
A Blueprint of Service Engineering1

Christian Zirpins, Toby Baier, Winfried Lamersdorf
Distributed Systems Group- VSIS

University of Hamburg, Hamburg (Germany)
[zirpins, baier, lamersd]@informatik.uni-hamburg.de

Abstract

The rationale behind service oriented computing is to lift inter-organisational integration on a higher level of effectiveness and

efficiency. E-services promise to offer means for floating modularisation of arbitrary organisational assets into components that
can be dynamically offered, discovered, negotiated, accessed and composed in an open environment. From a technical point of
view electronic services are software systems that have to be implemented on top of conventional information and communica-
tion technology. As an important step into that direction, the Web Service architecture has laid the foundation for interoperable
communication between arbitrary systems. This extended abstract outlines an approach to plan, build and run application-level
services on top. Therefore, a fundamental notion of service, originating from distributed systems, is being extended by a specific
concept of cooperative interaction processes. Accordingly, an application-level service model and corresponding service engi-
neering mechanisms are proposed that are being realised as middleware based on OGSA Web Services and BPEL4WS processes.

Keywords: Inter-Organisational Integration, Cooperative Interaction Processes, Electronic Services, Workflow, Web-/GRID
Service Architecture

1. Introduction: Service Oriented Distributed Applications

Various application domains like electronic business, -government or -education face recurrent cooperation

scenarios, where a constant change of participants is a predominant characteristic. A typical example is given by
business-to-business integration problems [1] that focus on the dynamic relationship between a company and fre-
quently changing partners. Situations like flexible outsourcing of business functions or dynamic supply chain man-
agement face similar recurring types of cooperation with interchangeable partners. For example, a company might
contract out freight logistics to changing carriers or forwarding agencies. The rationale for this kind of relationship
is on the one hand to expose new revenue streams (e.g. providing freight logistics on demand) and on the other to
seek for new efficiencies (e.g. outsourcing freight logistics if profitable) both in a form that allows for constant op-
timisation of partnership settings. Strategic planning of cooperation types, tactical preparation of cooperation set-
tings as well as operational control of functional cooperation are among the main challenges to be tackled here.

In more advanced scenarios, the patterns of functional cooperation are often a subject of variation too, because
different partners pose different operational requirements that have to be negotiated between the participants before-
hand. For example, a customer cooperates with various carriers that all move goods but impose different procedures
of payment. Moreover, when broadening the scope, a party often faces multiple of such cooperative relationships
that are in some cases mutually dependent. In order to preserve these dependencies, they have to be made explicit
independently from individual partners. For example, a forwarding agency has to ensure that it can move the goods
of various individual customers by bringing into action alternating carriers under contract.

Henceforth, the notion of service will be used to refer to such recurring cooperation scenarios between changing

autonomous participants, as it is common in many application domains. In order to substantiate this notion, one can
benefit from former work in distributed systems. Revisiting ODP concepts [2], we distinguish the constant class of
cooperation (service type) from changing cases of cooperation (service instance). Service instances can vary in the
conditions of cooperation referred to as service properties (e.g. QoS) that arise from actual participants. Those par-
ticipants are typed by roles, indicating expected cooperative behaviour within service relationships. Providers offer
type and properties of instances they are willing to participate in. Clients observe offers of a specific type, choose a
provider with respect to service properties and engage in service instances. Specific interdependencies between
services are often referred to as service composition. In this case, a participant relates (composes) services in which
he acts as a provider (composite services), to services in which he acts as a client (service components), stating how
characteristics of the composite service are put down to characteristics of service components.

In terms of characteristics, services on application-level are more complex then those found in classical distributed
object systems. Apart from the ‘semantic’ reason (e.g. move goods), the ‘syntactic’ cooperation process (e.g. cus-

1 We thank the Hewlett Packard Laboratories, Bristol, UK for sponsoring this work.

 1

tomer orders carrier confirms and ships goods customer pays) is among the predominant service characteris-
tics. In particular, the focus is on the interaction patterns, that is, the communication processes between roles.

The field of problems faced by organisations in terms of service participation can be structured into strategic, tac-

tical and operational challenges. On strategic level, exposing and expressing semantic and syntactic aspects of ser-
vice types and their interdependencies requires expressive models and systematic design methodologies (service
modelling) taking under account the (technological and conceptual) context of participants. For example, a forward-
ing agency needs models to express a) meaning & procedure of a logistics service it provides b) dependencies of the
logistics service to a freight service that it is client for and c) mappings of the service interactions to its internal
business information systems. On tactical level, service types have to be constantly maintained to keep track with
organisational change (service type adaptation). Also on this level, partners have to be located for the types of ser-
vice a participant is interested in as client (service discovery) or provider (service publication). On operational level,
partners have to be matched (by providers) and chosen (by clients) for service types (service aggregation). In some
cases, providers additionally have to choose component service types matching the clients of composite services
beforehand (service composition). During the actual service interaction procedure, terms and conditions of the ser-
vice have to be ensured (service coordination & control). Additional flexibility can be reached by dynamic changes
of service instances (service instance adaptation).

Generally for all levels, middleware is needed to arrange organisational environments of information- and com-
munication technology (ICT) into a cooperative information system [3] realising services and providing support for
the various tasks described above. We refer to such a middleware as service management system and to the joint
tasks of planning, building and running of service oriented distributed applications as service engineering.

Current techniques of service oriented computing are strongly focussed on technology. While application-level

(i.e. business) service support is out of their scope, they nevertheless pave the way towards it. The emerging Web
Service standard [4] provides interoperability between heterogeneous systems by leveraging the expressive power of
XML to specify operational interfaces that can be accessed using open internet communication. Thus, organisations
can externalize their internal information systems as web enabled components. Those components provide interac-
tion endpoints (subsequently called ports) to participate in automated inter-organisational cooperation. Concerning
cooperation procedure, the service oriented model adopted by Web Services only defines a very basic type of inter-
action (i.e. ‘broker triangle’). However, web service flow standards like BPEL4WS [5] provide the means for indi-
vidual definitions of basic interaction processes. This is the crossing point to more general research on cooperative,
inter-organisational interaction-processes (e.g. [6-8]) and workflow (e.g. [9-11]), where several practical approaches
for application-level services are located (e.g. [12-14]).

The FRESCO project is concerned about foundational research on service composition [15]. The goal is to de-

velop a framework of concepts and technologies that supports organisations in playing the provider role for compos-
ite services. As a basis for composition, the focus is on the components first. Subsequently, a fundamental service
model was developed that describes basic (i.e. non-composed) application-level services as classes of recurring
cooperative interaction. A middleware platform, built on technology of the Web Service family, is currently under
development to enable the engineering of such services. In the second part of this extended abstract, a basic blue-
print of service engineering is outlined comprising our model & technology platform.

2. A Blueprint of Service Engineering

The FRESCO Service model [16] defines a view on services that is provision-oriented and service-centric. Co-

operation procedures that constitute atomic, self-contained parts of a service-relationship are exposed by so called
capabilities. In particular, capabilities represent purpose, interaction logic and resulting artefacts of the cooperation
between organisational roles. Capabilities adopt the neutral role of the service itself, introducing a level of indirec-
tion between other roles. Unlike meta-level protocols, capabilities take the position of a first-class participant (i.e.
coordinator) that might be just virtual or practically enforced. A service is made up by a set of such capabilities.

The most important feature of the model is a separation of capabilities in terms of service content and -provision.
Content reflects the purpose of a service (e.g. moving goods). It is assumed that it arises from specific resources of
the provider (e.g. internal processes, knowledge, people, machines, etc.). To represent service content, cooperation
procedures, featuring interactions with such resources, are explicitly exposed as meaningful units of content (e.g.
transport tracking…) by capabilities referred to as assets. Assets are degenerated in the sense that they don’t repre-
sent cooperative interaction between roles but monologues of the provider (i.e. binding [7]) that have to be provided
to clients indirectly by other capabilities. Assets are grouped into a service core representing the complete content.

 2

Provision addresses procedures that drive a service and make available content (e.g. negotiating terms and condi-
tions, incorporating assets, etc.), whereby control is exclusively and proactive. Service provision capabilities (hence
called “capabilities”) are grouped around core assets in a layer called service shell. Within a shell, capabilities are
mutually interrelated and share a common view on roles and provision-relevant information. Interrelations embody
the overall behaviour of provision by defining the global interplay of capabilities. A service is fully characterised by
defining the basic core and, above all, the enabling shell. Our main focus is on the later.

An associated technology platform focuses on a) mapping the service notion to the environment of organisa-

tional ICT and b) a set of mechanisms facilitating service engineering on top. Technology mapping is based on the
concept of virtual service engines. Engines provide a layer of abstraction that is assumed to wrap around diversified
ICT systems in order to provide a homogeneous platform for service management. Service types are defined as
schemas with respect to the engine model. Service instances can be run in any environment implementing engines.

The engine model assumes that all organisational ICT resources of any role (e.g. client’s ERP, provider’s
DBMS…), providing ports for service-related interactions, are represented by means of a homogeneous component
model. Shell capabilities appear as glue between ports that reflects purpose, interaction logic and result. We repre-
sent this glue based on workflow and adopt the WfMC reference model [17] for this purpose. Common patterns are
prescribed to define capabilities, their structuring and interrelations by means of the workflow language XPDL,
together resulting in a service schema. In particular, a capability maps to the schema of a single workflow definition.
Ontology-associations define the purpose of interaction logic that emerges from the flow of interaction activities
and results in data artefacts. Interaction activities can be defined with a participant (i.e. a role-associated component-
port) to express cooperative procedure or with another capability workflow to express capability interrelation. Co-
herent sets of capability workflows are grouped together into packages with respect to task-oriented engines (e.g.
negotiation engine, payment engine). The shell is given as a top-level package, where each engine is abstracted as a
component type itself that realises the enclosed capabilities and gets assigned to a specific role. Thus, various coor-
dination concepts can be expressed including centralised scenarios (orchestration) and distributed scenarios.

In brief, a schema specifies a partitioned set of highly interrelated components with precise interaction behaviour,
where a subset A represents interacting participants and a subset B represents and enforces their interaction patterns.
Service engineering is about planning, building and running B based on A.

Our concept of service engineering defines basic mechanisms that allow building customized extensions upon.

Besides modelling, the focused problems comprise adaptation, aggregation and coordination. As services are inher-
ently complex, we anticipate that support will be needed for their design, that is, a graphical service modelling lan-
guage and -tool, which help developers in creating service schemas. This is supposed to be the initial step of the
service lifecycle, performed by a participant in provider role. A service schema manager provides the functionality
to process the schema programmatically. Beside storing and retrieving it, adaptation is its vital task. We adopt a rule
based approach that provides a precise and systematic way to change schemas automatically. Back in the service
lifecycle, the schema is subject of continuous static adaptation until eventually brought to action.

Then, it’s the task of a service aggregation manager to create a service instance, based on the schema and a map-
ping of roles to actual participants. The main problem is to allocate resources of the participants according to the
components associated to their roles, thereby optimising resource allocation while guaranteeing a constant and con-
sistent flow of service procedures even when schema or participants change during provision. In the beginning, at
least the provider is known and resources for an initial engine have to be allocated from him. Service engines are
components that manage the aggregation and coordination of the capabilities they realise. The crucial problem is for
participants to implement the capabilities of an engine while keeping the service context including associations to
other engines and a homogeneous view on roles and data. We propose a generic implementation framework that can
be parameterised with executable specifications, generated from the schema. When all engines reach a final state the
instance expires and the service lifecycle continues with a new round of static schema adaptation.

A vital characteristic lies in the fact that all management mechanisms are first class components themselves. Thus
changes can a) be made at provision time and b) arise from capabilities themselves. For example, a capability can
lead to dynamic changes of participants (e.g. a new participant is introduced as a result of a brokerage capability) or
dynamic schema adaptation (e.g. a payment procedure is changed as the result of a negotiation capability). Note, that
this allows extending the service engineering mechanisms by realising them as capabilities.

A prototype is currently under development that implements the outlined concepts. A UML profile for services

and an associated UML tool is meant for graphically designing service schemas and generating XPDL specifica-
tions. We adopt the Open Grid Services Architecture (OGSA) [18], that builds on Web Services, as our component
model. Thus, adaptation, aggregation and engine components get built as GRID services. Adaptation changes XPDL

 3

 4

service schemas by rule based transformations. It also facilitates BPEL4WS translations that are used to parameter-
ise a set of interrelated service engines. Engines drive BPEL4WS processes with GRID components, allocated by
aggregation strategies build upon GRID mechanisms.

3. Conclusion

As inter-organisational relationships increase in terms of quantity and quality the need for new classes of distrib-

uted applications arises that allow their effective and efficient management. We focus on recurring cooperation
scenarios between changing autonomous participants and the associated class of service-oriented distributed applica-
tions. While a suitable technological foundation is already in place to connect the participants, this class misses
support to plan, build and run solutions as regards a variety of characteristic problems on application-level.

We propose a service model on top of Web Service technology and address a subset of problems within a basic
service engineering approach. Our approach applies process theory and workflow concepts to specify, aggregate,
enact and adapt services as interaction patterns between distributed resources. In particular, we adopt a homogene-
ous view on resources, coordination- and engineering mechanisms that allows for a certain degree of introspection
and dynamic self adaptation. We believe that this concept is powerful enough to implement complex service scenar-
ios with customized requirements. In future work, we will use the service engineering mechanisms to examine mod-
els and mechanisms for service composition that allow relating and connecting the capabilities of composite services
to the capabilities of their service components.

Bibliography

[1] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elmagarmid, "Business-to-business interactions: issues

and enabling technologies," The VLDB Journal, (Springer, Online First, April 3, 2003), 2003.
[2] ISO/IEC-JTC1/SC21, "Basic Reference Model of Open Distributed Processing -- Part3: Architecture. International Stan-

dard," International Organisation for Standardization 10746-3, 1995.
[3] G. D. Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, M. P. Papazoglou, K. Pohl, J. Schmidt, C. Woo, and E. Yu,

"Cooperative Information Systems: A Manifesto," in Cooperative Information System: Trends and Directions, M. P. Papa-
zoglou and G. Schlageter, Eds.: Academic Press, 1997.

[4] A. Tsalgatidou and T. Pilioura, "An overview of standards and related technology in Web Services," Distributed and Parallel
Databases, vol. 12, pp. 135-62, 2002.

[5] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana, "Business Process Execution Lan-
guage for Web Services, Version 1.0," BEA, IBM, Microsoft 31 July 2002.

[6] K. Baïna, S. Tata, and K. Benali, "A Model for Process Service Interaction," in Business Process Management International
Conference, BPM 2003. Proceedings, LNCS 2678, M. Weske, Ed.: Springer, 2003, pp. 261 ff.

[7] C. Bussler, "Behavior abstraction in semantic B2B integration," in Conceptual Modeling for New Information Systems Tech-
nologies. ER 2001 Workshops. HUMACS, DASWIS, ECOMO, and DAMA. Revised Papers Lecture Notes in Computer Sci-
ence Vol.2465. 2002, H. Arisawa et al, Eds.: Springer Verlag, Berlin, Germany, 2002, pp. 377-89.

[8] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker, "Modeling and Composing Service-Based and Reference Proc-
ess-Based Multi-enterprise Processes," in Proc CAiSE 2000, LNCS 1789, L. Bergman, Ed.: Springer, 2000, pp. 247-263.

[9] W. M. P. van der Aalst, "Process-oriented architectures for electronic commerce and interorganizational workflow," Informa-
tion Systems, vol. 24, pp. 639-71, 1999.

[10] E. Colombo, C. Francalanci, and B. Pernici, "Modeling Coordination and Control in Cross-Organizational Workflows," in
Proc. CoopIS/DOA/ODBASE 2002, LNCS 2519, R. Meersmann and Z. Tari, Eds.: Springer, 2002, pp. 91 ff.

[11] Q. Chen and M. Hsu, "Inter-Enterprise Collaborative Business Process Management," Softw are Technology Laboratory, HP
Laboratories Palo Alto HPL-2000-107, 2000.

[12] M. Mecella, B. Pernici, M. Rossi, and A. Testi, "A Repository of Workflow Components for Cooperative e-Applications," in
Proceedings of the 1st IFIP TC8 Working Conference on E-Commerce/E-Business: BICE Press, 2001, pp. 73-92.

[13] O. Perrin, F. Wynen, J. Bitcheva, and C. Godart, "A Model to Support Collaborative Work in Virtual Enterprises," in Busi-
ness Process Management International Conference, BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003. Proceed-
ings, LNCS 2678, W. M. P. v. d. Aalst, A. H. M. t. Hofstede, and M. Weske, Eds.: Springer, 2003, pp. p. 104 ff.

[14] F. Casati, M. Sayal, and Ming Chien Shan, "Developing e-services for composing e-services," in Advanced Information
Systems Engineering. 13th International Conference, CAiSE 2001. Proceedings Lecture Notes in Computer Science
Vol.2068. 2001, K. R. Dittrich, A. Geppert, and M. C. Norrie, Eds.: Springer Verlag, Berlin, Germany, 2001, pp. 171-86.

[15] G. Piccinelli, C. Zirpins, and W. Lamersdorf, "The FRESCO Framework: An Overview," in 2003 Symposium on Applica-
tions and the Internet Workshops (SAINT 2003 Workshops): IEEE Computer Society, 2003, pp. 120-123.

[16] G. Piccinelli, C. Zirpins, and C. Gryce, "An Architectural Model for Electronic Services," in IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2003): IEEE Computer Society, 2003.

[17] WfMC, "Workflow Management Coalition," http://www.wfmc.org, 1.5.2003
[18] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The Physiology of the Grid: An Open Grid Services Architecture for Dis-

tributed Systems Integration," Open Grid Service Infrastructure WG, Global Grid Forum 2002.

http://www.wfmc.org/

	Abstract

