27]. Secondly, it is of importance
which mechanisms an agent can use to try to achieve its goals. The process of

2 This paper focuses on the emphasised questions.



46 L. Braubach et al.

plan selection and execution is a key element of BDI architectures and requires
addressing further questions: How can the applicable plans be determined? Shall
applicable plans be executed in parallel or one at a time? What mechanisms
shall be used for the meta-level reasoning to select a plan for execution from the
set of applicable plans? Partly, these questions are answered by proposed BDI
architectures [6L29] and by implemented systems [I5,16]. A complete discussion
about the problems of this topic can be found in [8]. An important point of plan
execution is that the agent should be able to recover from plan failures and have
the possibility to try other means to achieve the goal it has itself committed
to. Hence, a declarative goal representation would help to decouple plan from
goal success resp. failure [37]. Another interesting point concerns goals in multi-
agent systems (MAS) e.g. how an agent can delegate tasks to other agents. Goal
delegation is one possibility of how this can be achieved. The topic has to address,
besides the semantic meaning of goal delegation, issues of commitment, trust,
and organisational structures [2,[20L31].

Goal deliberation is part of the whole deliberation process, which comprises
all meta-operations on the agent’s attitudes such as belief revision and intention
reconsideration. It is concerned with the manipulation of the goal structure of an
agent, i.e. goal deliberation has the task to decide which goals an agent actively
pursues, which ones it delays, and which ones it abandons. Necessary requirement
for a goal deliberation mechanism to work is that the agent’s attitudes towards
its goals are clearly defined. Currently no general consensus exists how goal
deliberation can be carried out. Instead, several approaches exist that address
the topic with different strategies. The agent language 3APL introduces meta-
rules for all of the agent’s attitudes, which are executed during the interpreter
cycle [I0]. In contrast to this rule-based approach KAOS and Tropos allow the
direct specification of contribution relationships between goals which form a
basis for the decision process [9,[I4]. In [33[34] a mechanism based on pre- and
post conditions for plans and goals is proposed and evaluated.

Considering these questions it is rather astonishing that available BDI multi-
agent platforms such as JACK [15], JAM [I6], or Jason [4] do not use explicit
goal representations and therefore cannot address most of the aforementioned
topics. One reason for this shortcoming is that most actual systems are natural
successors of the first generation BDI systems (PRS [I7,[I3] derivates), which had
to concentrate on performance issues and do without computationally expensive
deliberation processes due to scarce computational resources. Additionally, the
actual systems are mostly based on formal agent languages like AgentSpeak(L)
[28] which focus on the procedural aspects of goals and treat them in an event-
based fashion.

Nevertheless, the need for explicit goal representation is expressed in several
recent publications [3637] and is additionally supported by the classic BDI
theory, which treats desires (possibly conflicting goals) as one core concept [5].
The importance of explicit and declarative goal representation in the modelling
area is underlined by BDI agent methodologies like Prometheus [24], Tropos
[I4] and requirements engineering techniques like KAOS [9[I§]. Additionally,



Goal Representation for BDI Agent Systems 47

Winikoff et al. state in [37] ”[...] by omitting the declarative aspect of goals the
ability to reason about goals is lost”, what means that the representation of goals
is a necessary precondition when one wants reasoning about goals to become
possible. Therefore, we claim that the usage of explicit goals should be extended
from analysis- and design- to the implementation-level. Additionally, we think
that this representation issue can be generalised and that one main objective
of agent-oriented software development should be to support the continuity of
concepts during the requirements, analysis, design, and implementation phase.
This allows preserving the original abstraction level as far as possible throughout
the development phases [21].

In this paper mainly generic goal representation issues for agent-oriented
programming will be discussed with respect to the existing approaches coming
from the requirements engineering and modelling area and from implemented
systems. In the next section an example scenario is presented. Thereafter a
generic model and lifecycle for goals is proposed and validated with respect to
the given scenario in section Bl The model is elaborated further on to derive
more specific goal types and representations. In section M the implementation of
the proposed goal concepts for the Jadex agent system is sketched and finally,
it is shown in section [B] that the concepts are well suited to be used in practical
implementations by demonstrating how the example scenario can be realised. A
summary and an outlook conclude the paper.

2 Example Scenario

In this section, a derivation of the so-called ” cleaner world” scenario is described.
It is based on the idea that an autonomous cleaning robot has the task to clean
up dirt in some environment. This basic idea can be refined with respect to
various aspects and already forms the foundation for several discussions about
different agent and artificial intelligence topics (e.g. in [3,[12L28,[30]).

In our scenario of the cleaner world the main system objectives are to keep
clean a building at day, e.g. a museum, and to guard the building at night. To
be more concise we think of a group of cleaning robots that are located in the
building and try to accomplish the overall system goals by pursuing their own
goals in coordination with other individuals. Therefore, four key goals for an
individual cleaning robot were identified. First, it should clean its environment
at day by removing dirt whenever possible. The cleaning robot therefore has to
pick-up any garbage and carry it to a near waste bin. Secondly, it has to guard
the building at night by performing patrols that should be based on varying
routes. Any suspicious occurrences that it recognises during its patrols should be
reported to some superordinated authority. Thirdly, it should keep operational by
monitoring its internal states such as the charge state of its battery or recognised
malfunctions. Whenever its battery state is low it has to move to the charging
station. Fourthly, the robot should always be nice to other people that are close-
by. This means that it should not collide with others and greet when this is
appropriate.



48 L. Braubach et al.

These top-level goals of a cleaner agent can be further decomposed to more
concrete subgoals. For example to clean up a piece of waste the robot first has
to move to the waste and pick it up. Then it has to find a waste bin, move to the
waste bin’s location, and drop the waste into it. Similar refinements also apply
to the other top-level goals.

3 Modelling Goals

The importance of goal representation is reflected through a variety of proposals
for goal descriptions during the requirements acquisition, analysis, and design
phases. In [35] three different kinds of goal criteria are stated that correspond
to the distinctive features one would naturally deduce when considering a goal
as a first class object; namely the object’s type, the object’s attributes, and the
object’s relations to other objects.

First characteristic is the goal type for which different taxonomies exist,
which emphasise miscellaneous aspects. System goals represent high-level goals
the software system needs to achieve to fulfil the system requirements and can
be opposed to individual goals of single actors in the setting [9]. Another goal
type distinction is made between so-called hard and soft goals [35]. Hard goals
describe services the system is expected to deliver whereas soft goals refer to non-
functional properties such as the expected system qualities like performance or
excellence issues.

A very important classification relates to the temporal behaviour of a goal and
additionally fits to the way in which humans tend to think and talk about goals.
This classification is especially important for the design and implementation of
agent based software, as it provides an abstraction for certain generic application
behaviour. For example, a so-called achievement goal represents the common
natural understanding of the word ’goal’ as something to be achieved [9,37]. In
contrast, a maintenance goal is introduced to observe and maintain some world
state as long as the goal exists [9].

Second characteristic of goals are their attributes that consist of properties
relevant for all types of goals like name, description, priority, and other attributes
that are type specific such as the target state specification for an achievement
goal. Furthermore, goals can exhibit an arbitrary number of application specific
attributes that are directly related to the problem domain like the desired lo-
cation as part of a movement goal. Additionally, for implementing the Jadex
BDI system several general goal properties were identified that are important
for the interpretation of goals in the running system. Contrary to goals in natu-
ral language, which bear on a huge amount of implicit context and background
knowledge, the semantics of executable goals, like the exclusion or retry mode
for plan selection, has to be defined exactly [25].

Third characteristic of goals are their relationships to other objects, in first
consequence to other goals. Such relationships between goals are typically hi-
erarchical goal structures, which highlight refinement relationships with respect
to the used refinement strategy. A common strategy used in several modelling



Goal Representation for BDI Agent Systems 49

approaches are the AND/OR graphs [22]. An AND-refined goal demands that
all its subgoals become satisfied while an OR-refined goal is fulfilled when at
least one of the alternative subgoals is reached. An extensive discussion about
goal relationships can be found in [35].

When talking about goals as objects it becomes apparent that they do not
only exhibit these different characteristics, but additionally they need to be
created in a suitable moment in the context of some actor to whom they belong.
Only when new goal instances are generated during an agent’s lifetime the agent
will show rational behaviour in the sense that it proactively pursues its ideas [11].
And only when it exactly knows which goals actually exist and how the goals are
interrelated, some deliberation mechanism can guide the agent to decide which
goals should be pursued. We will now go on to discuss these issues with respect
to the example scenario, thereby developing an explicit goal model and lifecycle.

3.1 Lifecycle

In the cleaner world scenario different goals can be identified for a cleaning agent.
We will start our discussion with the cleanup-dirt goal, as it most closely matches
the goal concepts commonly found in the literature. The desired behaviour of the
agent is to pick up dirt whenever it sees it. This includes the statement of what
to do (pick up dirt) and when to do it (sees dirt). Once the agent has achieved
the goal, it can drop its intention towards it. To represent this goal in an agent
application the developer should be able to specify in addition to the state to
achieve, the condition (called production rule in [II]) when this goal should be
created, therefore giving an answer to the question how an agent derives new
goals.

When it notices some dirt in the environment and cannot clean-up the waste
at the moment, e.g. because it already carries waste to the waste bin, it should
be capable of memorising the new dirt positions to come back later and remove
the litter. Hence, it should be able to form new still inactive clean-up goals
(options) that should become active as soon as it is appropriate. Assuming that
the environment changes during a time the agent cannot observe this area the
agent might pursue a goal that is not appropriate any longer, e.g. some rubbish
is blown away by the wind and the agent heads towards the memorised but
outdated waste position. As soon as it can see the target position, it will notice
that the waste has vanished and should drop the clean-up goal. Therefore, in
addition to the conditions for goal creation, the representation of goals should
allow the specification of the conditions under which a goal should be dropped.

In contrast to the cleanup-dirt goal, which is created and later dropped for
each piece of waste, other goals (e.g. look for dirt, patrol) would be directly
given to the agent when it is born and should persist during the lifetime of the
agent. It can be noted that, although it is natural to say that the agent has
both of these goals, only one of these goals is actively pursued depending on
the daytime. Therefore, when representing such goals, the agent developer has
to specify the context in which the goal should be pursued (e.g. day or night).
Another thing that has to be captured by the goal representation is the fact that



50 L. Braubach et al.

when the agent sees some dirt it will form a new cleanup goal, which should be
prioritised over the look-for-dirt goal. The agent should stop wandering around
searching for dirt and cleanup the dirt it has found immediately. Therefore, the
agent should be able to deliberate about its current goals to decide which one
should be actively pursued and which ones should be dropped or inactivated
(made to an option).

/ Adopted \

1
i=

Creation ) ________ | Q-] Context —)_________} ____._____ Drop
Condition ' Condition i Condition
— iﬂ _‘_’©
t dopt i d
create adop Option [ Suspended ! rop

suspend Finished

Fig. 1. Goal lifecycle

suspend

Legend
bl Negated condition

D—--O Condition guards transition
D---O Condition triggers transition k

activate

finished

In Fig.[ll a proposal for a generic goal lifecycle that meets the requirements
mentioned above is depicted in a UML statechart like fashion. It is shown that a
goal can be in the states New, Adopted or Finished. The initial state of a newly
created goal is New, what means that the goal exists as an idea but is not yet
considered by the agent’s deliberation mechanism. Therefore, the agent has to
adopt the goal to pursue its new objective. By any means, the agent can always
decide not to pursue the goal any more and drop it. The transitions between
the different states can be either forced (not part of goal specification), e.g. a
plan could create a new goal or drop a subgoal, or can be monitored by so-called
conditions (specified as part of a goal). Conditions are annotated to several state
transitions in two different ways to express either that the condition is used as
a guard for the corresponding transition or that it represents the transition’s
trigger (see legend of Fig.[]). This means that a goal instance is created and
adopted every time when the creation condition of this goal fires. Accordingly,
it is dropped when its drop condition triggers.

Most interesting is the complex Adopted state which consists of the substates
Option, Active, and Suspended. Adopting a goal makes this goal desirable to
achieve for the agent and adds it to the agent’s desire structure. The goal can be
seen as an option that could possibly be pursued when the actual circumstances
allow this. To be actively pursued the agent’s deliberation mechanism has to
activate the goal and so initiate the goal processing. The deliberation mechanism



Goal Representation for BDI Agent Systems 51

can also deactivate the goal at any time by moving the goal to the option state
again. Whenever the goal is an option or is active it can be suspended when the
goal’s context becomes invalid which is indicated by the goal’s context condition.
Here, a negation sign at the connection between condition and state transition
indicates that the inverse of the condition is used as trigger for the transition.
The suspension holds as long as the context stays invalid. A suspended goal is
not actively pursued similar to an option, but in contrast to an option it cannot
be activated by the deliberation mechanism due to its invalid context. When the
context becomes valid again the goal is made an option to allow the deliberation
component to reactivate the goal whenever appropriate

3.2 Types of Goals

As already mentioned, an important classification can be made with respect
to the temporal behaviour of a goal. Unfortunately, there is no single exact
set of suitable types of goals that can be used. Rather a multitude of different
specifications and notions emerged from different sources such as methodologies
or implemented systems (see Table [I]).

Table 1. Several Different Goal Types

| [KAOS|Gaia| JACK[PRS[JAM]Jadex]|

achieve

X X X X X

maintain
cease
avoid
optimise
test b'e b'd
query X X
perform X X
preserve be be

X X X X

R A

The KAOS goal-oriented requirements engineering framework [9,[I8] includes
the already mentioned achieve and maintain goals. Additionally, KAOS intro-
duces the negation of the aforementioned types called cease (as opposed to
achieve) and avoid (as opposed to maintain). These two types of goals ease
the description of goals in a natural way and semantically they can be traced
back to the original types [35]. Furthermore, optimise goals for maximising or

3 An interesting analogy to the goal lifecycle can be found in the operating systems
area. The substates (option, active, suspended) of the adopted state resemble the
states ready, running, blocked known from operating system processes [32]. Just like
a blocked process, a suspended goal cannot be directly reactivated. In both cases a
higher-level authority (the OS scheduler resp. the agent’s deliberation mechanism)
is responsible for selecting among the available options.



52 L. Braubach et al.

minimising some target value are proposed. The well-known Gaia methodology
[38] does not introduce any goals at all, but uses liveness and safety properties for
roles. Liveness properties describe states the agent has to bring about, whereas
safety properties specify system invariants. In this way they are comparable with
the achieve and maintain goal semantics.

The JACK agent system [I5] offers in addition to achieve goal semantics
the test and preservéj, goal types. A test goal can be used to find out if a
condition holds and a preserve goal is the passive version of a maintain goal in
the sense that the goal controls a state and vanishes when this state is violated.
In contrast to JACK, the C-PRS system [I7] supports maintain goals at the
implementation level. Besides achieve and maintain goals, the JAM interpreter
[16] and the Jadex system [26] support query goals, which are similar to achieve
goals. Query goals allow for an easy information retrieval from the beliefbase
and when the result is not available the BDI mechanism will invoke plans for
retrieving the needed information. The fourth type of goal that JAM and Jadex
support is the perform goal, which is not related to some desired world state but
to an activity. It ensures that an activity will be done in some future state [16].

In the rest of this paper we will concentrate on the perform, achieve, query,
and maintain goal types. From Tabldl]l one can see that the achieve and the
maintain goal types are especially important, because they are in widespread
use. Cease and avoid, on the other hand, exhibit the same execution semantics as
achieve resp. maintain. The optimise goal belongs to the class of soft goals, which
is outside the scope of this paper [35]. The perform goal is interesting, because it
does not refer to a world state being achieved or maintained but to activities that
should be performed. Test and query goals serve the same purpose to describe
information acquisition, therefore only one of them is considered. Finally, The
preserve construct is merely called a goal. In fact, it represents just a guarded
action [17].

The following sections take a closer look at those interesting types of goals and
their corresponding properties. Unlike the pure modelling approaches (KAOS,
Gaia) it will be made explicit how goals following these models are processed at
runtime using a BDI interpreter. One important aspect is therefore how their
execution semantics relates to the generic goal lifecycle presented above. This
is handled in a general way by the refinement of the active state, which reveals
special information about the type of goal for goal processing. The example
scenario is used as an evidence for the presented properties and behaviour, where
appropriate.

Perform Goal. A perform goal specifies some activities to be done, therefore
the outcome of the goal depends only on the fact if activities were performed
[16]. Naturally, when no activities could be performed, e.g. because no plan was
applicable in the actual context, the goal has Fuailed. Otherwise, when one or
more plans have been executed the goal can enter the Succeeded state.

4 Tt adds to the confusion about goal types that in JACK the preserve behaviour is
obtained using the @maintain keyword.



Goal Representation for BDI Agent Systems 53

4 Active h

—@®

’_ Succeeded
o

Failed

redo

Fig. 2. Perform goal states

The refined active state of a perform goal is shown in Fig.[2l After being acti-
vated, the In Process state is entered, which triggers the internal plan selection
and execution mechanism of the agent [26]. While plans are executing the goal
stays in the In Process state. When the plan execution is done, i.e. no more
plans are running or waiting for events, the In Process state is exited.

In the cleaner world example the two goals patrol and do-greeting should
be modelled as perform goals, as they do not directly refer to a desired target
state. While the do-greeting goal is finished once the greeting is performed,
the patrol goal should not end when a patrol round is finished. Instead, the
agent should continuously start new patrol rounds while the patrol goal is active.
The redo property is an extension of the original JAM perform goal [16] and
allows specifying that the activities of the goal should be performed iteratively.
Therefore, when leaving the In Process state two state transitions may occur
depending on the redo property. When redo is specified the goal re-enters the
In Process state to re-start plan execution. When redo is not specified the goal
enters one of the end states (Fuailed, Succeeded) causing the Active state to end.
Looking back at the generic goal lifecycle (Fig.[l) one can see that exiting the
Active state also causes the Adopted state to end (finished transition). Therefore,
once the processing of the perform goal has stopped the goal is no longer adopted
by the agent, because it is already reached or failed.

Achieve Goal. An achieve goal represents a goal in the classical sense by spec-
ifying what kind of world state an agent wants to bring about in the future.
This target state is represented by a target condition. When an agent obtains a
new achieve goal that shall be pursued (e.g. a cleanup goal) the agent starts ac-
tivities for achieving the target state (e.g. no waste at given location). When
the target state is already reached before anything has been done the goal
can be considered as succeeded. Otherwise, for a yet unachieved goal the BDI
mechanism is started and plans are selected for execution. Whenever during the
plan execution phase the target condition switches to success all running plans



54 L. Braubach et al.

of that goal can be aborted and the goal is reached. In [37] the description of
an achieve goal is enriched with an additional failure condition, which helps to
terminate the goal when it is absolutely not achievable any more. The difference
to the drop condition introduced in the generic goal lifecycle is that the drop
condition does not determine the final state of the goal. In contrast, the failure
condition indicates that the agent is unable to achieve the goal and therefore the
goal has failed.

/ Active \

Target
Condition

‘ In Process =©

D Unknown

retry

Fallure % _________ | Failed
Condition

1
O

- J

Fig. 3. Achieve / Query goal states

Succeeded

Fig.[3 shows the specific behaviour of an achieve goal. The main difference
to the perform goal type is the target condition that specifies the desired world
state to be achieved. An activated achieve goal will first check its target condition
for fulfilment and enter the succeeded state directly when nothing needs to be
done. Additionally, the failure condition will be checked to abort the goal when
the condition is true. When none of them has fired the goal will enter the In
Process state to start the execution of applicable plans. In contrast to the perform
goal, plan execution may be terminated at any time when the target or failure
condition become satisfied. In this case the goal is finished and moves to the
Succeeded resp. Fuiled state.

When there are no more plans to execute and none of the executed plans
could be completed successfully the goal moves to the Fuiled state. Another
final state Unknown is entered when the execution is finished, some plans have
been executed properly, but the agent cannot determine the truth-value of the



Goal Representation for BDI Agent Systems 55

target condition (e.g. due to insufficient knowledge). Any of the three final states
will cause the finished transition of the generic goal lifecycle (Fig.[) to trigger.
For example, when the given location is clean a cleanup goal is succeeded and
can therefore be removed from agent’s goal structure.

Query Goal. A query goal is used to enquire information about a specified
issue. Therefore, the goal is used to retrieve a result for a query and does not
necessarily cause the agent to engage in actions. When the agent has sufficient
knowledge to answer the query the result is obtained instantly and the goal
succeeds (e.g.an agent wants to find a waste bin and already knows the loca-
tion). Otherwise, applicable plans will be tried to gather the needed information
(e.g.searching for a waste bin).

The underlying model of the query goal resembles to a high degree the achieve
goal [16]. The states of both goals are equal and are depicted in Fig. Bl Main
difference between both goal types is that the query goal requires an informa-
tional result, which is captured by an implicit target condition testing if a result
is available.

Maintain Goal. A maintain goal has the purpose to observe some desired
world state and the agent actively tries to re-establish this state when it is
violated. The perform, achieve, and query goal types represent goals that con-
tinuously cause the execution of plans while they are active. In contrast, an
activated maintain goal may not instantly cause any plan to be executed. Fig.[4]
shows that the maintain goal stays in the Idle state until the maintain condi-
tion is violated. Another difference is that there is no final state. Even when
the maintain condition is currently satisfied the agent always has to monitor
the environment for changes that may violate the condition. The maintain goal
therefore always moves back to the Idle state when processing has been finished
successfully.

In case the processing fails but the agent has no more applicable plan to
execute, the Unmaintainable state is entered, which means that the agent knows
that the condition is violated, but there is nothing it can do about it. Similar
to the achieve goal, a maintain goal may be in the Unknown state when the
agent cannot determine if the plan execution leads to the desired results. From
the Unknown state a transition back to the In Process or Idle state may be
done when the agent can determine the state of the maintain condition. From
both the Unknown and the Unmaintainable state, the goal may periodically re-
enter the In Process state to try out if the goal can be maintained now. This
behaviour is obtained by specifying the recur flag. In contrast to the retry flag,
which manages the sequential execution of applicable plans, the recur flag leads
to a complete restart of goal processing, thereby again considering previously
excluded plans.

Using the maintain condition alone may sometimes lead to undesirable be-
haviour, because of the event driven nature of goal processing in BDI agents.
Consider the maintain-battery-loaded goal of the cleaner agent: When the con-
dition to be maintained is specified as 'chargestate <20%' the agent will move to



56 L. Braubach et al.

/

Active

Target
Condition

Unmaintainable | |

Unknown

Maintain
Condition

Fig. 4. Maintain goal states

the charge-station whenever the energy level drops below 20%. However, as soon
as the level is back at 20% the agent will stop loading its battery, because the
condition is satisfied again. Therefore, it is sometimes necessary to concretise the
condition to be established whenever the maintain condition is triggered. In our
model this can be specified by an optional target condition, which specifies when
the transition to the idle state is allowed. The semantics of this extended type
of maintain goal is therefore: Whenever the maintain condition is violated select
and execute plans in order to establish the (more specific) target condition. In
the example the maintain condition 'chargestate >20%' can be refined to the target
condition 'chargestate=100%" to make sure that the cleaner agent will always do
a full recharge.

All of the specific types of goals (perform, achieve, query, maintain) inherit
the same generic lifecycle presented in section Bl Therefore, in addition to the
properties specific to a goal type (such as failure condition for achieve goals)
the specification of any goal can be enriched by the generic goal properties such
as creation, context, and drop condition. This makes it possible e.g. to easily
specify a maintain goal that should only be pursued in a given context.

4 Goal Realisation in Jadex

The last section presented a generic model for goals in BDI agents and identified
four goal types with distinct execution behaviour. In the following we will shortly
sketch how this execution behaviour is realised in the generic agent framework
Jadex. The next section will then show how applications like the cleaner example
scenario can be easily implemented when such an abstract goal representation
is available at the implementation level.

The Jadex agent framework [26,[7] is built on top of the JADE plattform
[1] and provides an execution environment and an APT to develop agents using



Goal Representation for BDI Agent Systems 57

beliefs, goals, and plans as first class objects. Jadex adopts well established
application development technologies such as XML, Java, and OQL to facilitate
an easy transition from conventional object-oriented programming to BDI agent
programming.

To implement an agent the developer has to create two types of files: One
XML file is used to define the agent by declaratively specifying among other
things the beliefs, goals, and available plans. In addition to this agent definition
file (ADF), for each plan used by the agent the plan body has to be implemented
in a separate Java class. Plan implementations may use the Jadex API e.g. to
send messages, manipulate beliefs, or create subgoals (for details see [25]). An
expression language is used throughout the ADF to establish the connection
between the declarative elements in the ADF and the object-oriented plan im-
plementations. The language follows a Java syntax, but is extended to support
OQL constructs for querying the belief base.

The goal tags in the XML file are read by the interpreter to create instances
of the goals, which implement the state machines presented in section[3l The in-
statiated goal objects themselves take care of their lifecycle by throwing so called
goal-events (leading to the execution of plans) whenever they enter the In Pro-
cess state and by automatically performing the corresponding state transitions
when goal conditions are triggered or the execution of a plan has finished. The
goal conditions and parameters, which are evaluated at runtime, are specified
using the Java/OQL like expression language.

At runtime the system keeps track of the instantiated goals, which may be
created either as independent top-level goals or dispatched as subgoals inside of
a plan. Goal processing is initiated whenever the active state of a goal is entered.
Before a goal is reached, several plans may try to process the goal, even at once,
when specified so. Thereby, plans only have access to a copy of the original goal
object called process goal, to ensure a level of isolation between running plans and
their associated subgoal-hierarchies. When the active state of a goal is exited (e.g.
because the goal is suspended), all associated process goals are dropped leading
to a termination of the corresponding plans and subgoals created by those plans.
For each goal, a history of process goals is kept to remember the executed plans
together with the outcome. This information is used to determine plans which
should be excluded from the applicable plan list, when the goal needs to be
processed again.

5 Example Implementation

The cleaner world scenario is realised as a simulation setting using two different
kinds of agents. Besides the cleaner agents an environment agent acts as substi-
tute for the real surrounding. Using an agent as environmental representation
has the advantage that the setting can be easily distributed over a network of
computers having cleaner agents working in the same environment located on
different platforms.



58 L. Braubach et al.

The cleaner agents use vision and movement plans that interact with the
environment agent following a domain dependent ontolology in which the rel-
evant concepts and actions like waste, waste bin and pick-up resp. drop waste
are defined. They update their internal beliefs with respect to the sensed envi-
ronmental changes and request actions in the environment that may fail under
certain conditions e.g. when two cleaners try to pick up the same piece of waste
simultaneously.

Top-level Goals Subgoals
performpatrol achievepickupwaste
PatrolPlan PickupWastePlan
uses goal achievemoveto uses goal achievemoveto
achievecleanup achievedropwaste
CleanupWastePlan DropWastePlan
uses goal achievepickupwaste uses goal achievemoveto
uses goal querywastebin
uses goal achievedropwaste querywastebin
ExploreMapPlan
maintainbatteryloaded uses goal achievemoveto
LoadBatteryPlan
uses goal querychargingstation querychargingstation
uses goal achievemoveto ExploreMapPlan

uses goal achievemoveto
performlookforwaste
ExploreMapPlan achievemoveto
uses goal achievemoveto MoveToLocationPlan

Fig. 5. Goal - plan overview

In Fig.[la brief overview of the relationships between the used goals and plans
is given. On the left hand side the agents’ top-level goals are shown whereas on
the right hand side the subgoals that are used from within plans are depicted.
For each goal at least one plan is defined that is responsible for pursuing the
goal. As introduced in section [2] a cleaner agent has top-level goals for perform-
ing patrols (performpatrol), cleaning-up waste (achievecleanup) and monitoring its
battery state (maintainbatteryloaded). To avoid the agent doing nothing when it
currently has no duty, a goal template for searching for waste is also defined
(performlookforwaste).

To handle the performpatrol goal a cleaner agent has a patrol plan that ac-
cesses a predefined route from the beliefbase and steers the agent to the actual
patrol points by using the achievmoveto subgoal. Somewhat more complex is
the CleanupWastePlan that is used in response to an active achievecleanup goal.
It employs three different subgoals for decomposing the goal into the sepa-
rate tasks of picking up a piece of waste (achievepickup), searching for a non-
full waste bin (querywastebin) and finally dropping the waste into the wastebin
(achievedropwaste). To be able to resume a suspended cleanup goal the plan also
tests if the agent is already carrying a piece of waste. In the case that the



Goal Representation for BDI Agent Systems 59

agent already possesses the waste the pickup procedure can be omitted. For re-
establishing a violated maintainbatteryloaded goal the LoadBatteryPlan tries to find
a charging station, heads towards it and consumes as many energy as needed. To
find a suitable station a query subgoal (querychargingstation) is used that immedi-
ately returns a result when the agent already knows a station. When this is not
the case, the ExploreMapPlan is used to systematically search for a yet unknown
charging station. This plan is also used in the context of the performlookforwaste
goal to discover new waste in the environment.

< environment <. cleanyl

i
[:‘ Chargingstation HO
i
'
e
'
1 1 I

] w2,
Q\N’as%ebm e ‘Jg\_ﬁﬂi
cleanyl
@ 'aztzﬁ?-n?* i

= cleany2

: [ ] cagingeiaion o 4

1
Bl P

Hleany?
#*hattery 32%
oL L L Tredem
~Envirorment Corirol L I

Togale dayt
oagle daptime S CBWasEEmnn

Waste count: 7

i s L

1 ]

Fig. 6. Cleaner World Example Snapshot

A cleaner agent has three initial goal instances that drive its actions from
birth. An instance of the performlookforwaste resp. the performpatrol goal lets the
agent move around to search for waste or to observe the environment, depending
on the daytime. These two goals are only active, when the agent has no other im-
portant things to do. An instance of the maintainbatteryloaded has highest priority
and monitors the agent’s battery state during its lifetime. In addition, several goal
types are declared for goals that get instantiated and adopted under certain con-
ditions. In the following sections some example goal declarations are explained.
More implementation details can be found in the freely downloadable Jadex pack-
age, which includes a runnable implementation of the cleaner world exampleﬁ In
Fig.[6la snapshot of the running application is presented, which shows the global
environmental view as well as the local views of two cleaner agents.

5 available for download at/http://vsis-www.informatik.uni-hamburg.de/projects|



http://vsis-www.informatik.uni-hamburg.de/projects
/jadex

60 L. Braubach et al.

5.1 The Perform-Patrol Goal

Fig.[dshows the perform-patrol goal as it is specified in the XML agent descriptor
of a cleaner agent. The goal is of type performgoal and is given the name perform-
patrol. The attribute redo was already introduced in the refined perform goal state
chart (see Fig.2]) and causes the goal to be continuously executed as long as appli-
cable plans are available. The exclude attribute is a special flag that in this case
tells the BDI plan selection mechanism that plans should not be excluded from
the applicable plans list once they have been executed. Therefore, the agent will
continue to patrol while the goal is active using any patrol plans it has.

<performgoal name="performpatrol" redo="true" exclude="never">
< contextcondition>
I$beliefbase.is _loading && !$beliefbase.daytime
< /contextcondition>
< /performgoal >

Fig. 7. Peform-patrol goal

The example scenario demands that the agent should only be on patrol at
night. Our system does not yet capture the (positive or negative) contribution
between goals, but the agent has to be prevented somehow from continuing to
patrol while it tries to reload its battery. It is assumed that the agent knows if it is
day or night and if its battery state is low and has to be reloaded. Using these two
boolean beliefs (daytime, is_loading) the developer can specify the contextcondition
of the goal, where $beliefbase refers to the belief base of the agent. The context
condition was introduced in the generic goal lifecycle (Fig.[l) and defines when
the goal can or cannot be active. The perform patrol goal may therefore only
be active when the agent is not loading its battery and it is not daytime. In a
similar way, a perform-look-for-waste goal is defined with a context condition
that is only valid at daytime.

5.2  The Achieve-Cleanup Goal

One purpose of the cleaner agent is to remove all pieces of waste it notices.
The achieve-cleanup goal (Fig.B) is an achievegoal that is instantiated for every
single piece of waste to clean up. The goal contains a parameter waste specifying
which piece of waste to clean up. The given default value of the waste parameter
is specified by a select statement that always evaluates to the piece of waste that
is nearest to the agent when the goal is instantiated. The known pieces of waste
(belief wastes) are sorted by distance (order by clause) to the current location
(belief my_location).

For the agent to keep cleaning up every piece of waste it notices, the creation-
condition as introduced in the generic goal lifecycle (Fig.[) is used to trigger
creation of new goal instances whenever needed. A cleanup goal will be created
whenever the agent knows that there is some waste (belief wastes) and that it is
not currently cleaning (belief is_cleaning). The reason for the second part of the



Goal Representation for BDI Agent Systems 61

<achievegoal name="achievecleanup">
<parameter name="waste" class="Waste'" >
<value>
select any $waste from $beliefbase.wastes order by
$waste.location.getDistance($beliefbase.my location)
< /value>
< /parameter>
<creationcondition>
$beliefbase.wastes.length>0 && !$Sbeliefbase.is_cleaning
< /creationcondition>
< contextcondition>
I$beliefbase.is_loading && S$beliefbase.daytime
< /contextcondition>
<dropcondition>
I$beliefbase.carrieswaste
&& (I$beliefbase.containsFact("wastes", $goal.waste)
|| (select any $waste from S$beliefbase.wastes
order by $waste.location.getDistance(
$beliefbase.my location)) != $goal.waste)
< /dropcondition>
<targetcondition>
(select any $wastebin from $beliefbase.wastebins
where $wastebin.contains($goal.getParameter("waste"))) !=null
< /targetcondition>
< /achievegoal>

Fig. 8. Achieve-cleanup goal

condition is that there is currently no deliberation mechanism telling the agent
which cleanup goal to achieve first when there is more than one present at the
same time. Therefore, the is_cleaning belief is used to assure that only one cleanup
goal at a time is created. As with the perform-patrol goal a context condition is
used to constrain under which circumstances the goal may be active: The agent
should pursue cleanup goals only when it is not loading its battery and only at
daytime. The goal is achieved when the waste is contained in one of the known
waste bins as described in the target condition.

In our example implementation we also added a rather complex dropcondition
for the cleanup goal, which is not necessary for correct operation, but helps to
improve the performance of the cleaner agent. To allow opportunistic cleanup
of new pieces of waste and to avoid unnecessary movement of the cleaner, an
existing cleanup goal is dropped when the agent comes to know that the piece
of waste to be picked up is no longer there or another piece of waste is closer to
the agent.

5.3 The Query-Wastebin Goal

The query-wastebin goal shows how a goal to query for information can be
realised in Jadex (see Fig.@l). Assuming that the agent does not completely
know its environment, the objective of the goal is to find a waste bin that is not



62 L. Braubach et al.

full and near to the agent. This goal is created by a plan as a subgoal of the
achieve-cleanup goal once the agent has picked up some dirt (cf. sect.2).

<querygoal name="querywastebin" exclude="never">
<parameter name="result" class="Wastebin" optional="true">
<value evaluationmode="on _demand">
select any $wastebin from $beliefbase.wastebins
where 1$wastebin.isFull() order by
$waste.location.getDistance($beliefbase.my location)
< /value>
< /parameter>
</querygoal >

Fig. 9. Query-wastebin goal

It is modelled as querygoal and has a parameter result. This parameter is
bound to the nearest not full waste bin, if any, and is evaluated on_demand what
means that the select expression is evaluated whenever the parameter value is
accessed. The targetcondition of the query goal is not stated and therefore the
default target condition for query goals is used. Hence the goal succeeds when
a result is retrieved, i.e. a not full waste bin nearby was found. The implicit
target condition allows for opportunistic goal achievement (see Fig.[]), that is,
the goal succeeds without the execution of any plan if the agent already knows
the location of a not full waste bin.

<maintaingoal name="maintainbatteryloaded">
<maintaincondition>
$beliefbase.my chargestate > 0.2
< /maintaincondition>
<targetcondition>
$beliefbase.my chargestate == 1.0
< /targetcondition>
< /maintaingoal>

Fig. 10. Maintain-battery-loaded goal

5.4  The Maintain-Battery-Loaded Goal

The cleaning agent has to stay operational; therefore it has to monitor its in-
ternal state and will occasionally move to the charging station to reload its bat-
tery. The specification of the maintain-battery-loaded goal is given in Fig.[I0l
The goal is a maintaingoal and therefore includes a maintaincondition and a
targetcondition as present in the refined maintain goal state chart (see Fig.Hl).
The maintain condition monitors the battery state (belief my_chargestate) and



Goal Representation for BDI Agent Systems 63

triggers plan execution whenever the charge state drops below 20%. The refined
target condition causes the battery to be always reloaded to 100% before the
goal moves back to the idle state.

6 Conclusions and Outlook

This paper provides two main contributions. First, the way of how an agent
attains and manages its goals is analysed and a generic lifecycle is proposed
that models the different states of goals in BDI agent systems. Secondly, the
generic goal lifecycle is refined into different goal types which capture commonly
required agent behaviour. Both of these contributions are backed by the cleaner
world example at the conceptual as well as implementation level.

The example shows that the proposed goal model is well suited for a natural
description of an agent-based system. The continuous usage of abstract concepts
in the design and implementation phases considerably simplifies the development
of software agents compared to the current practice of using object-oriented
techniques. Additionally, it helps to preserve the abstraction level throughout
the whole development process. The system is easier to design, as the involved
goal concepts are closer to the way that humans think and act. The transition to
the implemented system is largely simplified, because only minor refinements of
design specifications are necessary to obtain an executable system. Moreover, the
development is less error-prone, as large portions of complex agent behaviour,
such as goal creation and processing, are already implemented in the underlying
agent architecture. Finally, the types of goals available in the agent language
have the additional effect that they may guide the agent developer in its analysis
and design decisions, because they represent a natural and abstract means for
describing the application domain.

This work is also the result of practical considerations when realising the
proposed goal model in an efficient and easy to use software framework. The
model includes those goal types and properties that frequently occured in the
researched systems and methodologies and that have practical relevance for agent
systems we have built so far.

The presented goal model does not cover all important aspects of goals as
they are presented in the introduction. One point that was not addressed by this
paper affects the relations between goals such as hierarchies for goal decomposi-
tion. In this field, especially concerning the requirements and modelling phases,
a lot of research has already been done and it has to be evaluated if these con-
cepts can be successfully transferred to the design and implementation phase of
MAS. Another important aspect of goals that was covered only marginally in
this paper is goal deliberation. With the help of deliberation mechanisms, the
agent is able to select between different goals, detect goal conflicts and handle
them appropriately. The precondition for goal deliberation is the explicit and
declarative representation of goals, which is not reflected in actual agent sys-
tems and agent languages. Therefore, the conceptualization of the introduced
goal model is the foundation for further explorations of different deliberation
mechanisms.



64

L. Braubach et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Bellifemine, G. Rimassa, and A. Poggi. JADE — A FIPA-compliant agent frame-
work. In 4th Int. Conf. Practical Applications of Agents and Multi-Agent Systems
(PAAM-99), pages 97-108, London, UK, December 1999.

F. Bergenti, L. Botelho, G. Rimassa, and M. Somacher. A FIPA compliant Goal
Delegation Protocol. In Workshop on Agent Communication Languages (AAMAS
2002), 2002.

R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-agent pro-
grams. In Proceedings of the First International Workshop ProMAS, pages 43-49,
Australia, 2003.

R. H. Bordini and J. F. Hiibner. Jason User Guide, 2004.
http://jason.sourceforge.net/.

M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
1987.

M. Bratman, D. Israel, and M. Pollack. Plans and Resource-Bounded Practical
Reasoning. In Philosophy and AI: Essays at the Interface, pages 1-22. The MIT
Press, 1991.

L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short
Overview. In Net.ObjectDays 2004: AgentExpo, 2004. (to be published).
http://vsis-www.informatik.uni-hamburg.de/papers/jadex_node.pdf.

P. Busetta, N. Howden, R. Ronnquist, and A. Hodgson. Structuring BDI Agents
in Functional Clusters. In Intelligent Agents VI, ATAL ’99. Springer, 2000.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20(1-2):3-50, April 1993.

M. Dastani, F. de Boer, F. Dignum, and J.J. Meyer. Programming Agent Delib-
eration: An Approach Illustrated Using the 3APL Language. In Proceedings of
AAMAS’03, 2003.

Frank Dignum and Rosaria Conte. Intentional Agents and Goal Formation. In
Agent Theories, Architectures, and Languages, pages 231-243, 1997.

J. Firby. An Architecture for A Synthetic Vacuum Cleaner. In Proc. of the AAAI
Fall Symp. Series Workshop on Instantiating Real-World Agents, Raleigh, NC,
October 1993.

M. Georgeff and A. Lansky. Reactive Reasoning and Planning: An Experiment
With a Mobile Robot. In Proceedings of the 1987 National Conference on Artificial
Intelligence (AAAI 87), pages 677-682, Seattle, Washington, July 1987.

F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Development
Methodology: Processes, Models and Diagrams. In Proc. of AAMAS02. ACM
Press, 2002.

N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents -
Summary of an Agent Infrastructure. In Proc. 5th ACM Int. Conf. on Autonomous
Agents, 2001.

M. Huber. JAM: A BDI-Theoretic Mobile Agent Architecture. In 3rd Annual
Conf. on Autonomous Agents (AGENTS-99), pages 236—243, New York, May 1-5
1999. ACM Press.

F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A High Level Supervision
and Control Language for Autonomous Mobile Robots. In Proc. of the IEEE Int.
Conf. on Robotics and Automation, pages 43—49, Minneapolis, April 1996.

E. Letier and A. van Lamsweerde. Deriving operational software specifications from
system goals. In Proc.of the 10th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 119-128. ACM Press, 2002.


http://jason.sourceforge.net/
http://vsis-www.informatik.uni-hamburg.de/papers/jadex_node.pdf

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

Goal Representation for BDI Agent Systems 65

M. Luck and M. d’Inverno. Motivated Behaviour for Goal Adoption. In Multi-
Agent Systems: Theories, Languages and Applications - 4th Australian Workshop
on Distributed Artificial Intelligence, pages 58—73. Springer-Verlag, 1998.

A. Moreira, R. Vieira, and R. Bordini. Extending the operational semantics of a
BDI agent-oriented programming language for introducing speech-act based com-
munication. In Proc. Declarative Agent Languages and Technologies (DALT-03),
held with AAMAS-03, 2003.

J. Mylopoulos. Requirements-Driven Information Systems Development. Invited
Talk, AOIS’99 at CAiSE’99, Heidelberg, Germany, 1999.

N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.
T. J. Norman and D. Long. Goal creation in motivated agents. In Intelligent
Agents, Proc. of ATAL’95, pages 277—-290. Springer-Verlag, 1995.

L. Padgham and M. Winikoff. Prometheus: A methodology for developing in-
telligent agents. In 3rd Int. Workshop on Agent Oriented Software Engineering
(AOSE02), July 2002.

A. Pokahr and L. Braubach. Jadexr  User  Guide, 2004.
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/download.php.
A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP — in search of innovation, 3(3):76-85, 2003.
M. Pollack. The Uses of Plans. Artificial Intelligence, 57(1):43-68, 1992.

A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In 7th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, 1996.

A. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. of the 1st
Int. Conference on Multi-Agent Systems (ICMAS’95), pages 312-319. The MIT
Press, 1995.

S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1995.

M. Somacher, M. Tomaiuolo, and P. Turci. Goal Delegation in Multiagent System.
In Proc. Tecniche di Intelligenza Artificiale per la ricerca di informazione sul Web,
Siena, 2002.

A. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, 2001.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interfer-
ence Between Goals in Intelligent Agents. In Proceedings of IJCAI 2003, August
2003.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Exploiting Positive
Goal Interaction in Intelligent Agents. In Proceedings of AAMAS’03, 2003.

A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In
Proc. RE’01 - Int. Joint Conference on Requirements Engineering, pages 249-263.
IEEE, 2001.

M. Winikoff, J. Harland, and L. Padgham. Linking Agent Concepts and Method-
ology with CAN. http://citeseer.ist.psu.edu/497423.htmll

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & Proce-
dural Goals in Intelligent Agent Systems. In Proc. of KR03. Morgan Kaufmann
Publishers, 2002.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.


http://vsis-www.informatik.uni-hamburg.de/projects/jadex/download.php
http://citeseer.ist.psu.edu/497423.html

	Introduction
	Example Scenario
	Modelling Goals
	Lifecycle
	Types of Goals

	Goal Realisation in Jadex
	Example Implementation
	The Perform-Patrol Goal
	The Achieve-Cleanup Goal
	The Query-Wastebin Goal
	The Maintain-Battery-Loaded Goal

	Conclusions and Outlook

