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Abstract
In today’s network environments, a mismatch can be identified between existing, well-
integrated distributed applications on one side and an increasing demand for spontaneous
service access in electronic service markets on the other. In many cases, not only such buyer-
seller relationships but also the management of distributed business procedures reaches be-
yond organizational boundaries. This often implies for most of the existing - tightly-integrated
- workflow management applications that cooperating partners have to give up their local
autonomy. However, emergingobile agent platforms claim to provide suitable technical
support to bridge this gap. To illustrate this approach,G8&M (Common Open Service
Market) infrastructure is presented, which allows business applications to cooperate on one
side but also to preserve their local autonomy on the other. Therefore, the mobile agent ap-
proach has been chosen for a flexible market-oriented integration of commercial services on
the basis of the COSM infrastructure. This article shows how the basic COSM infrastructure
is extended towards mobile agent support. Finally, an example illustrates this extension in the
application field of interorganizational workflow management.
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1 Introduction

An electronic market (EM) is defined as a computer-supported medium that allows both de-
manders and suppliers of goods to negotiate contracts at any time and without any spatial or
temporal constraints (Schmid, 1993). Accordingly, the underlying technical system platform
(the electronic market system) has to satisfy specific requirements that are also crucial for the
coordination of demand and supply in real market environments. These include the possibility
to easily enter the market as a supplier with new (innovative) services, to change product fea-
tures autonomously, to easily access services as a customer, and to add value by enriching,
combining, or customizing existing services (Merz, 1994a).

Cooperation in open networks

Open communication networks serve distributed software applications as well as human users
as a common environment for the mediation and utilization of remote services. Beyond the
scope of communication aspects (like, e.g., message delivery or protocol standardization),



distributed applications also realize cooperation in the sense of activity coordination in order

to achieve a common goal beyond a syntactically correct exchange of messages. Within the

scope of this paper, the term ‘cooperation’ is understood as (and restricted to) the client/server

principle, i.e. a model which assigns to one of the cooperating applications a ‘demander role’,

and a ‘supplier role’ to the other. Additionally, cooperation in open networks usually relates in
this context to one of the two following integration levels:

» At a higher level of integration, only software applications act as requesters, i.e., they play
the demander role by calling remote procedures on the supplier side. The underlying com-
munication mechanism of this cooperation - remote procedure call, message exchange,
function shipping (ISO, 1993), or a global tuple space approach (Carriero, 1992) - is not
relevant in this context. What matters is the fact that in each case both client and server
have to cohere semantically in order to engage in a meaningful cooperation and to consti-
tute a distributed application. It is important to illustrate the context in which the cooperati-
on partners have to ‘cohere semantically’: The corresponding (client/server) software com-
ponents do not necessarily have to be developed by a common team; they have, however,
to rely on a common convention - such as pragmatic agreements among developers ‘across
the desk’, mutual specifications, conformance to a standard, or programming according to a
common software documentation. In any case, in this application domain both developed
components adhere to something in common - consciously or not, they fdomaan of
conformance across organizations. In the remaining part of this article, this class of appli-
cations is calledaf ganizationally) closed applications of classified services.

* On the other hand, the lower level of integration always involvesuiman user who al-
lows to relax conformance requirements for a given kind of service. Here, cognition and
interpretation of ‘fuzzy’ application descriptions makes dedicated development of client
software components obsolete. The World-Wide-Web (WWW) may serve as an example
for such infrastructure: Interactive servers are used correctly in most cases if the provided
service semantics @bvious to its users. As illustrated later, the communication technique
does not matter in this case either: It may, e.g., be exchanged as an HTML document
(WWW) by an asynchronous message transfer, or by a remote procedure call. However, in
contrast to classified services, as addressed above, the message format and senzantics is
standardized here. An interpretation of protocol data units daetake place after data
transfer, therefore data is frequently represented in a plain text format. For the rest of this
article, this class of interactively accessed applications is c@gdnizationally) open
applications of unclassified services.

Of course, there is a trade-off between closed and open applications: In the first case, commu-

nication can be handled more efficiently, type-safe, and semantically coherent; in the second

case, a service can be provided within a much shonerto-market, client applications do

not need service-specific modules (stubs), and service providers are able to develop individual

(therefore more competitive) functionality. In the latter context, early, innovative movers are

better off. There is no general reason, however, to favor one approach over the other - both

have their specific merits: Classified services are suitable for low-level, well established ap-
plication domains like FTP, NFS, or the transmission of video streams - interactive services,
on the other hand, fit well to user-level applications like ticket reservations or ‘kiosk services'.

In the context of electronic service markets, however, sporadic cooperation predominates.

Infrastructures that require high setup and transaction costs will therefore be a disadvantage.

The main reason for the rapid proliferation of the WWW lies exactly in its extremely reduced



setup and transaction costs (in the sense of effort that is spent in order to establish a web
server and to accessiit).

The mobile agent approach

The mobile (or itinerant) agent approach is a paradigm that has gained increasing attention

with respect to the last point. Some emerging mobile agent (MA) platforms (e.g., White

(1994), Wayner (1995), Harrison et al. (1995), Lange (1996)) claim to provide suitable tech-

niques for the implementation of electronic market systems that allow both demanders and
suppliers of services and goods to exchange them freely based on electronic contract settle-

ment and execution. ,, Agents‘ are metaphors used within a wide range of computer science
research fields. As far as this article is concerned, however, only mobility aspects and the sup-
port of commercial interaction through MAs are examined in detail.

The migration capability is only partly given by Java applets, which allow to access remote
servers on behalf of the user (Sun Microsystems 1995). Java applets thus provide a suitable
abstraction from the actual interface and behavior of a server. Compared with the Java ap-
proach, however, MAgsctively migrate to a customer’s local computer and allow for user
interaction through a standardized GUI API. The only software component that provides a
well-known programming interface is thus a commonly available access tool for agents users.
Such a platform will be illustrated as a part of the COSM infrastructure.

As further elaborated in (Merz et al. 1996a), a typical MA scenario is given in Section 3,
where third-party vendors of mobile agents supply added-value services that facilitate cus-
tomer access to remote application servers. To give a practical example, the MA approach is
applied to a Workflow management (WFM) scenario, wlaekeoc communication between

business partners is addressed in particular. What remains is to allow providers to offer also
individual, unique application services and to extend existing distribution platforms accord-
ingly by means of access support to this kind of applications. For designers of electronic mar-
ket platforms, a general question therefore addresses the gap between requirements of market
dynamics and the capabilities of technical communication systems. This paper argues that the
MA approach provides means to bridge this gap if correctly applied.

This article first examines the suitability BfA platforms to match the specific EM require-
ments for flexible service utilization. A corresponding realization based on the COSM infra-
structure (Merz 1994a) is described in Section 3. For the rest of the article, we assume this
electronic market infrastructure as a common platform to perform commercial transactions.
An extension that applies mobile agents to support interorganizational workflow management
(IOWFM) is demonstrated in Section 4. The COSM MA infrastructure serves as a communi-
cation mechanism here, which bridges organizational boundaries. Therefore, specific prob-
lems of (IOWFM) and the necessary extensions to the MA infrastructure are discussed in that
Section as well. The final outlook sketches some further development directions for COSM
and other future MA platforms.

2 Mobile agents

"Mobile agents" as a computer science research field reaches from distributed Al (e.g., Sho-
ham, 1993), distributed programming (e.qg., Tsichritzis (1987), Harrison (1995)) to the field of
computer communications (e.g., Tschudin, 1993). This paper focuses on client/server coop-



eration aspects of MAS. In this context, approaches from research as well as from commercial
products relevant to open service markets are examined.

Definition:

In the following, we define a mobile agent as an encapsulation of code, data, and execution

context that is able to migrate autonomously and purposefully within computer networks

during execution. The agent system provides an agorithmically complete programming lan-

guage. Therefore, an agent is able to show complex reactions on externa events. An agent

may be persistent in the sense that it can suspend execution and keep local data in stable stor-

age. After resuming activity, an agent’s execution is continued - but not necessarily at the

same |ocation.

The given definition restricts the possible variety of agent implementation approaches to a

quite small set of possibilities: Each case requires a local abstract machine - the engine - in

order to execute the agent program. Regarding the two levels of integration analyzed above,

the following application modes appear suitable for mobile agents:

» The most obvious agent application mode seems to be the individual agent development by
the user: Agents may be programmed by the customer, for example, to perform database
queries. This may result in alocal full-text query or, e.g., aprice inquiry for a specific good
at each engine involved. Agents may aso be developed to notify the customer. Here, mes-
sages are sent or activities triggered after a distinct event has occurred at a remote host.

This may happen, for example, if an application state changes at the agent’s site. Imple-
menting such information gathering agents at the customer side requires specific knowl-
edge about server semantics - therefore client and server fdosed application as de-

fined in Section 1.

» Another rationale for agent activity is the provisionagdtled-value through third parties:
Existing - maybe heterogeneous - resources, like booking services, are accessible through
an agent with a customized user interface or API. In this case, a (commercial) third party
provides the agent asfacilitator service in order to support access to more complex serv-
ice interfaces. Aacilitator agent can be transferred to the client’s site and bound to a local
user interface tool. This enables users to access the facilitator service without using appli-
cation-specific client software. Here, MAs help to bridge the gap between third party re-
quirements of individualization (agent program) and infrastructure standardization (user
interface components). This usage corresponds tapdmeapplication context.

Figure 1: Agents in the contexts of classified and unclassified services.

Mobile agents in open service markets

It is argued that an electronic service market emerges most dynamically if an infrastructure is
provided that fosters proliferation of open applications.

Under these circumstances, MAs are best applicable if the domain of conformance is re-
stricted to the service providing organization. The only possible way to decouple client and
server in such a scenario is to install remotely a server-created agent on the client's side. The
respective process may be executed either by the server as a ‘remote installation’ or by the
client by ‘agent acquisition’. In either case, such installation is only possible with the client's
benevolence. The agent encapsulates all information and code required to allow human users



to interact directly with the agent itself or indirectly the remote service. This principle will be

called the server agent principle (Figure 1).

To support electronic market applications, mobile agents offer certain characteristics that

make this approach more favorable than, e.g., closed applications. Agents may directly sup-

port the application-level protocol required to invoke specific server operations. Today’s

service distribution mechanisms are, in most cases, still based on delivery of client applica-
tions, based on RPC or message exchange, with several inherent disadvantages such as the
lack of persistent application state, arbitrary user interface styles, the burden of handling a
large range of software applications with individual installation procedures on client systems,
etc. Individual and spontaneous client/server cooperation is only possible if this burden is
minimized by, e.g., dedicated facilitator agents that allow for the server agent principle.

Powerful user interfaces are required as well for a meaningful interaction between human
users and agents. Therefore, a general client tool is needed to support service agent admini-
stration and user-agent interaction. In the case of MagicGaphite, 1994), e.g., a city-
metaphor is used to browse a directory of agent offers and to support user access to the agents
or services registered. Here, each service is represented by an individual building; user/agent
interactions can take place after a building has been ‘opened’, i.e., an agent has been acquired.
In the following Section, th€OSM infrastructure is introduced as a complementary platform

for server agents. Designing and realizing an adequate system support for the access to remote
services in open environments is the main goal of the COSM approach. This leads to a system
software platform for realistic electronic service markets, which dynamically evolve and pro-
vide a great variety of individual service offers and requests.

3 Open application support in electronic service markets

As argued above, closed applications have several disadvantages in the electronic service
market field. Most importantly, they require dedicated client components, which have to be
installed individually. Therefore, the burden of system maintenance is shifted to the client
users. On the other hand, currepen applications, such as interactive WWW services, nei-
ther allow to store service descriptions (HTML documents) in a well-structured form nor do
they provide sophisticated call-interfaces that conform to existing middleware platforms like
CORBA (Common Object Request Broker Architecture; Object Management Group, 1993).
Combining the advantages of both approaches - decoupled client and server development on
the one hand, call interfaces with well-structured and well-processable interface descriptions
on the other - leads to the development of the COSM platform (Merz, 1994a).

3.1 Providing user access

The COSM system platform has been designed and built in order to combine and support the
advantages of both closed and open applications. The result is a flexible service implementa-
tion and access mechanism based on the concept of self-contained, ggevieacepresenta-

tions. A COSM service representation (SR) contains a set of description components defining,
e.g., the operational service interface, the user interface layout, the relationships between user
interface and remote procedure invocations, GUI interaction rules, comprehensive full-text de-
scriptions of service functionality, billing information on the charge of procedure invocations,

a definition of legal invocation sequences, etc.

The COSM platform consists of the following components:



® A Generic Client (GC) component that supports users in service discovery, access and
binding, and in the inspection of service descriptions at run-time.

* A common Service Representation, which contains several service descriptions.

® Service providers, which implement application functionality through COSM servers. They
are accessible on-line in the network. (They supply their respective SRs to potential users -
either directly or indirectly through catal ogue services).

® The Object Request Broker (ORB) which is used as middleware platform for Dll-based
(dynamic invocation interface; OMG, 1993) parameter transfer, and server activation. The
SR is used as input for a stub generator only at the server’s site.

® SRCatalogues, which let providers and users store and inspect SRs.

® ServiceTraders which identify appropriate service suppliers by an automated search for
the best possible services based on given service description criteria.

Figure 2: The generic client as a service access tool

Based on this agent/SR analogy, the COSM platform can be extended smoothly with MA ca-
pabilities by simply augmenting COSM SRs: A COSM SR could thus contain both code and
control flow specifications. In this environment, the SR corresponds to the server agent prin-
ciple in the following way: The SR is developed and provided by the remote server. The user
selects an appropriate agent from a distribution service such as an online catalogue. Agent and
service are implemented within the same domain of conformance - whilst the client remains
generic in order to allow its user to access any COSM server. After the GC received an SR,
the corresponding user interface can be generated automatically at the client site. The user
may then inspect the information provided by the SR and familiarize with the service func-
tionality described. Finally, a direct client binding to the server can be established (or released
if this information does not describe the kind of service the user was looking for). The user
interface representation of a remote services site is standardized at every GC; GUI layout and
content, however, may vary from service to service. This interface enables users to execute
remote operation calls automatically by just entering data into forms and pressing cor-
responding buttons.

Before focusing on this task in more detail, the following section first elaborates a bit more on
COSM SRs. SR extensions for control flow specifications based on petri net representations
are illustrated thereatfter.

3.2 COSM service representation

In COSM, the crucial vehicle, which contains and transfers arbitrary and location independent
service descriptions, is tservice representation. At the most generic level, the SR is a con-
tainer for data structures of arbitrary run-time types. After receiving an SR, the Generic Client
interprets the embedded description components. The following components are used in
COSM:



* A specification of operation descriptions, containing operation names and parameter de-
scriptions. Parameter descriptions refer to data objects which contain actual values. These
components resemble roughly IDL clauses known from DCE or CORBA.

* A specification of the user interface that the GC generates for human users. It contains
specifications for dialog boxes, data editors and push buttons. If attributes of the GUI speci-
fications are used as RPC parameters or results, the presentation may be changed dynami-
cally by the remote application (e.g., the visibility of dialog boxes, or the activation state of
pushbuttons).

® A specification of the service interface protocol, i.e., which operations are enabled to be in-
voked at a given state. Currently, this protocol description is based on a finite state machine
model and comprises a set of application states and transitions between them, which, in
turn, refer to operation descriptions. State changes are caused by user-level events and RPC
results.

® Informal description components as, e.g., help texts which, directly support human users.

* ‘Price tags’ that inform users on operation invocation costs. This information ranges from
simple monetary values to sophisticated pricing policies - it depends on COSM applications
how to represent price information.

® Any local data values used by the GC in order to represent the application state.

Since the COSM Generic Client is not restricted to a distinct set of applications, specific
service state information, such as window positions or counter variables, may also be captured
by the service representation. Furthermore, it is also possible to store the SR persistently and
to suspend interactions with the remote server temporarily and resume them later. This is
based on the stored SR status information on a remote network site.

Compared with HTML documents, the SR approach therefore facilitates storage and query
processing for service descriptions since they can be stored in dedicated repositories. Type
objects are used as further SR components for the dynamic extension of the repository data-
base schema. This allows service providers to extend SR description by individual data items.
On the other hand, it allows users to query against the repository such as: “Return all servers
that provide an operation ‘Book™, or: "Return all parameters of the operation ‘Book’ in the
SR ‘CarRental™.

3.3 The COSM mobile agent infrastructure

SR-based interface specifications do not invoke remote procedures directly; they are rather
used to guarantee type-safe remote service invocations that are initiated by the generic client
on behalf of a human user. Taken together as a unit, user, generic client, and server can be
considered as amngine, that interprets SRs and executes the operations described. Users trig-
ger invocations, and the server implements the respective function. If, e.g., a server agent is to
be developed, the following extension is required for the basic COSM architecture: Remote
services needngine capabilities, i.e., abilities to transfer and receive SRs and to locally exe-
cute some basic operations of the agent language that are common to all agents. In such an
environment, e.g., the operatiddo <hosthame> transfers the SR including the current
evaluation state to the receiving host and the oper&tidrierminates the agent, by letting the
engine delete the SR. Every other operation is not carried out by the COSM engine itself but is
forwarded to a COSM server.



The integration of agents with the COSM generic client user interface also requires a reposi-
tory for agents that are available to the user. For that purpose, a directory as being used by
Telescript (represented by a city metaphor) is provided by an agent catalogue in COSM.
Agents that are ready to be used can be obtained from that catalogue.

3.4 Embedding control flow into COSM SRs

The base model of COSM did not provide means to incorporate control flow specifications
into SRs. This motivates the corresponding SR extension by petri net representations as pre-
sented below.

In the context of COSM, the basic petri net model (Jensen, 1992) is semantically extended by

the concepts of split and join transitions: A split transition separates a single SR into two or

more independently executable SR net representations. In contrast to regular transitions, split
transitions do not mark each outgoing place with a token; they rather generate a copy of the
net representation after tokens have been withdrawn from all incoming places and occupy
only one single outgoing place per net instance instead. In COSM terms, additional sub-SRs

(resp. subagents) are thus created out of the master instance. These instances can be processed

independently until a join transition is reached. The join transition is not enabled unless all

required instances have arrived at the input place. All net instances, except for the master, are
removed when the join transition fires. To carry out ajoin, the required SRs have to be collo-
cated at the same engine.

Each transition definition is associated with one operation description within the SR. If the

transition predicate evaluates to TRUE, firing the transition causes an invocation of the associ-

ated operation.

Pairs of split and join transitions may be nested in net definitions. Therefore, a dedicated

naming schemais required to assure correct identification of the agent instances to be merged.

These agent instances form a common task that is set-up by an initial agent. Tasks belong to a

task type and tasks of various types may be executed by an engine at the same time. A task

type is defined by individual agent implementers. The resulting naming schema appears as
follows:

1. Task type identifiers are declared by agent implementers. However, to enforce uniqueness,
atype identifier comprises a universally unique identifier (UUID).

2. At each task creation (i.e. when an initial agent is instantiated), a globally unique task
identifier is appended to the type identifier.

3. Each split transition, in turn, appends a locally unique instance identifier to the task identi-
fier. The join operation is therefore required to strip off this identifier and to test the re-
maining names on equality. Of course, additional instance identifiers may be appended at
each split. This schema enables an engine to merge the least recently created agent in-
stances first.

3.5 Move on!
In summary, the basic components of the COSM based engine architecture are

*® the service representation as an encapsulation of the agent's local state and control flow,

® the engine as an agent evaluator: The engine executes operation invocations and passes
agents on to other engines. Application-specific operation calls are invoked at remote serv-



ers, which conform to the agent’s service description. Every engine performs operation in-
vocations at the same server.

® COSM servers provide application services at remote sites. Their operations are invoked by
engines. Servers are not specific to the MA approach, they can still be invoked the
‘traditional way’ from generic or specific clients. Therefore, MAs as a distributed applica-
tion concept remains compatible with the existing RPC mechanism of COSM.

Agent operations are distinguished imtel|-known commands andapplication-specific ones:

Well-known commands can be executed locally by each engine while the latter are delegated

to the COSM server that is connected to that engine. Such a service invocation is executed as

if done by a generic client: First, the current Petri Net state is determined by the engine. If the

predicate of the currently enabled transition evaluatesRtg, the transition is fired. By

means of the SR operation definition, a named value list is created and transferred to the

COSM server through a CORBA DIl invocation. Each invocation advances the local state of

an agent.

Agent splitting and joining is carried out by the engine. A split transition definition within the

SR is associated with an address list of target engines. When firing, the engine creates suba-

gent instances - one for each element of the address list - which are transmitted to the respec-

tive target sites.

Concurrent agents are merged into a single instance if all of them belong to the same task and

have arrived at the same engine. These instances are stored locally at the engine’s site unless

all of them have arrived. In this case, all except for the master instance are simply deleted.

Concurrently migrating agents that belong to the same task change their local state individu-

ally due to different operation invocations at different engines.

3.6 An example

Figure 3: Migration scenario for mobile agents

The scenario illustrated in Figure 3 shows migrating agents, which obtain price information
from a set of services: From thgent catalogue, an agent is loademh an SR through the GC,

a user interface is created and initial data is entered by the human user. From now on, the SR
is treated as an agent and is transferredysbl @wv pages server by executing an accordir@o
command. After an address list of suitable servers has been obtained, the agent splits into
three instances: Theaster agent, and one subagent per target address in order to perform the
GetPrice() operation at each server. These servers are available as unchanged COSM server
that can still be directly accessed through the generic client as shown in Figure 2. After each
agent instance has gathered its respective price informatdmm(® is carried out on a fifth

host - the agent provider host that implements task-specific aggregation functions for the in-
dividual results. For the example task given here, the resulting prices are simply added. Fi-
nally, the remaining master agent is redirected to the agent catalogue. From there, the user
(who may remain offline for most of the time, e.g., in a mobile computing environment) ob-
tains the final result through the generic client again (Figure 3).

The goal of the COSM infrastructure is to enable an independent proliferation of application
services, value-added services, and extensions to service representations. The example dis-
cussed above, illustrates these possibilities: The agent acts as a mediator between the human
user and a set of underlying reservation services for a restaurant and a flower shop. For this



purpose, the original SR has been extended by control flow definitions. These two extensions
may take place without any central configuration or standardization. To follow this principle
one step further, the application domain of workflow management will be considered as suit-
able testbed for COSM agents. In this context, both the value chain of services and the SR will
be further extended by workflow coordination services and role descriptions of workflow par-
ticipants.

4 Interorganizational workflow management with mobile agents

Workflows are typically executed in distributed computing environments, for example, in
huge organizations or even in multi-organizational settings. Therefore, appropriate workflow
management systems must be able to deal with both distribution and heterogeneity. Due to
organizational modifications of the company, workflow management systems have to be
scaleable in order to satisfy changing requirements when new business processes or depart-
ments need to be created, external organizations to be integrated, or existing services outsour-
ced.

Workflow definition and execution

Workflow management deals with the specification and execution of business processes.
General process definitions include the activities to be performed, their control flow and data
exchange. They also comprise organizational roles of persons and software components that
are permitted to perform individua activities. Policies, which describe the organizationa en-
vironment, complete a process definition (Workflow Management Coalition 1995). The work-
flow management task can be generally separated into the phases workflow process definition,
workflow application configuration, and workflow execution. In most cases, WFM systems
are used in closed organizations where application interfaces and semantics are well under-
stood and can be configured in order to satisfy given demands for conformity. (Some repre-
sentatives of these systems are Mobile (Schuster et al. 1996), Meteor (Miller et a. 1996), and
Exotica (Mohan et al. 1995)). Therefore, contemporary WFM systems either support a pro-
gramming-level application integration or a workflow description notation that requires for its
interpretation the installation of an expensive workflow execution environment. However, in
an interorganizational context, applications that reside at external organizations can not be
smoothly integrated, since neither their interfaces nor their semantics may be changed.
Moreover, separated organizations maintain their local design and communication autonomy
and - from an economic point of view - the setup costs would be too high if a remote applica
tion needs to be adapted only for sporadic accesses. Only at the level of generic browsers - as
known form the World Wide Web - an integration of remote workflow participants will be
feasible at moderate costs. The usual problems of interorganizational WFM systems are thus:

1. Lack of a common cooperation infrastructure: Separate companies may lack a shared co-
operation platform - in fact, data exchange across telephone lines is the common denomi-
nator in many cases. They may operate by means of heterogeneous operating systems, ap-
plication software, and even workflow management systems. An integration of these com-
ponents would require high set-up costs which reduce the benefit of interorganizational
WFM.



2. Lack of central management: On the market, participants coordinate their activities
through the price mechanism - not by objectives that are communicated through hierarchi-
cal channels of a closed organization. Companies acting as trade partners on the market
might not intend to tighten their cooperation up to the degree that is given, for example, in
the automotive industrial sector. Companies might rather intend to integrate isolated tasks
from separated companies into their individual processes. One may think of a manufacturer
who wishes to initiate a quality improvement process in a supplier’s production. Here the
costs of calling the responsible manager by phone diminish compared to the set-up costs in
the case of an organizational integration. Therefore, the WFM software infrastructure must
be able to cope with such sporadically occurring events.

3. High coordination costs of WFM systems: Activities that aim at integrating interfaces of
heterogeneous WFM software products have risen in the past years (WFM Coalition 1996).
However, the result is an interoperability at a very specific level that requires both partners
to invest into expensive equipment. Therefore, the WFM software - as a closed application
- only pays off in settings with highly repetitive activities. Efficiency would not decrease if
the level of interoperation is lowered to a more generic collaboration infrastructure allow-
ing to integrate not only WFM applications but also an access to any other on-line services.
In this case, the communication infrastructure is already given, and the WFM integration
costs decrease to the extension of such an existing infrastructure.

As a conclusion, a conflict between open application requirements and the capabilities of

closed application is obvious in the field of IOWFM. In this setting of a the sporadic commu-

nication with autonomous trade partners, the bottom line of common knowledge might just be

the business partner’s local agent platform. The following application scenario shows an ex-
ample for a process that spans across organizational boundaries and therefore involves exter-
nal business partners in an interchangeable manner:

4.1 An application scenario

In a trading company, an order processing task is initiated by a customer request (Figure 4).
As the first step of internal processing, the warehouse manager is inquired to check whether
the item requested is on stock. If this is the case, an offer is made and returned immediately to
the customer. If not, a list of potential suppliers is provided either by a clerk or by a software
component. This process may involve several other data entry activities as well.

Each supplier receives, in turn, an offer request and returns the corresponding individual offer.
Again, either a program or a person selects the most appropriate offer and requests a financing
offer from one of the involved banks. This is carried out by transmitting concurrently a
GETFINANCINGOFFER to each bank server. After a distinct time-out or if all banks have replied
their conditions, one bank is selected and, as the final step, an offer is made to the customer.
This process comprises different kinds of tasks that are well-structured likeNBrOdR
function. They could be well performed by conventional client/server tools. Other tasks - for
example the decision, which supplier to involve - may require human activity in order to be
accomplished properly. The decision to perform some tasks automatically or manually may be
delayed until the process instance has reached the respective state of execution.



Figure 4: An application process scenario

The data structure or substrate that represents a process instance may either reside locally at
each involved application or it is a mobile agent, which carries this information around as a
payload. The first case refers to the basic COSM approach, where an SR is obtained from a
central application server in order to perform remote procedure calls. In the latter case, al
information that is associated with the process instance is encapsulated as an isolated data
object, i.e., the SR of a mobile agent. It is important to mention that the process definition (the
petri net from Figure 4) isindependent from the implementation of the workflow execution.

4.2 Extending the COSM agent platform for workflow
applications

If, e.g., abank clerk is prompted to enter a financing offer in the scenario all activities should

be disabled that are not allowed to be carried out by him. Further, the actual COSM applica-

tion server, which, e.g., provides an interface to access stock information, is separated from an

additional task server which manages a service representation repository and coordinates in-
vocations of the application server. Users who intend to perform any task have to be authenti-

cated by task server through their role identifier. The task server then provides an individual

to-do list to the attached user with all process instances in an execution state that permits to

perform an activity. As an SR, the process instance is acquired by the generic client in order to

let the user access the application server through remote procedure calls. After this interaction

has taken place, the SR is transferred back to the task server and might appear on the task list

of another user (Figure 5). For this purpose of service access coordination, the same type of

petri nets as defined in the MA scenario can be used. However, at process execution time,

these control flow descriptions are not used to allow an SR to migrate around as an agent un-

less a Go operation isfired.

In this case, it could be immediately transferred to a remote engine if a transition with the Go
command is encountered. In the agent-based example of Figure 4 the financial offer calcula-

tion for the trading company could be done by a user at the bank’s local engine. Instead of
accessing the trading company’s task server, the local engine of the bank could enter the agent
(as an SR) into a local task server. After a financing offer has been made, the SR is transferred
back to this task server and from there (as an agent) back to the trading company.

Figure 5: Coordinating SR-based server accesses through the task server

4.3 The trading company example, revisited

After the COSM infrastructure, its MA extension, and, finally, a further augmentation towards

IOWFM have been introduced, it is appropriate to combine all approaches:

» Our implementation scenario will therefore usedaaeric client in order to allow flexible
access to remote servers (the trading companies application server),

* it will use enginesto execute SRs as agents,

» atask server is involved, where process instances are kept as task list entries, and

* SRs - will be treated awsobile agents, if their transfer to a remote host is indicated through
the Go operation.



To provide a further refined example, Figure 6 shows the process definition for this example.
Split and join transition are defined to control subagent creation and collection. Engines carry
out this task and treat SRs as agents. For external business partners, the task server acts as an
engine that collects agents after an offer was made and the respective agents migrated back to
the local organization. Within this organization, the task server treats these agents as an SR

again.

Figure 6: Control flow specification

The advantage of this SR interpretation - either in the ‘traditional’ way or as a mobile agent -
provides an additional flexibility of the process definition: It is independent of the control
flow description (as illustrated in Figure 6) how an SR might be interpreted at run-time. Tools
for process definition and execution are therefore independent from one another as well. If the
task server of the example in Figure 7 is slightly modified in order to introduce engine capa-
bilities, external participants may switch from the task-list approach to the agent based one.
The control flow definition as a part of the SR will remain constant in both cases.

Figure 7: Combining the centralized and the decentralized approach

In this example, the service representation is considered as a workflow process instance and as
mobile agent at the same time. Its interpretation depends on the application context - but not
on the net definition. Therefore, the only required infrastructure is a generic client and a com-
bined engine/task server function at each organization. To provide application functionality,
COSM servers are required as well.

Due to the separation of engines, task servers, and application servers the overall agent envi-
ronment allows for scalability of the coordination services: both the task server and the engine
can be replicated as long as the external interface towards generic clients and remote engines
remains stable.

The current prototype of the COSM MA system platform was developed in C++ for an IBM
RS/6000 workstations with AlIX. A second implementation exists for OS/2 with the option to
run engines on both platforms and to exchange agents across them. The necessary heterogene-
ity transparency is achieved by a platform-independent implementation of SRs.

The interpretation of the SR used in the demo environment and the set-up of the GUI takes up
to 5 seconds. The size of the MA-enhanced SR is ca. 50 KB, however the size can be reduced
to ca. 6 KB by compression such that it is easily transferable across the Internet. Thus, the
overall workflow execution takes less than one minute (delays caused by the human user are
not counted).

5 Summary and outlook

Mobile agents are a promising approach to implement a platform for electronic service mar-
kets. However, standardization of user interfaces, service attributes, etc. becomes a sensitive
design decision in this context. Therefore, one rationale for the agent-oriented approach pre-
sented in this paper is to identify an organizational model that fosters electronic service mar-
ket proliferation.



The approach based on the COSM architecture aims to add-on MA facilities to the basic

CORBA DIl based client/server infrastructure. This keeps MAs as an option that the applica-

tion programmer may utilize or not. The service provider’'s design autonomy is thus preserved.
Embedding petri nets as a means for control flow specifications and for task coordination en-
courages third-party vendors to provide added-value services such as agent catalogues or task
servers. These reasons for the selection of the MA approach emphasize the extensibility of
COSM as an open distribution platform. The COSM infrastructure allows to purposefully ex-
tends an existing middleware framework.

It was further shown how the approach of mobile agents can be applied to the field of work-
flow management. Whilst involving mobile agents iniatraorganizational context might
appear to be less efficient due to economies of scale, it appears to apply well, however, in the
context of WFM applications that span organizational boundaries. It was further discussed on
the basis of a representative application example, which design options exist for a possible
implementation of such a workflow environment that is based on an MA platform.

The MA approach helps to break up domains of conformance for closed distributed applica-
tions. It supports to gather and access remote services in a type-safe but spontaneous way.

Outlook

The discussed MA infrastructure has been implemented based on several already existing
COSM concepts and components - the generic client, the service representation, the catalogue
servers, etc.. The integration of additional security mechanisms suoh-espudiation serv-

ices or the supportlectronic payment functions is a current subject of research that is dis-
cussed in (Merz 1994b and Merz 1996b).

The MA-based WFM infrastructure of COSM mainly lacks a flexible, individual implemen-
tation of application code. Only existing application servers are accessible and coordinated by
the mobile agent framework of COSM. Additionally, local agent code for user interface con-
trol, result computation or subagent synchronization has to be externalized to these application
services as well. Another shortcoming of the current implementation is the entire transparency
of the information contained in the service representation. This concerns both control flow
description and data.

As a solution, Java’s flexible binding and loading mechanism combined with the given distri-
bution transparency allows a smooth transfer of code. However, a shortcoming of Java is the
lack of a persistent encapsulation and transfer of execution state between the engines. Two
possibilities exist to accomplish this: Either Java abstract machines need to be enhanced for a
persistent execution management (Atkinson et al. 1996); or Java libraries need to be devel-
oped, which allow application programmers to define persistent objects as well as a suitable
migration mechanism (Lange 1996). The first case requires modified Java interpreters and
would therefore reduce the infrastructure’s ubiquity. In the latter case, the execution context
may not be persistent at a fine grained level of individual abstract machine statements but
rather at the coarse-grained level of defined methods that are executed after an agent arrived at
the target engine and resumed processing. To achieve this in the context of the COSM infra-
structure, execution state has to be integrated into the SR together with the original agent code
(i.e., Java applets). Here, the service representation appeals as a mobile data store for both
data and code persistently.
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