
A Generic Simulation Service for Distributed Multi-Agent Systems

L. Braubach, A. Pokahr, W. Lamersdorf
Distributed Systems and

Information Systems

University of Hamburg, Germany

{braubach, pokahr, lamersd}

@informatik.uni-hamburg.de

K.-H. Krempels
Communication and

Distributed Systems

RWTH Aachen, Germany

krempels@i4.informatik.rwth-aachen.de

P.-O. Woelk
Institute of Production Engineering

and Machine Tools

University of Hannover, Germany

woelk@ifw.uni-hannover.de

Abstract

Multi-agent systems are well suited for building
large software systems. A great deal of these
complex systems includes process flows that are
concerned with time or are even time-critical.
The activities of these process flows are often
executed in distributed autonomous subsystems
that have to be synchronized with respect to the
superordinated task execution. To be able to
build such systems and test their behaviour ad-
equately, it is often advantageous and sometimes
necessary to simulate them in the run-up to their
practical use. Testing and simulation of process
flows within multi-agent systems requires syn-
chronization of the participating agents with re-
spect to the global simulation time. In this paper,
a design proposal and a service implementation
for testing and simulation is presented, which
takes care of the special requirements imposed
by multi-agent settings. This so called time ser-
vice is implemented as a FIPA-compliant agent,
and can be used to couple heterogeneous subsys-
tems implemented on different agent platforms.

1 Introduction
Complex enterprise software systems consist of several
more or less tightly coupled subsystems that are organized
in a hierarchical fashion (i.e., the various subsystems con-
tain other subsystems). It is argued that multi-agent sys-
tems (MAS) are well suited to reduce the complexity of
building such software systems[Jennings, 2001]. MAS
are able to capture the structure and hierarchical organi-
zation, as each subsystem can be represented by an au-
tonomous agent, which may itself be a multi-agent system
containing other agents. Two of these “multi-multi agent
systems” (MMAS) are developed in the Agent.Enterprise
and Agent.Hospital initiatives of the German priority re-
search programme DFG-SPP-1083 “Intelligent Agents in
Real-World Business Applications”.1

A problem when developing large-scale systems is to
coordinate the timely execution of activities inside the sin-
gle subsystems, as well as activities which require coor-
dination between different subsystems. This is even more

1
http://www.realagents.org

true for agent-based systems, which highly emphasize the
autonomy of the individual components. Only carefully
elaborated design and extensive testing induces success-
ful operation under all conditions. To solve this problem
and to test the developed systems, it is useful to simu-
late them in the run-up to their practical use. This pa-
per describes a standard-compliant middlewaretime ser-
vice component enabling the simulation of process-flows
in distributed MAS. The design and implementation of the
time service is based on techniques from the field of simu-
lation. It has the purpose to allow the timed synchroniza-
tion among the participants and will control the progress
of the over-all process flow. Further components neces-
sary for a complete simulation environment, e.g. responsi-
ble for generating external events or for result analysis are
not considered.

In the next section, the foundations of multi-agent based
simulation are described. Thereafter, the context of this
work is presented in Section 3. In Section 4, the design
and implementation of the time service with respect to the
special properties of multi-agent systems will be described.
In Section 5, some related work is presented and, finally,
some concluding remarks are given.

2 Multi-Agent Based Simulation
Complex software systems are still extremely difficult to
design and implement, and prototypes have to be tested
extensively before they are used in practice. To be able to
test and understand the runtime behaviour of a distributed
time-based system, simulation techniques for multi-agent
systems can be utilized. The multi-agent based simula-
tion (MABS) differs from conventional simulation in that
the entities constituting the system are agents. The topic
is influenced by existing research areas such asparallel
and distributed discrete event simulation[Fujimoto, 1999]
andobject oriented simulation(OOS) [Page, 1991]. Be-
low, some basic ideas of these subjects are discussed, for a
detailed survey about MABS see[Davidsson, 2000]. Note
that in this contribution, unlike traditional distributedsim-
ulation, distribution is not introduced to increase the per-
formance of simulation. Rather, simulation is used as a
technique to test an inherently distributed system. How-
ever, the applied concepts are the same.

In discrete event simulation (DES) it is assumed that
state changes in the world occur at distinct points in time
and are caused by events. It can be seen as the counterpart



to continuous simulation where state changes occur con-
tinuously over time. DES can be further subdivided into
event-driven and time-driven approaches. Event-driven ap-
proaches utilize an ordered event list where time stamped
events are stored. Progress is achieved by removing the
earliest entry from this list, advancing the simulation time
to the timestamp of that event and executing the event. This
may lead to further entries of new events in the event list.
Time driven approaches advance the time in constant time
steps. In each step the clock is adjusted and the participants
are informed about the new time. They now can check, if
an activity has to be executed at this point in time.

Very interesting with respect to MABS is the distributed
discrete event simulation, because the basic entities in dis-
tributed simulation, called logical processes (LP), repre-
sent active objects with a control flow of their own. They
are therefore to some extent comparable to autonomous
agents. Insynchronousprocess simulation, a centralized
or decentralized global clock is used to coordinate the LPs.
All processes of the same simulated system share the same
time, called simulation time. This simulation time is set to
a predefined value at the beginning of the simulation run
and is only advanced during the simulation proceeds. At
each point in time defined by a process, it gains the possi-
bility to execute. This can include further communication
with other processes that were not activated for this simu-
lation time. On the contraryasynchronousprocess simu-
lation allows the presence of events occurring at different
simulated times that do not affect one another. The prob-
lem that is associated with asynchronous LP simulation
is the chance of causality errors. Approaches that allow
the advancement of time even though causality errors may
happen are calledoptimistic in contrast toconservative
methods executing only conflict free events at any point in
time. Anyhow, the techniques from distributed simulation
cannot be used without adaptation to the special require-
ments of MABS, e.g., Theodorpoulos and Logan say “[...]
conventional distributed simulation techniques cannot eas-
ily be applied to the problem of modelling the interaction
of a system of autonomous components”[Theodoropou-
los and Logan, 1999, p. 1]. Ferscha provides an excellent
overview of distributed simulation mechanisms[Ferscha
and Chiola, 1994].

In OOS the participating entities are objects and for rea-
sons of simplicity it is in many cases sufficient to have a
single control flow in the simulation system. Considering
these characteristics it becomes comprehensible that utiliz-
ing simple non-distributed DES methods for OO simula-
tion is adequate. Besides this important difference some
further conspicuous distinctions to OOS can be noticed
when analyzing the protagonists. Agents are autonomous,
pro-active acting entities that use message passing as com-
munication paradigm and are modelled in terms of men-
talistic attributes whereas objects are purely reactive, use
method invocation and are modelled in terms of attributes
and methods.

After having argued why agent-based simulation is im-
portant and which different paradigms form the basis of
MABS, the context of this paper is presented.

3 The Agent.Enterprise and Agent.Hospital
Scenarios

The SPP 1083 is a research programme supporting re-
search in the field of agent technology for business ap-
plications. Two domain areas are covered by the partic-
ipating projects: Manufacturing logistics and hospital lo-
gistics. Initially the projects have developed stand-alone
prototype multi-agent systems focussing on different prob-
lems in the field of supply chain management and hospi-
tal logistics respectively. In the last year two initiatives
have been formed to bring together the results of the sin-
gle projects and integrate the developed prototypes for the
creation of large-scale distributed systems. The Agent.En-
terprise[Freyet al., 2003] and Agent.Hospital[Kirn et al.,
2003] initiatives make up the motivation for the work on
MMAS. Two scenarios have been developed to integrate
the independent projects into two superordinated systems
using generalized process flows.

The Agent.Enterprise scenario is an inter-enterprise
multi-level supply-chain scenario. Currently, five research
projects are involved in the development of Agent.Enter-
prise. Two of these research projects focus on supply chain
aspects: SCM scheduling as well as tracking and tracing
of supply chains. Three projects deal with application of
agent technology in the participating enterprises of the sup-
ply chain with a special focus on integration of process
planning, reliability and robustness, and batch production
of semiconductors. Necessary processes in supply chains
were analysed and modelled. Additionally the interfaces
between involved systems were designed.

In the context of the hospital logistics working group
with six participating projects an extensive empirical
funded model called Agent.Hospital is being developed.
This model is an open framework with numerous different
healthcare actors and consists of detailed partial models of
the healthcare domain. It enables the examination of mod-
eling methods, configuration problems as well as agent-
based negotiation strategies and coordination algorithms.
The working group also deals with the integration of differ-
ent partial hospital logistics models created by the partici-
pating projects. One important step for the integration was
the definition of numerous different gateways between all
these models and the merge into a conceptual overall sce-
nario consisting of the basic process flows. Relevant orga-
nizational structures, processes and necessary data models
were analysed, formalized and modelled at several hospi-
tals.

To establish the connection between the different pro-
totypes of the two scenarios, each involved MAS has a
gateway agent which is able to communicate with agents
of its own MAS as well as other gateway agents within
the Agent.Enterprise or Agent.Hospital scenario[Krem-
pelset al., 2003]. Communication between gateway agents
is based on standard FIPA protocols. While a common
supply chain ontology tailored for the Agent.Enterprise
scenario has been developed, the Agent.Hospital sce-
nario currently uses different ontologies for communica-
tion between different MAS. Since the systems reside on
agents platforms all across Germany, Agent.Enterprise and



Agent.Hospital utilise the Agentcities2 infrastructure in-
cluding directory facilitator and exchange of FIPA ACL
messages using the HTTP MTP. Current developments
are dealing with enhancements in synchronisation of dis-
tributed MAS and interfaces to further MAS in order to
make Agent.Enterprise and Agent.Hospital open platforms
e.g. to test MAS in manufacturing or MAS in healthcare
as part of the Agentcities network. It is important to point
out, that it was and still is an essential development goal of
Agent.Enterprise and Agent.Hospital, to support an open
and extensible agent-infrastructure for the manufacturing
and healthcare domain.

From this work the following general requirements of
MABS regarding large-scale agent systems are derived.
Firstly, the participants of the simulation are not necessar-
ily agents of one platform, because different subprojects
may decide in their own responsibility what agent platform
is best suited for their needs. Therefore the communication
among the participants and the simulation system has to
be standardized in some way with the different agent plat-
forms. Secondly, the subsystems deal with different cut
outs of the superordinated system resulting in events irreg-
ularly distributed over time. The simulation should be able
to handle this distribution effectively. Thirdly, as a lot of
work has already been done to implement the participating
MAS, it should be possible to adapt existing systems to the
simulation with little effort.

4 Realization

In this section the design and implementation of the mech-
anism for synchronization in the distributed architectureof
Agent.Hospital and Agent.Enterprise is presented. Apart
from the general requirements mentioned in Section 3, the
design has to consider the following technical properties of
the distributed multi-agent architecture:

• Agents may be newly created and destroyed. There-
fore the number of participants in the synchronization
mechanism may change dynamically. When a new
agent is created, the synchronization mechanism will
not know about its existence, before it has announced
its interest in taking part in the synchronization. It has
to be made sure, that subsequent activities are not trig-
gered, until all interested parties have been given op-
portunity to appropriately announce their scheduled
activities.

• Inside each agent there may be a number of paral-
lel executing tasks. Each task may independently re-
quire synchronization with other agents. Therefore,
an agent may require a separate time point for each of
its tasks and the mechanism has to provide ways for
an agent to announce more than a single time point.

• Agents may receive messages from other agents while
waiting for time points to occur. Therefore a task
of such a notified agent must have the possibility to
change its next wakeup time, due to new information
contained in the message.

2http://www.agentcities.net

Figure 1: Time Service Protocol

4.1 Design

The above mentioned requirements are best met by
process-oriented simulation, using a global list of time
points for scheduled activities. In synchronous process-
oriented simulation, the processes (agent tasks in this case)
send to the coordinator aPassivatemessage to indicate
that they have no scheduled activities, or aHold(t) mes-
sage with the time of the next activity that needs to be
scheduled. These messages tell the coordinator, that the
process has finished its actual activity and the next activ-
ity can be scheduled. Therefore the coordinator iteratively
removes the next entry from this list, advances the clock,
and informs the corresponding process that the time point
is reached. Then the coordinator will wait, until that pro-
cess has answered again.

The coordinator managing the global list of time points
can be implemented as an autonomous agent and therefore
fits naturally into the MAS world. While the drawback of
a synchronous approach is maybe less efficiency, it “con-
siderably simplifies the implementation of correct simula-
tions by avoiding problems of deadlock and possibly over-
whelming message traffic”[Ferscha and Chiola, 1994].

The client/server protocol of the time service agent is de-
picted in Fig. 1. The four different interaction possibilities
are denoted by the charactersa to d. In the initialization
phase (a), agents (more precisely agent tasks) mayRegis-
ter and will receive anagreemessage, if they are not al-
ready registered. When a participant terminates (e.g. when
a patient leaves the hospital) it requests aDeregister(d),
receiving arefuseif the participant was not registered. The
other two interactions (b and c) may happen repeatedly



during simulation runs.
When the simulation run is started, the initial time (Now)

is sent to all participants (b). New participants that register
while the simulation is running will immediately receive
theNowmessage with the current simulation time. While
the simulation is running a participant will continuously
get these so called wake-up calls whenever its registered
point in time is reached. The participant is now supposed
to execute its actual activity and subsequently send back a
message when it is finished. Either the process announces
the point in time (t) for its next activity by submitting a
Hold(t) request, or it currently has no activities to be sched-
uled and therefore submits aPassivaterequest.

Another case that can occur during the simulation is that
the active process communicates with another process (c).
The new information that arrives at the waiting process
may lead to new activities in this process and a new ac-
tivation time. Therefore the triggered process can decide
to stop the advancement of the global time by sending a
Blockrequest to the time service. The service removes the
time entry of the process and acknowledges this by sending
an agreemessage. Now the coordinator has to wait until
both processes (the triggered and the triggering) declare
that they are finished by sending aPassivateor Hold(t) re-
quest. It is noteworthy that this design differs consider-
ably from the ordinary process oriented simulation where
it only depends on the active process when the coordinator
may advance the time. Therefore a triggered process has to
notify the calling process when it has finished its activities.
This has to be done is a nested way, when the triggered
process sends messages to further processes. In an agent
scenario this traditional kind of design is undesirable, be-
cause it violates the agent’s autonomy concept and leads to
awkward interaction protocols that resemble method calls.

In addition to the client/server protocol the time service
implements an administrative interface with commands
that can be submitted via the FIPA-Request interaction pro-
tocol [Foundation for Intelligent Physical Agents, 2002].
The simulation is initialized with theInit command by pro-
viding the start time. It is started with theStartcommand
or alternatively in single-step or slow-motion mode with
theStepor Slowcommands, where for slow-motion an op-
tional speed argument can be supplied. During the exe-
cution, the simulation can be paused with thePausecom-
mand or switched to single-step or slow-motion mode. The
Continuecommand puts it back to normal mode. The sim-
ulation is terminated by theStopcommand. ThePauseand
Stopcommands accept an optional argument indicating the
simulation time at which the command should take effect.
Otherwise the commands are executed immediately.

4.2 Implementation
For the communication between the time service and the
processes, a so called TimeService ontology has been con-
ceived, which contains on the one hand information about
the agent actions, what an agent wants another agent to
perform, and on the other hand the domain concepts. The
agent actions correspond to the above explained client re-
quests and administrative commands and the modelled do-
main concepts describe things like dates and points in time.
The ontology was defined in the ontology modelling tool
Protégé[Grossoet al., 1999].

<goals>

<achievegoal name="ts_register">
<parameter name="participant" class="String.class"/>
<parameter name="timeservice" class="AID.class" optional="true"/>
<parameter name="leasetime" class="Duration.class" optional="true"/>

</achievegoal>

<achievegoal name="ts_hold">
<parameter name="participant" class="String.class"/>
<parameter name="nexttime" class="AbsoluteTimepoint.class"/>

</achievegoal>

<achievegoal name="ts_passivate">
<parameter name="participant" class="String.class"/>

</achievegoal>

<achievegoal name="ts_block">
<parameter name="participant" class="String.class"/>

</achievegoal>

</goals>

Figure 2: Client Goals (digest)

The time service has been implemented as a FIPA-
compliant agent using the JADE agent framework[Bel-
lifemineet al., 1999] and the BDI-extension Jadex[Pokahr
et al., 2003]. JavaBeans, used in JADE to construct the
ACL-message contents, have been generated directly from
the ontology using a code generator tool[van Aartet al.,
2002]. For time service clients (agent tasks) a generic plug-
gable agent module has been implemented, that handles
the communication with the time service. This client mod-
ule provides among other things several typed goals (see
Fig. 2) that can be used to easily initiate actions with the
time service. These actions comply to the needed client
tasks taken from the time service protocol such as register,
hold, passivate and block. To use the time service function-
ality a client only has to instantiate such a goal, provide it
with the needed parameters, dispatch it to the BDI-system
and wait for the result.

As the service is FIPA-compliant, non-JADE agents can
also participate in the simulation as long as they conform
to the FIPA standard[Dale and Mamdani, 2001]. For the
ease of use a graphical user interface has been developed
(see Fig. 3). This interface allows the service to be mon-
itored and controlled manually. Additionally, the visual
representation of the global time history and the list of par-
ticipants with current activation points is useful for testing
and debugging purposes.

4.3 Practical Application

The time service has already been integrated into the Med-
PAge project[Paulussenet al., 2003; 2004], which is a
subproject of the Agent.Hospital initiative and addresses
the topic of treatment scheduling for patients in hospi-
tals. The time service allows to test the MedPAge hospital
model with a number of different functional units, and dif-
ferent arrival rates for patients. In the MePAge scenario
the arrival of new patients, represented as patient agents,
and the execution of treatments, performed by the resource
agents, needs to be synchronized. Practical explorations
have shown no difficulties simulating a reasonably sized
hospital model with several wards. Resource agents al-
ways synchronize their activities, while patient agents only



Figure 3: Time Service GUI

need to synchronize when they are actively negotiating.
A first scalability analysis using a profiler tool shows that
even when creating a large amount of patients at once (e.g.
50), which instantly engage in concurrent negotiations, the
synchronization cost does not increase significantly but re-
mains approximately at 5-10% of the overall execution
time.

5 Related Work

The term simulation with respect to multi-agent systems is
not defined unambiguously. There are at least two different
research areas that are further explained by outlining some
of their typical representatives.

On the one hand there exist simulation systems that
claim to be generic and are used in most cases to eval-
uate artificial intelligence aspects of agents. E.g., James
[Uhrmacher and Schattenberg, 2001] is a sophisticated
Java-based simulation tool designed with the objective to
support the flexible construction of experimental frames
for multi-agent systems. The system was hitherto espe-
cially used to compare different planning strategies under
the premise that the agents planning time is tracked by
the system[Schattenberg and Uhrmacher, 2001]. Another
simulation middleware is MPADES[Riley, 2003] which is
a hybrid system: Discrete events are used for the agent’s
interactions with the world, while the underlying world
model is assumed to be continuous. The system focuses
on the consideration of latencies for the agent’s internal
sense, think, and act processes. It is independent from a
definite world model, agent architecture and programming

language. Its objective it is similar to the more basic MESS
system[Anderson, 1997], which tracks the computation of
agents at the level of LISP instructions.

On the other hand artificial life facets are investigated
by simulation systems. They allow the simulation of com-
plex societies, e.g., for biological, economical or sociolog-
ical experiments. For example SeSAm[Klügl, 2001] is a
highly developed Java-based simulation system that allows
the definition of agent behaviours in a graphical UML-
statechart[UML 1.4, 2001] like fashion. Another platform
is Swarm[Swa, 2000], which concentrates on the simula-
tion of complex adaptive systems. In contrast to other sys-
tems the basic unit of simulation is a swarm, a collection
of agents executing a schedule of actions.

So why can’t we take one of the above mentioned sys-
tems to easily synchronize agent actions in a given multi-
agent system? All the systems (except SeSAm) are not ca-
pable of exchanging FIPA-compliant messages, what is es-
sential when considering the fact, that different multi-agent
platforms have to be integrated into one simulation. Fur-
thermore nearly all systems (except MPADES) constitute a
definite intra-agent architecture and force the agents to be
implemented on a special platform. Even worse, some of
the tools restrict the agent implementation to a given pro-
prietary programming language. In addition, systems from
the artificial life category often use a time-sliced simula-
tion model, which is inefficient and inappropriate to syn-
chronize agents that exhibit irregularly distributed points
in time.

6 Concluding Remarks
The objective of this paper is to describe a middleware
service component for the simulation of process flows
in coupled heterogeneous multi-agent systems. Under
consideration of the special requirements imposed by the
Agent.Hospital and Agent.Enterprise scenarios, a central-
ized approach with one coordinator process that holds the
current simulation time and the global list of time points
was chosen. Although a centralized coordinator might be
a bottleneck or single point of failure, it allows the partic-
ipating projects to easily integrate their existing solutions,
independently from the chosen agent platform. Further-
more, the approach helps the system designer to under-
stand the systems runtime behaviour because the conser-
vative approach only generates correctly ordered wake-up
calls. The various administrative commands like slow and
step mode that are available through a user interface sup-
port debugging as well.

Looking back at the three requirements derived from the
scenarios in Section 3, one can see how they are addressed
by design and implementation choices. First, the commu-
nication is FIPA-compliant and therefore client and ser-
vice can be easily decoupled and implemented on differ-
ent platforms. Secondly, the use of discrete event-based
simulation techniques allows the events to be arbitrarily
distributed over time without performance loss. This de-
sign decision is different to most existing agent-based sim-
ulation frameworks that utilize time-driven approaches to
avoid the complexity of a distributed environment. And
thirdly, the basis for an easy integration process was pro-
vided on the design level by choosing a conservative cen-



tralized simulation approach and on the implementation
level by providing a pluggable agent module to handle tim-
ing aspects.

First experiments in the MedPAge project show that
the design and implementation of the time service is well
suited for synchronizing activities in distributed multi-
agent systems. To extend this work in order to sim-
ulate and test the superordinated process flows of the
Agent.Enterprise and Agent.Hospital scenarios, the inter-
actions between the gateway agents have to be revised,
and the remaining projects have to integrate the synchro-
nization mechanism into their prototypes. This integration
process will demand the usage of time service clients im-
plemented on different platforms and will hopefully lead
to further results regarding the service reliability and scal-
ability when used in the large.

Acknowledgements
This work is funded by the DFG German priority research
programme 1083Intelligent Agents in Real-World Busi-
ness Applications.

References
[Anderson, 1997] S. D. Anderson. Simulation of multiple

time-pressured agents. In S. Andradóttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, editors,Proceedings
of the Winter Simulation Conference, pages 397–404,
1997.

[Bellifemineet al., 1999] F. Bellifemine, G. Rimassa, and
A. Poggi. JADE – A FIPA-compliant agent framework.
In 4th International Conference on the Practical Appli-
cations of Agents and Multi-Agent Systems (PAAM-99),
pages 97–108, December 1999.

[Dale and Mamdani, 2001] J. Dale and E. Mamdani.
Open Standards for Interoperating Agent-Based Sys-
tems.Software Focus, 1(2), 2001.

[Davidsson, 2000] P. Davidsson. Multi agent based simu-
lation: Beyond social simulation. InMulti Agent Based
Simulation. Springer Verlag LNCS series, Vol. 1979,
2000.

[Ferscha and Chiola, 1994] A. Ferscha and G. Chiola. Ac-
celerating the evaluation of parallel program perfor-
mance models using distributed simulation.LNCS 794,
pages 231–252, 1994.

[Foundation for Intelligent Physical Agents, 2002]
Foundation for Intelligent Physical Agents. FIPA
Request Interaction Protocol Specification. Document
no. FIPA00026, December 2002.

[Freyet al., 2003] D. Frey, T. Stockheim, P.-O. Woelk,
and R. Zimmermann. Integrated Multi-agent-based
Supply Chain Management. InProc. of 1st Interna-
tional Workshop on Agent-based Computing for Enter-
prise Collaboration, 2003.

[Fujimoto, 1999] R. M. Fujimoto. Parallel and distributed
simulation. InProceedings of the Winter Simulation
Conference, pages 122–131, 1999.

[Grossoet al., 1999] E. Grosso, H. Eriksson, R. W. Fer-
gerson, J. H. Gennari, S. W. Tu, and M. A. Musen.
Knowledge Modeling at the Millennium, 1999.

[Jennings, 2001] N. R. Jennings. An agent-based ap-
proach for building complex software systems.Com-
munications of the ACM, 44(4):35–41, April 2001.

[Kirn et al., 2003] S. Kirn, C. Heine, R. Herrler, and K.-H.
Krempels. Agent.Hospital - agent-based open frame-
work for clinical applications. InInternational Work-
shops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 2003.

[Klügl, 2001] F. Klügl. Multiagentensimulation -
Konzepte, Werkzeuge, Anwendung. Addison Wesley,
2001. (in German).

[Krempelset al., 2003] K.-H. Krempels, J. Nimis,
L. Braubach, A. Pokahr, R. Herrler, and T. Scholz.
Entwicklung intelligenter Multi-Multiagentensysteme -
Werkzeugunterstützung, Lösungen und offene Fragen.
In Informatik 2003 - 33. Jahrestagung der GI, volume
P-34 of Lecture Notes in Informatics (LNI), pages
31–46, 9 2003.

[Page, 1991] B. Page. Diskrete Simulation: eine Ein-
führung mit Modula-2. Springer Verlag Berlin, 1991.

[Paulussenet al., 2003] T. O. Paulussen, N. R. Jennings,
K. S. Decker, and A. Heinzl. Distributed patient
scheduling in hospitals. InIJCAI’03 Proceedings, 2003.

[Paulussenet al., 2004] T. O. Paulussen, A Zöller,
A. Heinzl, A. Pokahr, L. Braubach, and W. Lamersdorf.
Dynamic patient scheduling in hospitals. InAgent
Technology in Business Applications (ATeBA-04), 2004.

[Pokahret al., 2003] A. Pokahr, L. Braubach, and
W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents.EXP – in search of
innovation, 3(3):76–85, 2003.

[Riley, 2003] P. Riley. MPADES: Middleware for paral-
lel agent discrete event simulation. In G . Kaminka,
P. Lima, and R.Rojas, editors,RoboCup-2002: The
Fifth RoboCup Competitions and Conferences. Springer
Verlag, Berlin, 2003.

[Schattenberg and Uhrmacher, 2001] B. Schattenberg and
A. Uhrmacher. Planning Agents in James. InProceed-
ings of the IEEE, Vol.89, No.2, pages 158–173, 2001.

[Swa, 2000] Swarm Development Group. A tutorial
introduction to Swarm, 2000.
http://www.swarm.org/csss-tutorial/
frames.html.

[Theodoropoulos and Logan, 1999] G. Theodoropoulos
and B. Logan. A framework for the distributed simula-
tion of agent-based systems. In H. Szczerbicka, editor,
13th European Simulation Multiconference (ESM99),
Warsaw, Poland, June 1-4, pages 58–65, 1999.

[Uhrmacher and Schattenberg, 2001] A. Uhrmacher and
B. Schattenberg. Agents in Discrete Event Simulation.
In Proc. of the ESS’98, Nottingham, pages 129–136.
SCS Publications, 2001.

[UML 1.4, 2001] Object Modeling Group.UML Specifi-
cation, version 1.4, September 2001.

[van Aartet al., 2002] C. van Aart, R. Pels, G. Caire, and
F. Bergenti. Creating and Using Ontologies in Agent
Communication. In2nd Workshop on Ontologies in
Agent Systems, 2002.


