
How words can tell what actions are doing∗

[Short Paper]

Karl-Heinz Krempels
University of Aachen,

Dept. of Computer Science, Informatik IV
Ahornstr. 55

52074 Aachen, Germany

krempels@cs.rwth-aachen.de

Jens Nimis
Universität Karlsruhe (TH),

Institute for Program Structures
and Data Organization
Am Fasanengarten 5

76131 Karlsruhe, Germany

nimis@ipd.uni-karlsruhe.de

ABSTRACT
This paper describes an approach to use embedded descrip-
tions of agent actions in task ontologies and agent communi-
cation messages compliant to FIPA1 ACL [4, 5]. Ontologi-
cal terms denoting actions are extended with semantical de-
scriptive decorations in such a way that an agent requested
to perform a well defined action is able to extract the for-
mal description of the activity bound to this action from the
ontology and to execute it, or to forward it to an inference
machine. Further an extension of FIPA SL [7] is presented
that allows the integration of this approach in existing agent
systems.

Categories and Subject Descriptors
1 [Agent Communication]: Speech Acts, Content Lan-
guages; 5 [Infrastructure and Architecture]: Agent In-
tertask Communication

Keywords
Agent Communication, Ontology, Content Language, Agents

1. INTRODUCTION
Communication in third generation MAS (multi agent sys-
tems) is based more and more on FIPA recommended in-
teraction protocols and speech acts, and existing semantic
languages [1], such as KIF, Prolog, FIPA Semantic Lan-
guage, ebXML etc. Within the content of the messages con-
stituting an interaction protocol, ontologies are used for the

∗This work is motivated by experiences made in the German
priority research programme 1083 Intelligent Agents in Real-
World Business Applications where two large multi multi
agent systems (MMAS) were developed.
1Foundation for Intelligent Physical Agents.
http://www.fipa.org/

specification of domain and task oriented terms and rela-
tions. Therefore frame based representations are used for
the defined concepts inside of an ontology. The ontology
design process is well supported by different development
and maintenance tools, like e.g. Protégé, Ontolingua, and
OilEd. Yet, a comfortable export of ontologies for direct
use in existing agents, agent systems and their development
process is not supported. Below we describe an approach to
extend task ontology definitions of agent actions by semanti-
cal descriptive decorations, and the use of these descriptions
in MAS by a rule based inference machine. This means that
the agent passes the content of received messages to the in-
ference machine for the action evaluation. The description
of agent actions should be supported by the used ontology
design tool in such a way that code of the description lan-
guage can be contributed by the ontology designer as well
as by the agent developer. The evaluation of agent action
descriptions presumes the ability of the agent’s inference
machine to understand the used content language and the
used descriptive language(s). The outline of the paper is as
follows: In Section 2 we describe the state of the art for us-
ing ontologies and therein defined actions in agent systems.
This is followed by the description of our approach, regard-
ing the ontology extension, the requirements for ontology
design tools and an example for embedded action descrip-
tions in FIPA SL [7] in Sections 3. We finish the paper with
conclusions and an outlook in Section 4.

2. STATE OF THE ART
For a long time the provided interfaces by ontology design
tools were limited to data and representation formats, such
as XML and RDF, not ready to use in agent systems or
their development process. Developers and researchers deal-
ing with the deployment of ontologies in agent systems and
with the implementation of FIPA compliant interaction pro-
tocols [6] had to create manually a mapping between the
well-defined ontology in the design tool and the needed class
definitions of ontology terms in the programming environ-
ment. The construction of an ontology according to this
process was a very time-consuming and error-prone devel-
opment task. Figure 1 provides an example of such an ontol-
ogy class definition file used in JADE2 Construction of large
ontologies with hundreds of concepts and terms, seemed to

2Java Agent DEvelopment Framework. http://jade.cselt.it/

become an unreachable goal without tool support including
automated consistency checks.

...

public class MusicShopOntology extends Ontology {

// The name identifying this ontology

public static final String

ONTOLOGY_NAME = "Music-shop-ontology";

// VOCABULARY

public static final String ITEM = "Item";

public static final String

ITEM_SERIAL = "serial-number";

public static final String CD = "CD";

public static final String CD_NAME = "name";

public static final String CD_TRACKS = "tracks";

...

// Private constructor

private MusicShopOntology() {

// This ontology extends the basic ontology

super(ONTOLOGY_NAME, BasicOntology.getInstance())

try {

add(new ConceptSchema(ITEM), Item.class);

add(new ConceptSchema(CD), CD.class);

...

ConceptSchema

cs = (ConceptSchema) getSchema(ITEM);

// The serial-number slot is optional and

// allowed values are integers.

cs.add(ITEM_SERIAL, (PrimitiveSchema)

getSchema(BasicOntology.INTEGER),

ObjectSchema.OPTIONAL);

// Structure of the schema for the CD concept

cs = (ConceptSchema) getSchema(CD);

cs.addSuperSchema((ConceptSchema)

getSchema(ITEM));

cs.add(CD_NAME, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

// The tracks slot has cardinality > 1

cs.add(CD_TRACKS, (ConceptSchema)

getSchema(TRACK), 1,

ObjectSchema.UNLIMITED);

...

} catch (OntologyException oe) {

oe.printStackTrace();

}

...

Figure 1: Part of an ontology class definition in

JADE 2.5

Support for automated generation of ontology class defini-
tion files, as shown in Figure 1 is provided for the ontology
design tool Protégé3 through the Bean Generator4 plugin
[8]. Thenceforth, the export of existing large ontologies as
Java code became possible and the way to implement them
in agents and agent systems was simplified but not solved.

Hence, the new challenge seems to be the implementation
of complex queries with respect to the defined ontology, the

3http://protege.stanford.edu/
4http://www.swi.psy.uva.nl/usr/aart/beangenerator/

used content language and the programming language of
the used agent systems. In most FIPA compliant agent sys-
tems Java is used as programming language and SL [7] as a
content language. Ontologies therefore are usually designed
and maintained, e.g. with Protégé, and exported to a target
language, e.g. as Java code with Protégé’s Bean Generator
plugin. From these three facts, there results a new chal-
lenge for developers, because now they have to create the
message content for agent communication further by hand
in Java, and they have to keep in mind the generated struc-
ture of the defined ontology and the SL grammar rules. The
construction of a simple query becomes a very expendable
and time-consuming job, due to the need to define the used
terms at all SL grammar levels, to instantiate them, and to
initialize them with the right sub-terms manually. (To get
an idea of this task, think of a bottom-up approach and con-
sider the grammar of SL [7][pages 2-4]: VariableIdentifier,
Variable, Wff., etc.)

For real intelligent agents complex queries are essential and
we are allowed to assume that they have to cover more than
the trivial case, consisting of two variables and boolean logic.
Furthermore the used ontological concepts have to be in-
stantiated and initialized as well as their defined slots and
integrated in the described SL term. An example for this is
shown in Figure 2 [2][pages 20-21].

...

// Prepare the Query-REF message

ACLMessage msg =

new ACLMessage(ACLMessage.QUERY_REF);

// sellerAID is the AID of the Seller agent

msg.addReceiver(sellerAID)

msg.setLanguage(codec.getName());

msg.setOntology(ontology.getName());

// Prepare the content.

try {

AbsConcept absCd = ontology.fromObject(cd);

AbsVariable x = new AbsVariable({\‘O}x{\’O},

BasicOntology.INTEGER);

AbsPredicate absCosts =

new AbsPredicate(MusicShopOntology.COSTS);

absCosts.set(MusicShopOntology.COSTS_ITEM, absCd);

absCosts.set(MusicShopOntology.COSTS_PRICE, x);

AbsIRE absIota = new AbsIRE(SLVocabulary.IOTA);

absIota.setVariable(x);

absIota.setProposition(absCosts);

// Let JADE convert from Abstract descriptor

// to string

getContentManager().fillContent(msg, absIota);

send(msg);

} catch (CodecException ce) {

ce.printStackTrace();

} catch (OntologyException oe) {

oe.printStackTrace();

}

...

Figure 2: Creation of a QUERY-REF message in

JADE 2.6

But this is half the work to be done, because a sent mes-

sage has to be checked syntactically and semantically on the
receiving side. Therefore at first the message is passed to
a parser for syntax-checking and then the used ontological
concepts have to be extracted by hand. If the received mes-
sage is a query then the used operators have to be mapped
to corresponding implementation language operators or the
needed logic has to be implemented as well. If the received
message is an request for a specific action, then at this place
the term specified for an agent action in the used ontology
is bound, e.g to a JAVA method that executes this action.
This again is a painful job that in the AI field usually is
done by inference machines and not by developers. One
possibility to simplify this process is to create templates for
message contents with the ontology design tool Protégé and
the Bean Generator plugin, but this is not a very sophisti-
cated solution because intelligent agents should be able to
generate queries and requests at run-time.

After we have described the way in which at present we
actually can use ontologies in agent systems and in which
we have to program messages for agent communication, we
propose a new approach in the following section.

3. ONTOLOGY, MAS AND DESIGN TOOL
EXTENSIONS

From the described problems, regarding the use of ontologies
in agent systems and the creation of queries, we recognize
the following requirements to a new approach:

• Agent actions defined in an ontology should be ex-
tended with semantical descriptions consisting of a lan-
guage identifier and code written in this language.

• The content of received messages should be evaluated
within the receiving agent by an inference machine.

• Ontologies should be provided in a language inter-
pretable by the inference machine.

When these requirements are accomplished, the way of de-
veloping an interaction among two agents will change from
the one shown in Figure 3(a), where all the messages re-
ceived by an agent are passed from the lowest to the high-
est level by the agent developer, to the way shown in Fig-
ure 3(b). In the new approach represented there, the way of
developing an agent interaction will be the following:

• The task ontology used for the domain description is
designed, using an ontology tool.

• Semantical action descriptions are added to the defined
agent actions by the MAS developers in this ontology
design tool.

• The ontology is exported in a language interpretable
by the MAS inference machine, while action descrip-
tions have to be embedded therein in their destination
programming language representation.

• The ontology is loaded by the agents into their infer-
ence machine and herein the agent action descriptions
are evaluated.

Domain Description

Content

Speech Act

Interaction Protocol

Message Transport Protocol

(a) Ordinary MAS
architecture commu-
nication stack

Domain Description

Content

Speech Act

Interaction Protocol

Message Transport Protocol

Inference Machine

(b) Proposed MAS archi-
tecture communication
stack

Figure 3: Communication stacks in MAS

• Depending on the language specified in an action de-
scriptions name the action descriptions code is for-
warded to the respective language processor or it is
translated to the language of the agents inference ma-
chine [9].

To realize this approach, modifications are necessary regard-
ing ontology definition, MAS architecture and content lan-
guage specification. Below, possible modifications of task
ontologies and of the used design tool Protégé are provided,
as well as an adaption of the used content language FIPA
SL [7]. The changes necessary in the used MAS framework
JADE are negligible, because the content of a received FIPA
ACL message can simply be extracted and passed to the
agents inference machine.

3.1 Embedded Action Descriptions in Task On-
tologies

To integrate support of semantical agent action descriptions
into existing ontologies, there are only few changes neces-
sary. At first, a new abstract concept Description has to
be added to the ontology. Then the slots name, content

and version of type String have to be added to this con-
cept. Further the meta-concept of all the action concepts,
e.g. action, has to be extended by a slot with cardinality
n of type description, instance of the previously defined
concept Description. Now, when a sub-concept of the ex-
tended action concept is instantiated, the new instance can
be tagged with semantical descriptions.

3.2 Requirements to Ontology Design Tools
The functionality of the ontology design tool Protégé can
be extended by means of plugins. Support for the described
approach can be provided through a plugin that enables
Protégé to export an ontology to any language interpretable
by the MAS inference machine. The best way, probably will
be to support a standardized language, such as FIPA SL
and to provide language adaptors for different inference ma-
chines. This way allows the use of only one plugin and the

separated implementation of adapters for every single infer-
ence machine. Currently we are working on Protégé plugins
for JESS, the Mandarax System5 and FIPA SL. Addition-
ally language adaptors from FIPA SL to JESS and from
FIPA SL to Mandarax are developed. Reasons for this se-
lection are that both systems are implemented in JAVA and
support backward reasoning, while their license models are
very different. Furthermore, research results in the agent
technology area are available for both systems [3].

3.3 Embedded Action Descriptions in FIPA SL
FIPA SL is very similar to the knowledge representation
language KIF6 but there aren’t any implementations of in-
ference machines based on it [9]. Unfortunately, the latest
changes in FIPA SL are not very elegant, because the cho-
sen names for left hand terms, like e.g. TermOrIE (Term or
IdentifyingExpression), Wff (Well formed formula), do not
describe the semantical meaning of the nodes.

ActionExpression = "(" "action" Agent TermOrIE ")"

| "(" "|" ActionExpression ActionExpression ")"

| "(" ";" ActionExpression ActionExpression ")".

Figure 4: FIPA SL grammar syntax definition for

ActionExpression

The current definition of agent action expressions in FIPA SL
is shown in Figure 4 and the needed changes to support the
presented approach are shown in Figure 5. An implementa-
tion of a parser supporting the proposed changes is available
and the described language adapters are under development.

ActionExpression = "(" "action" Agent

ActionDescription* TermOrIE ")"

| "(" "|" ActionExpression ActionExpression ")"

| "(" ";" ActionExpression ActionExpression ")".

ActionDescription = "(" DescriptionLanguage

DescriptionName?

DescriptionVersion

DescriptionContent ")".

DescriptionLanguage = "(" "description-language"

DescriptionSymbol ")".

DescriptionVersion = "(" "description-version"

DescriptionSymbol ")".

DescriptionContent = "(" "description-content"

DescriptionSymbol ")".

DescriptionSymbol = String.

Figure 5: Proposed modifications in FIPA SL gram-

mar syntax definition for ActionExpression

4. CONCLUSIONS AND OUTLOOK
In our paper we outlined an approach to extend ontologi-
cal terms denoting agent actions with semantical descriptive
decorations. This allows for an agent to extract the formal
definition of an activity bound to an action it has been re-
quested to perform. It was illustrated how the approach

5http://www.mandarax.org/
6http://logic.stanford.edu/kif/dpans.html

based on the agent internal use of an inference machine
can be embedded to the common ontology development tool
Protégé and how FIPA SL has to be adapted to support it.

The approach provided is one more step on the way to tool-
supported deployment of intelligent agents, and tries to fuel
the discussion on the appropriate description and specifica-
tion format necessary for these tools. The vision is to pro-
vide the possibility in one tool, to design the domain and
task ontology and to export both as T-boxes in the KB of
an agent, to describe a real world scenario with instances of
the defined ontologies and to export them in an A-box of the
same KB, to create then instances of agents containing an
inference machine on the top of the existing KB, and finally,
to provide real world scenarios based on distributed MAS.

5. ADDITIONAL AUTHORS
Additional authors:
Lars Braubach (University of Hamburg, email:
braubach@informatik.uni-hamburg.de),
Rainer Herrler (University of Würzburg, email:
herrler@informatik.uni-wuerzburg.de) and
Alexander Pokahr (University of Hamburg, email:
pokahr@informatik.uni-hamburg.de).

6. REFERENCES
[1] L. Botello, S. Willmott, T. Zhang, and J. Dale.

Multilingual agents: Ontologies, languages and
abstractions. Technical report no. 01/362, Swiss
Federal Institute of Technology (EPFL), Lausanne
(Switzerland), 2001.

[2] G. Caire. Jade tutorial - application-defined content
languages and ontologies. Manual, TILAB, 2002.

[3] J. Dietrich, A. Kozlenkov, M. Schroeder, and W. G.
Rule-based agents for the semantic web. Journal on

Electronic Commerce Research Applications, 2003.

[4] FIPA. Fipa acl message structure specification.
Standard, Foundation for Intelligent Physical Agents,
http://www.fipa.org/, December 2002.

[5] FIPA. Fipa communicative act library specification.
Standard, Foundation for Intelligent Physical Agents,
http://www.fipa.org/, December 2002.

[6] FIPA. Fipa iterated contract net interaction protocol
specification. Standard, Foundation for Intelligent
Physical Agents, http://www.fipa.org/, December 2002.

[7] FIPA. Fipa sl content language specification. Standard,
Foundation for Intelligent Physical Agents,
http://www.fipa.org/, December 2002.

[8] C. van Aart, R. Pels, G. Caire, and F. Bergentini.
Creating and using ontologies in agent communication.
Workshop on Ontologies in Agent Systems, 1st

International Joint Conference on Autonomous Agents

and Multi-Agent Systems, 2002.

[9] S. Willmott, I. Constantinescu, and M. Calisti.
Multilingual agents: Ontologies, languages and
abstractions. In First International Workshop on

Ontologies in Agent Systems, Autonomous Agents

2001, Montreal, Canada, pages 77–84, mai 2001.

