

EVOLUTION OF SERVICE PROCESSES BY
RULE BASED TRANSFORMATION

Christian Zirpins1 and Giacomo Piccinelli2
1University of Hamburg, Germany, 2University College London, UK

Abstract: The notion of service is closely coupled with the notion of process in general
and of workflow in particular. Processes capture the coordination logic for the
various resources involved in the realisation of the service content. Moreover,
processes drive the actual delivery of a service. Internal processes underpin the
capabilities of a service provider. Delivery processes underpin contractual
agreements between service providers and consumers. In both cases, the abil-
ity to adapt service processes in response to changing environmental condi-
tions is fundamental. Change must be rapid but at the same time accurate and
consistent. In this paper, we present the framework for automated process
transformation developed within the context of the FRESCO (Foundational
Research on Service Composition) initiative. The conceptual part of the
framework builds on the standard workflow meta-model proposed by the
WfMC (Workflow Management Coalition). The change logic is expressed by
transformation rules that can be automatically applied to the processes under-
pinning a service. The technical part of the framework specifically targets Web
service platforms and BPEL (Business Process Execution Language).

Key words: Inter-Organisational Integration, Cooperative Interaction Processes, Electronic
Services, Process Evolution, Rule-Based Workflow Transformation

1. INTRODUCTION

Processes in general and workflow in particular are at the core of services
and service-oriented computing (Papazoglou and Georgakopoulos, 2003).
The realisation of a service depends on the value-added coordination of mul-
tiple resources. The coordination logic must be expressed in a way that is at
the same time easy to understand for the human designer and effectively

 Christian Zirpins and Giacomo Piccinelli

manageable by the execution infrastructure. Workflow frameworks of the
type proposed by the Workflow Management Coalition (WfMC, 2004) in-
clude process models and notations, organisational and resource models, in-
tegration and execution models, development methodologies, as well as exe-
cution and management platforms.

Services in general and families of services in particular depend on a
multiplicity of processes. A first categorisation of service processes is based
on the distinction between internal and delivery processes. Internal processes
encompass all the activities that service providers perform in order to realise
the core capabilities of a service. Using the freight environment as an exam-
ple, the core capabilities of a freight service revolve around the handling and
transportation of goods. Delivery processes encompass all the activities that
service providers perform in order for the service consumer to access and
use the core capabilities of a service. In the freight example, this could be
advertisement of destinations and spare capacity, contract negotiation, cus-
tomer interaction or notification management. Service processes are tightly
coupled, both within and across categories. As an example, the possibility to
deliver progress reports to customers requires specific action (e.g. scanning)
to be introduced in the design of the goods-handling processes. Changes at
one level must be consistently propagated at all levels. Failing to do so may
result in operational inefficiencies as well as potential breach of contractual
agreements. The ability to manage change is vital for service providers.

The observation at the base of our work is that the structural change re-
quired for a process often reflects a change in overall logic of the service.
For example, the scanning steps introduced in a goods-handling process
probably derive from the intention of a service provider to include notifica-
tion facilities in a freight service. The immediate problems with a direct
change approach are time and precision. Manual analysis and change of all
the processes related to a service is time consuming and error prone. More-
over, the lack of a systematic approach to process adaptation makes organic
process evolution extremely difficult. The approach we propose is to capture
formally the adaptation requirements for service processes in the form of
pattern-based transformation rules. The approach is substantiated by a rule-
definition language and related process transformation tool.

In Section 2, we outline the relations between services and processes. In
section 3, we discuss the need and scope for automatic process adaptation,
and we detail our proposal for a rule-based approach to change. Sections 4
and 5 provide a description of the actual rule language and process transfor-
mation tool included in the FRESCO toolkit (Zirpins et al., 2004). Related
works are discussed in Section 6. Conclusions from our initial experience are
reported in Section 7.

Evolution of Service processes by Rule Based Transformation

2. PROCESS BASED SERVICES

Effective and efficient support of organisational services depends on the
ability to organise and structure the variety of their internal and external
processes as well as the mutual interrelations between them. A consequent
service model has to consider both, a conceptual part that reflects the back-
ground of organisational services as well as a precise representation that al-
lows for automated processing.

Our conceptual service-model (Piccinelli et al., 2003b) defines a view on
services that is provision-oriented and service-centric. There, cooperation
procedures that constitute atomic, self-contained parts of a service-
relationship are exposed by so-called capabilities. In particular, capabilities
represent purpose, interaction logic and resulting artefacts of the coopera-
tion between organisational roles. A service is made up by a set of such ca-
pabilities.

Figure 1. FRESCO service model

A distinctive characteristic of the model is a separation of capabilities in
terms of service content and -provision. Content reflects the purpose of a
service (e.g. moving goods). It is assumed that it arises from specific re-
sources of the provider (e.g. internal processes, knowledge, people, ma-
chines, etc.). To represent service content, interactions procedures with such
resources are explicitly exposed as meaningful units of content (e.g. trans-
port tracking…) by capabilities referred to as assets. Assets don’t contain
any further cooperative interaction but resource binding (Bussler, 2002) and
have to be provided to clients indirectly by other capabilities. Assets are
grouped into a service core representing the complete content. Provision ad-
dresses procedures that drive a service and make available content (e.g. ne-
gotiating terms and conditions, incorporating assets, etc.), whereby control is
exclusively and proactive. Service provision capabilities (hence called “ca-

 Christian Zirpins and Giacomo Piccinelli

pabilities”) are grouped around core assets in a layer called service shell.
Within a shell, capabilities are mutually interrelated and share a common
view on roles and provision-relevant information. Interrelations embody the
overall behaviour of provision by defining the global interplay of capabili-
ties. A service is fully characterised by defining the basic core and, above
all, the enabling shell (fig.1). Our focus is on the latter.

The conceptual service-notion is further substantiated by an architectural
model referred to as service-oriented architecture (SOA). SOA uses work-
flow (wf) concepts to define a service as a partitioned set of interrelated
components with precise interaction behaviour, where a subset C (service
resources) represents interacting participants and a subset S (shell capabili-
ties) represents their cooperation patterns.
In detail, a role r∈R is responsible for a set of resource components Cr that
are necessary to engage in a service relationship. Actually components are
given by their communication endpoints Er=∪ec,c∈Cr that represent service
interactions. Within an interaction, data artefacts De∈D are communicated.
Shell capabilities appear as glue between ports, representing a self-contained
cooperation task.

The shell is a set of capabilities S⊂C×R×P* where each s=(c,r,Ps)
represents a component that is explicitly bound to a role and enforces a set of
interaction processes. A process p∈Ps defines a set of transitions Tp⊂Ap×Ap
that forms a precedence graph between interaction activities
Ap⊂Ec×R×D*×{in,out}. For a capability s=(cs,rs,Ps), an activity
a1=(ecs,rs,D1,in) represents an incoming interaction that is externally
initiated and includes the communication of artefacts D1 with endpoint ecs
provided by the capability’s role rs itself. An activity a2=(ex,ry,D2,out)
represents an outgoing interaction where the communication of artefacts D2
is initiated by rs and the endpoint ex is provided by some other role ry. For
two capabilities s=(cs,rs,Ps), t=(ct,rt,Pt), the interaction processes
p1∈Ps , p2∈Pt are composed by two activities a1=(ect,rt,D,out),
a2=(ect,rt,D,in) where a1 defines an outgoing interaction of p1 and a2
defines an incoming interaction of p2.

The capability-notion from the conceptual model maps to SOA in the
sense that implicit semantics of architectural elements (e.g. by ontology-
associations) define the purpose of interaction logic that emerges from the
flow of interaction activities and results in the flow of data artefacts. Fur-
thermore, the concept of capability interrelation is achieved by composition
of interaction processes.

As the SOA model is based on fundamental workflow concepts, it can be
mapped to the WfMC metamodel (WfMC, 2002). Subsequently, service
specifications, referred to as service-schemata, are represented in the XPDL
workflow language.

Evolution of Service processes by Rule Based Transformation

For illustration, we will outline the example of a compound transport
service. This logistic end-to-end service combines the transport of goods
over multiple legs that are served by different carriers. Related organisa-
tional roles include FreightMixer (F) the compound service provider, various
transport carriers (Tx, where x is the leg number they serve), an insurer (I)
and a customer (C). A major task of F that we will look at, is the control of
cooperative handover procedures between Tx and Tx+1 serving two consecu-
tive legs Lx and Lx+1. Handover control includes a standard procedure for
trouble free cases as well as a procedure to resolve problems like delay or
disaster happened in a leg (fig.2). The overall task is considered as a self-
contained capability of the service.

Figure 2. A compound end-to-end transport service

In more detail, the standard handover procedure between a current leg Lx
and the next leg Lx+1 starts with F waiting for a notification from Tx. In the
normal case, F notifies I and C about the partial result as well as Tx+1 about
the beginning of his leg and initiates the next handover procedure (fig.3).

Figure 3. Handover control capability

In case of a problem, F starts a problem handling procedure that is mod-
elled as a separate interaction process. There, F waits for a problem report
from Tx. If there was a delay, F starts some compensation and proceeds. In
case of disaster, F has to redefine the transport route and re-initiate the trans-
port chain. The complete set of handover procedures forms the handover
control capability. The capability is part of the transport-service shell and

 Christian Zirpins and Giacomo Piccinelli

associated with F. All activities represent an interaction with a specific com-
ponent provided by a specific role. In the figure, only (recursive) capability
interrelations are shown (dotted lines). The other activities associated with F
represent interactions with assets; all others embody interactions with par-
ticipant resources.

3. SERVICE PROCESS EVOLUTION

Back on conceptual level, services are often required to adapt to change
in terms of both the user needs and the operational conditions of service pro-
viders. To an extent, flexibility can be built into the structure of a service. An
example is the ability of a freight service to support different types of pack-
aging. Still, there are degrees of flexibility as well as operational capabilities
that cannot be supported by a given realisation for a service. In the previous
example, the possibility to transport perishable goods might simply not be
available. Flexibility comes at a cost.

The engineering of a service is substantially based on a complex work of
balancing conflicting requirements. In terms of service offer, a rich set of
options is likely to attract a wider range of customers, and to provide a better
fit for the needs of individual customers. The issues are complexity and cost.
More options imply a more complex service design, and a more expensive
service infrastructure. In the freight example, the option to transport perish-
able goods is likely to involve a completely different technical and norma-
tive infrastructure. The common approach is to target specific customer
segments, and to prioritise the requirements coming from such customers.
Still, the more a service is successful the more the need for change tends to
emerge. Existing customers will demand better integration and customisa-
tion. Prospective customers will demand extensions to the basic service of-
fer. A systematic approach to change is essential for the organic evolution of
a service.

 The evolution of a service essentially depends on two factors: processes
and resources. New capabilities may require new types of resources. In the
previous example, the transport of perishable goods requires refrigerated
containers. In addition, the realisation of new capabilities requires new proc-
esses, for the coordination of new and existing resources. In the example,
specific activities will be required for the setting and verification of the tem-
perature for the containers, as well as for the hand-over of the containers at
different stages of the transportation. Entirely new processes are occasion-
ally required, but service extension and customisation are mainly based on
the adaptation of existing processes. A coherent and consistent evolution of

Evolution of Service processes by Rule Based Transformation

all the processes underpinning a service is essential for the service itself to
be operationally efficient and meet customer expectations.

The approach we propose for the evolution of service processes is based
on the concept of transformation rule. The change logic is captured explic-
itly in the form of sets of rules, which can then be applied systematically to
sets of service processes. A software tool supports the automatic application
of the rules to the processes. The formal specification of the rules, a descrip-
tion of the software tool, and an application example are presented in the
following sections.

The current model for the transformation rules is based on pattern-
matching and direct replacement. The service designer specifies patterns for
the portions of a process that need modifications, as well as the changes to
apply to the actual processes that match the pattern. The simplicity of the
model reflects fundamental requirements such as usability and precision.
Current practices revolve around direct changes to process specifications
based on a find and replace approach. The rule-based solution we propose
builds on current practices in an attempt to improve adoption. Techniques
that are more complex would involve costly learning efforts for service de-
signers. Most importantly, the simplicity of the model makes it easier for
service designers to appreciate and verify the impact of change. Service de-
signers are ultimately responsible for the result of changes and modifica-
tions. Building confidence in the change model is essential.

A direct benefit of explicit formalisation for the changes required to the
service processes is consistency. A complete view of the change logic facili-
tates a systemic view of the impact that the changes will have on the service.
Relations between different types of changes become more visible, and con-
flicts as well as synergies become apparent. A coherent view of the change
plan enables a more direct validation of process changes with respect to the
actual service evolution requirements. In particular, an explicit evolution
plan provides a base for tracing service-level changes to structural changes
in service processes, and ultimately to service realisation and delivery.

4. RULE BASED SERVICE TRANSFORMATION

In the SOA model, the definition of service processes is based on work-
flow concepts. The subsequent approach to systematic change of SOA ser-
vice-schemata applies a rule based workflow transformation language that is
described in this section. This language allows describing change strategies
for general workflow configurations that can be globally enforced. Thereby
the effects of change can be individually restricted to a useful context (e.g.
only service processes for private-customers are to be changed but not those

 Christian Zirpins and Giacomo Piccinelli

of business-customers). Within this context, processes containing an inap-
propriate configuration are identified. Changes are given as transformation
instructions from the base-configuration into a desired target-configuration.
These transformations are then applied to all selected processes in a com-
plete, precise and reversible way.

Change strategies are structured into sets of individual transformation
rules. Each rule contains a process-selection-part to restrict the application
context, a match-part to identify the base-configuration within processes of
the context and a replacement-part to transform the processes as desired.

Systematic change is fundamentally based on workflow patterns that al-
low reliably identifying specific structures throughout an extensive collec-
tion of processes. Generally, a pattern enumerates and names workflow ele-
ments with respect to a set of match-conditions:

<pattern type>
 <match condition1>,
 …
 <match condition n>;

Each of the match-conditions describes requirements for a subset of
workflow elements. Workflow elements that satisfy the requirements are
bound to a specific name. Requirements are given in terms of type, cardinal-
ity and state:

<element type> {<cardinality>} : <binding name>
 <Boolean expression>;

Type requirements restrict elements to a specific type. Thereby, types are
classes of workflow elements as specified in the XML Schema of XPDL
(WfMC, 2002).

Cardinality requirements restrict a valid match to a specific number of
elements. By default, exactly one element is matched. Other ranges can be
specified by different modifiers. The optional (?) modifier makes a match
condition non-obligatory. An asterisk (*) causes multiple bindings (includ-
ing zero) of elements and results in a set that contains all matching elements
except for those matched in previous parts of the pattern. Existence (+) is
similar to asterisk, but requires the element set to be non-empty. Exclusion
(–) acts as a guard because pattern matching fails in case any such element
exists. As a special case of condition, exclusion can be defined for a con-
junctive combination of sub-conditions.

State requirements are specified as a Boolean expression in terms of ele-
ment attributes and associations. Within expressions, attribute values of all
elements bound within the whole pattern can be accessed, evaluated and
combined by various operators. In addition to standard element comparison
(==,!=), numerical comparison (<,>,<=,>=), arithmetic (+,–,*,/) unary

Evolution of Service processes by Rule Based Transformation

(+,–) and Boolean (and,or,not) operators, also string operations (con-
tains,+) ant type castings (str,int,bool,date) are possible. Contained
elements (specified by XPDL as parts of an XML Schema complex type) are
either accessible via dot notation or by their obligatory Id attribute (e.g.
myProcess.activities["start"].name).

In Transformation rules, the process-selection-part is given as a specific
selector-pattern that consists of exactly one selector-condition. The selector-
condition always prescribes the element-type Process together with the +
modifier. The state-requirement allows specifying an expression that de-
scribes the process instances to be considered. In the following example, all
processes are pre-selected, whose name attribute contains “handover” and
who are part of a workflow package, created before 2004. Also, note that the
expression includes type conversion.

RULE "transport: conditionally add insurer notification"
FOR_ALL_PROCESSES p
 p.name contains "Handover",
 date(p.package.packageHeader.created)
 < date("01/01/2004 00:00");

The match-part of a rule is specified by a match-pattern. The match-
pattern prescribes a specific configuration of arbitrary workflow elements
whose existence is a precondition for further processing. Additionally, it de-
clares the binding of element enumerations that result from condition
matches, referred to as condition-match-enumerations, for further process-
ing. The complete match of a pattern results in a set of condition-match-
enumerations referred to as pattern-match-set. If a condition is not unique, it
can be possibly matched in multiple ways. Subsequently, a match-set is one
permutation of the possible condition-match-enumerations. Here, two appli-
cation semantics are possible: Either to apply the remaining rule for all
match-sets individually (match all) or to apply it exactly once (match once).

The following example illustrates a pattern with match-all semantic and
exclusion of two simultaneous conditions. It describes a specific single activ-
ity “compensation” that is only matched if there does not exist another spe-
cific activity “information” as well as a transition that links them together. If
this configuration is found in a process multiple times, the rest of the rule
will be applied for all occurrences of “compensation” activities individually.

MATCH_ALL
 Activity start_compensation:
 start_compensation.name == "F starts compensation";
 EXCLUSION "excludeIfInformed"
 Activity inform_insurer:
 inform_insurer.name == "I is informed";
 Transition inform_compensate:
 inform_compensate.from == inform_insurer,
 inform_compensate.to == start_compensation;;

 Christian Zirpins and Giacomo Piccinelli

A rule is concluded by a replacement-part that defines how to transform
the match-set. It consists of transformation operations for all condition-
match-enumerations of a match-set. The default operation is removal so that
an empty replacement-part leads to the removal of the complete match-set.
To preserve a condition-match-enumeration it has to be explicitly referenced
in the replacement part whereby all element attributes can be modified. Ad-
ditionally, the creation of new elements can be instructed that are to be
added to the process. After creation, attributes are initialised with default
values that can be modified as appropriate. Syntactically, element creation
consists of a type, a name and various attribute value assignments.

<element type> : <binding name>
 <attribute name> = <expression>,
 …
 <attribute name> = <expression>;

To affect the placing of elements within a process, a special attribute
called “container” is introduced that allows accessing and changing the par-
ent of any element. When using references to optional elements of the
match-set, the transformation operation has to be declared optional, too.

In the example, the match-set contains only a single activity. The exem-
plary replacement-part preserves this activity by referencing it initially. Ad-
ditionally it instructs the creation of another activity and a transition that
connects both activities.

REPLACE_WITH
 start_compensation;
 Activity notify_insurer:
 id = "notify_insurer",
 name = "Notify insurer",
 implementation = No();
 Transition compensation_notify:
 id = "compensation to notify",
 from = start_compensation,
 to = notify_insurer;

To enforce changes, specified by a number of rules, the aggregated rule
set is applied to a pool of workflow processes as follows:

1. Rules are taken from the rule set one at a time. They are applied to a
process pool individually as described in the next steps.

2. Initially, the selector-pattern is applied to the process pool. For each
process within the pool, the pre-selection condition is evaluated exactly
once. If the Boolean expression evaluates true, the process is selected for
further processing.

3. In the next step, each pre-selected process is checked against the match-
pattern. For each condition of the pattern, corresponding elements are
collected that satisfy the type- and state-requirements. A subset of these
elements is bound with respect to the cardinality requirement whereby

Evolution of Service processes by Rule Based Transformation

bound elements are excluded from further matches. In terms of sequence,
obligatory conditions (none or + modifier) are matched first, followed by
optional single matches (?) and finally optional enumerations (*).
In case of non-unique patterns, all permutations of binding combinations
are considered. The pattern matching fails if a) a match condition fails or
b) an exclusion condition is violated. In this case, the processing is termi-
nated. Otherwise, the resulting matches are structured into pattern-match-
sets of condition-match-enumerations, each set representing one binding
permutation. Depending on the match-semantic, either all (match-all) or
exactly one match-set (match-once) is further processed.

4. Finally, the sequence of match-sets is transformed one at a time as speci-
fied in the replacement part of the rule. All non-referenced condition-
match-enumerations are removed from the process. All others are modi-
fied as instructed. New elements are created and added to the process.
For the resulting process, a basic consistency check is done that detects
obvious violations of the process structure and rolls back the transforma-
tion in case of an error. The transformation also fails in case of unbound
references.

To illustrate the usage of transformation rules for changing service proc-
esses, we revisit the transport-service example. Let’s assume that Freight-
mixer‘s management decides to change the business procedure. In a first
change, the insurer ought to be informed after a problem compensation pro-
cedure was started. For obvious reasons, this is not necessary if the insurer
was informed directly before. For this change, the rule introduced before can
be used to detect and transform every such situation.

In a second change, all interaction processes of any cooperation ought to
be stripped down by removing costly notifications of the customer. This can
be achieved by the following rule:

RULE "transport: remove notifications"
FOR_ALL_PROCESSES p
 p.name contains "Handover";
MATCH_ONCE
 Activity{*} a IN notificationActivities:
 a.name contains "C is notified";
REPLACE_WITH
 FOR_EACH a IN notificationActivities:
 name = "activity without function",
 route = Route();

The second rule is an example of match-once semantic. This is sufficient
because the match condition of the pattern is unique. Elimination of notifica-
tions is done by changing interactions into inactive routes, thereby omitting a
complicated change of transitions for the sake of simplicity. After adding
both rules to a combined rule set, they are applied to the service specifica-
tion. The result is a change in both interaction processes of the handover

 Christian Zirpins and Giacomo Piccinelli

control capability (fig. 4). In both processes, the notification activities disap-
peared. (Actually, they are changed to trivial routing activities that are sim-
plified as single transitions in fig. 4. This is also visible in fig.6, where the
associated tool shows an out/in comparison (“diff”) of the change effects.) In
addition, the insurer is informed after a compensation activity, but only in
the case where he was not already informed before.

Figure 4. Changed handover control capability after rule application

5. PROTOTYPE

As proof of concept, we developed the functionality of rule based work-
flow transformation as part of a prototype environment referred to as
FRESCO Toolkit or FrescoTK1. FrescoTK is an implementation of the
FRESCO SOA. It implements a fundamental way for service realisation as
well as a set of crucial service engineering mechanisms (Zirpins et al., 2004).

Major implementation technologies include the Open Grid Service Archi-
tecture OGSA (Foster et al., 2002) together with specific aspects of the more
general Webservice Architecture (Tsalgatidou and Pilioura, 2002) and a
BPEL enabled workflow management system. Fig 5 provides an architec-
tural overview.

In the toolkit, FRESCO services are implemented as sets of OGSA Grid-
service-components, divided in two subsets: capabilities and resources. Re-
sources are implemented as conventional Gridservices, extended by a set of
OGSA service-data attributes. Capabilities are components that can be ac-
cessed as Gridservices too, but also proactively enforce service specific be-
haviour.

1 FrescoTK is available under academic free licence at www.servicecomposition.org

Evolution of Service processes by Rule Based Transformation

While resources have to be realised and provided outside the scope of
FrescoTK, capabilities are generated and deployed by the FrescoTK on the
basis of a service-schema specification. Internally, they consist of a BPEL
enabled workflow engine that drives the capability's interaction processes.
As BPEL engines are based on Webservice technology, they are not origi-
nally applicable in a grid environment. Thus, capabilities feature an integra-
tion-architecture to bridge between Grid- and Webservices. This integration-
architecture uses various interceptors (represented as proxies and adapters)
that translate calls and convert instance management information.

Figure 5. FRESCO Toolkit architecture

The engineering of services is based on a set of management components.
In brief, these components provide essential functionality to plan, build and
run FRESCO services by service-schema management (Schema Tool), ser-
vice-instance creation and resource management (Aggregation Tool) as well
as service-capability generation and control (Engine Tool). Management
components are designed as tools that provide a GUI for human users. Addi-
tionally, they are designed as system support mechanisms that provide an
API for programmatic use. Therefore, the components are implemented as
java standalone applications and major management operations are accessi-
ble via Grid. Each component is represented as a Gridservice by a proxy, to
which it is connected via Java remote method invocation.

The Schema Tool (fig.6) holds generic specifications of various service-
schemata and makes them programmatically accessible. Its vital characteris-
tic is the ability to apply a variety of transformations to them that allow for
controlled change as well as translation into executable format. Management
operations – provided via GUI and Grid – include storage, retrieval, removal
and browsing of service-schemata, translation of service-schema into execu-

 Christian Zirpins and Giacomo Piccinelli

table BPEL process-schemata as well as change of service-schemata by ap-
plication of customised transformation rules.

Figure 6. FrescoTK service-schema tool

Transformation rules are held in a rule repository. They are directly en-
tered or imported from a file, whereby validation takes place. Then, they can
be applied to service-schemata that are selected from the schema repository.
Revision management allows tracking changes and doing rollbacks in case.
A rule is always applied to one specific revision of a schema. If it leads to
changes in any of the revision's packages, a new local revision is created.
Stable revisions can be chosen to be persisted in the repository.

Figure 7. Schema Tool Architecture

Rules are processed by the rule engine that is embedded in the schema-
tool architecture (fig.7). There, it is used by the schema-tool core to provide
transformation services for GUI and Grid (via RMI-connected proxy) access.

Evolution of Service processes by Rule Based Transformation

The rule engine is based on the FRESCO XPDL core; a Castor-generated
XML binding API (ExoLab, 2004) that implements XPDL elements as
beans, using Jakarta Beanutils (Jakarta-Project, 2004). Here, support of
mapped and indexed bean properties allows for rich rule expressions; i.e.
process.activities[5] (indexed property) or extendedAttrib-
utes[“myAttribute”] (mapped property). Such expressions are im-
plemented using ANTLR (Parr, 2004) and a grammar of this language is
available as part of the FRESCO Toolkit's source code. The engine itself
implements the change algorithm as explained in the previous section.

6. RELATED WORK

The FRESCO service model is mainly related to work from three differ-
ent areas of inter-organisational process management. In BPM (business
process modelling & management), virtual enterprises and inter-enterprise-
processes are a major concern (Bussler, 2001, Georgakopoulos et al., 1999,
Perrin et al., 2003, Schuster et al., 2000, Baïna et al., 2003). The DySCo pro-
ject (Piccinelli et al., 2003a) introduced a basic process-based service model
and developed methods to deduce participant-related sub-processes for ser-
vice control. Inter-organisational workflow adds concepts of distributed con-
trol structures (van der Aalst, 1999) and technology of related management
systems (Mecella et al., 2001, Colombo et al., 2002). Finally, the focus of
service composition (Papazoglou and Georgakopoulos, 2003) is on combin-
ing atomic functions of loosely coupled systems (Webservices) by processes
(Casati et al., 2001, Dumas et al., 2002, Bhiri et al., 2003). The view on ser-
vices adopted in FRESCO combines concepts from these areas as regards
inter-organisational business processes, workflow architecture for their con-
trol and service technology for their implementation. It adds a cooperation
model with novel service-oriented concepts (e.g. service capabilities with
explicit separation of service content and service provision)

The issue of evolution for process specifications has been object of atten-
tion for quite a few years, both from the scientific community and the indus-
try. BPR (Business Process Re-engineering) was a major area of activity in
the late 1990s’ (Hunt, 1996). The results produced cover extensive require-
ments analysis, as well as methodologies and techniques to address the vari-
ous technical and organizational issues related to process change (i.e. (Sethi
and King, 1998, Piccinelli et al., 2002)). BPR activities have been substan-
tially based on direct intervention on process definitions by teams composed
of process engineering and business experts. The rule-based approach we
propose would complement the operational model used in BPR environ-
ments.

 Christian Zirpins and Giacomo Piccinelli

A second important line of activity for process evolution is based on data
mining techniques applied to the process execution logs generated by work-
flow management platforms (Agrawal et al., 1998, Srinivasa and Spiliopou-
lou, 2000). The focus is on the identification of patterns in the execution
trace of multiple process instances in order to infer areas of improvement for
the specification of the process. Patterns can involve individual processes or
span groups of related processes (Cook and Wolf, 1998). The patterns identi-
fied by the data mining techniques can be combined with the technical and
domain expertise of process designers in order to define the evolution strat-
egy for the processes. The rule-based approach we propose can be used to
capture and execute the chance strategy.

In terms of workflow patterns, fundamental research has been done in the
Petri-net community (van der Aalst et al., 2000). Additionally, concepts to
ensure consistency of changes (e.g. workflow inheritance) where proposed
(van der Aalst and Basten, 2002). Our approach can directly benefit from
this foundation and helps transporting it to practice.

7. CONCLUSION

The capability to adapt the processes underpinning a service is essential
for service evolution and customisation. The resource base of a service pro-
vider changes over time. Similarly, customer requirements change and diver-
sify. The alignment between service logic and the underlying realisation and
delivery processes of a service can become an issue for providers, and ulti-
mately also for the consumers.

The rule-based framework we propose for the adaptation of service proc-
esses balances usability and precision against semantic and abstraction rich-
ness. The pattern-matching model used in the transformation rules is close to
the find-and-replace model normally used by service designers. Rules add
the benefit of a systematic approach to the specification as well as the appli-
cation of the change logic. The combined use of the rule model and the tool
developed for rule application reduces the risk of omissions and mistakes
intrinsic in manual approaches. In addition, direct improvements can be
achieved in terms of the tractability of change.

An important benefit of the approach proposed is the possibility to cap-
ture an overall change strategy, and to separate definition and application of
such strategy. Future work will concentrate on support for the validation of
an overall change strategy with respect to service evolution requirements as
well as verification of consistency for the set of rules composing a strategy.

Evolution of Service processes by Rule Based Transformation

8. ACKNOWLEDGEMENTS

We would like to thank HP Labs Bristol for support of the FRESCO project. Fur-
thermore, we want to thank the FRESCO team, especially Thomas Plümpe and Hen-
ning Brandt, for their help to achieve this work.

9. REFERENCES

Agrawal, R., Gunaopulos, D. and Leymann, F. (1998) Mining Process Models from Workflow
Logs, In Proc. Advances in Database Technology - EDBT'98, 6th International Conference
on Extending Database Technology, Valencia, Spain(Eds, Schek, H. J., Saltor, F., Ramos, I.
and Alonso, G.) Springer, pp. 469-483.

Baïna, K., Tata, S. and Benali, K. (2003) A Model for Process Service Interaction, In Busi-
ness Process Management International Conference, BPM 2003, Eindhoven, The Nether-
lands, June 26-27, 2003. Proceedings(Eds, Aalst, W. M. P. v. d., Hofstede, A. H. M. t. and
Weske, M.) Springer, pp. 261 ff.

Bhiri, S., Perrin, O., Gaaloul, W. and Godart, C. (2003) An Object Oriented Metamodel for
Inter-enterprises Cooperative Processes based on Web Services, In Proc. Modeling and
Developing Process-Centric Virt. Enterprises with Webservices (VIEWS'03), Austin, USA.

Bussler, C. (2001) The role of B2B protocols in inter-enterprise process execution, In Proc.
Technologies for E Services. Second International Workshop, TES 2001.(Eds, Casati, F.,
Georgakopoulos, D. and Shan, M. C.) Springer, pp. 16-29.

Bussler, C. (2002) Behavior abstraction in semantic B2B integration, In Conceptual Model-
ing for New Information Systems Technologies. ER 2001 Workshops. HUMACS, DASWIS,
ECOMO, and DAMA. Revised Papers Lecture Notes in Computer Science Vol.2465.
2002(Eds, Arisawa, H. et al) Springer Verlag, Berlin, Germany, pp. 377-89.

Casati, F., Sayal, M. and Ming Chien Shan (2001) Developing E-Services for Composing E-
Services, In Proc. Advanced Information Systems Engineering. 13th International Confer-
ence, (CAiSE 2001)(Eds, Dittrich, K. R. et al) Springer, pp. 171-86.

Colombo, E., Francalanci, C. and Pernici, B. (2002) Modeling Coordination and Control in
Cross-Organizational Workflows, In Proc. CoopIS/DOA/ODBASE 2002(Eds, Meersmann,
R. and Tari, Z.) Springer, pp. 91 ff.

Cook, J. E. and Wolf, A. L. (1998) Discovering models of software processes from event-
based data, ACM Transactions on Software Engineering and Methodology, 7.

Dumas, M., Benatallah, B. and Maamar, Z. (2002) Definition and Execution of Composite
Web Services: The SELF-SERV Project, Data Engineering Bulletin, 25.

ExoLab (2004) Castor Project, http://castor.exolab.org/, 1.2.2004
Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002) The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration, Open Grid Service Infra-
structure WG, Global Grid Forum

Georgakopoulos, D., Schuster, H., Cichocki, A. and Baker, D. (1999) Managing process and
service fusion in virtual enterprises, Information Systems, 24, 429-56.

Hunt, V. D. (1996) Process Mapping: How to Reengineer Your Business Processes, John
Wiley & Sons.

http://castor.exolab.org/

 Christian Zirpins and Giacomo Piccinelli

Jakarta-Project (2004) JaKarta Commons, http://jakarta.apache.org/commons/, 1.2.2004
Mecella, M., Pernici, B., Rossi, M. and Testi, A. (2001) A Repository of Workflow Compo-

nents for Cooperative e-Applications, In Proceedings of the 1st IFIP TC8 Working Confer-
ence on E-Commerce/E-Business (Salzburg, Austria, 2001)BICE Press, pp. 73-92.

Papazoglou, M. P. and Georgakopoulos, D. (2003) Service-oriented computing: Introduction,
Communications of the ACM, 46, 24-28.

Parr, T. (2004) ANTLR Translator Generator, http://www.antlr.org/, 1.2.2004
Perrin, O., Wynen, F., Bitcheva, J. and Godart, C. (2003) A Model to Support Collaborative

Work in Virtual Enterprises, In Business Process Management International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003. Proceedings(Eds, Aalst, W. M.
P. v. d., Hofstede, A. H. M. t. and Weske, M.) Springer, pp. p. 104 ff.

Piccinelli, G., Emmerich, W., Zirpins, C. and Schütt, K. (2002) Web Service Interfaces for
Inter-Organisational Business Processes: An Infrastructure for Automated Reconciliation,
In Proc. 6th International Enterprise Distributed Object Computing Conference
(EDOC2002), September 17-20 2002, Lausanne, Swizerland(Ed, Williams, A. D.) IEEE
Computer Society, Los Alamos, California, pp. 285-292.

Piccinelli, G., Finkelstein, A. and Williams, S. L. (2003a) Service-oriented work-flows: the
DySCo framework, In Proc. 29th Euromicro Conference, Antalya, Turkey.

Piccinelli, G., Zirpins, C. and Gryce, C. (2003b) An Architectural Model for Electronic Ser-
vices, University College London, University of Hamburg

Schuster, H., Georgakopoulos, D., Cichocki, A. and Baker, D. (2000) Modeling and Compos-
ing Service-Based and Reference Process-Based Multi-enterprise Processes, In Proc CAiSE
2000(Eds, Wangler, B. and Bergman, L.) Springer, pp. 247-263.

Sethi, V. and King, W. (1998) Organizational Transformation Through Business Process
Reengineering., Prentice Hall.

Srinivasa, S. and Spiliopoulou, M. (2000) Discerning Behavioral Properties by Analyzing
Transaction Logs, In Proc. of the 2000 ACM symposium on Applied computing 2000,
Como, Italy(Eds, Papadopoulos, G. and Omicini, A.) ACM Press, NY, USA, pp. 281 - 282.

Tsalgatidou, A. and Pilioura, T. (2002) An overview of standards and related technology in
Web Services, Distributed and Parallel Databases, 12, 135-62.

van der Aalst, W. M. P. (1999) Process-oriented architectures for electronic commerce and
interorganizational workflow, Information Systems, 24, 639-71.

van der Aalst, W. M. P., Barros, A. P., Hofstede, A. H. M. t. and Kiepuszewski, B. (2000)
Advanced Workflow Patterns, In Cooperative Information Systems, 7th International Con-
ference, CoopIS 2000, Eilat, Israel, September 6-8, 2000, Proceedings, Vol. 1901 (Eds,
Etzion, O. and Scheuermann, P.) Springer, pp. 18-29.

van der Aalst, W. M. P. and Basten, T. (2002) Inheritance of workflows: an approach to tack-
ling problems related to change, Theoretical Computer Science, 270, 125-203.

WfMC (2002) Workflow Process Definition Interface -- XML Process Definition Language
1.0 Final Draft, WFMC-TC-1025, Workflow Management Coalition

WfMC (2004) Workflow Management Coalition, http://www.wfmc.org, 20.1.2004
Zirpins, C., Lamersdorf, W. and Piccinelli, G. (2004) A Service Oriented Approach to Inter-

organisational Cooperation, In IFIF International Conference on Digital Communities in a
Networked Society: eCommerce, eBusiness, and eGovernment (I3E) 2003, Proceed-
ings(Eds, Mendes, M., Suomi, R. and Passos, C.) Kluwer Academic Publishers.

http://jakarta.apache.org/commons/
http://www.antlr.org/
http://www.wfmc.org/

	INTRODUCTION
	PROCESS BASED SERVICES
	SERVICE PROCESS EVOLUTION
	RULE BASED SERVICE TRANSFORMATION
	PROTOTYPE
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

