
Tool-Supported Interpreter-Based User Interface
Architecture for Ubiquitous Computing

Lars Braubach, Alexander Pokahr, Daniel Moldt, Andreas Bartelt, and
Winfried Lamersdorf

Distributed Systems Group, Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{braubach, pokahr, moldt, bartelt, lamersd}@informatik.uni-hamburg.de
http://vsis-www.informatik.uni-hamburg.de/

Abstract. With the upcoming era of Ubiquitous Computing (Ubi-
Comp) new demands on software engineering will arise. Fundamental
needs for constructing user interfaces (UIs) in the context of UbiComp
were identified and the subsumed results of a survey with special focus
on model based user interface development environments (MB-UIDEs)
are presented in this paper. It can be stated, that none of the examined
systems is suitable for all the needs. Therefore a new architecture based
on the Arch model is proposed, that supports the special UbiComp re-
quirements. This layered architecture provides the desired flexibility with
respect to different implementation techniques and UI modalities. It was
implemented in a user interface development environment called Vesuf.
Its usability was approved within the Global Info project [20], where
heterogeneous services had to be integrated in a web portal.

1 Introduction

As covered below, UbiComp applications differ inherently from conventional ap-
plications. In [8] were identified several special UI needs for this kind of systems,
which will be presented in the following. First of all it can be stated that Ubi-
Comp applications are somewhat more complex than comparable conventional
programs, because they have to cope with dynamical changes during runtime.
Therefore it should be an important objective for a UI construction system to
hide some of this complexity (simplification).

In [2] Banavar et al. explain that the application development for UbiComp
has to be device independent, because a single application should be usable from
distinct entry points, e.g. from a laptop, handheld or even phone. This implicates
some advantages for the user such as synchronous data and familiar handling
across different devices. To achieve this vision within a UI construction system it
is necessary to provide mechanisms for cross-platform user interfaces. Therefore
a clean separation between user interface and functional core is needed, as well as
mechanisms for connecting the separated parts. Moreover it should be possible
to create different interface modalities for an application (flexibility), and the

P. Forbrig et al. (Eds.): DSV-IS 2002, LNCS 2545, pp. 89–103, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

90 L. Braubach et al.

Table 1. Surveyed systems

Frameworks Suggested literature
MVC-Client [30]
SanFrancisco [34]
JWAM [6]
MVP [27]
Amulet [23]

MB-UIDEs Suggested literature
Janus/Jade [1]
Mobi-D [28]
FUSE [22,5]
TRIDENT [7]
TADEUS [14]
Teallach [15,17]
MASTERMIND [9,31]
BC-Prototyper [35]

system itself should be open for the integration of new interface modalities and
implementation techniques (extensibility).

Banavar et al. further point out that the UbiComp paradigm will lead to sub-
stantial changes on how users perceive applications. They will understand the
application as a composition of services, which takes into account the current
context of use, e.g. the location, time or weather. To be able to support inter-
faces for this new kind of applications it is necessary to address the dynamic
adaptation and composition of UIs.

The next section takes a look into what existing tools offer for the special
UbiComp needs. In Sect. 3 a new model-based architecture and a concrete system
for better accomplishing these goals are presented. Thereafter system details
are introduced in Sect. 4, which help to achieve to some degree the UbiComp
demands mentioned above. In Sect. 5 as an example a metadictionary service is
described. Finally in Sect. 6 follows a summary of the results and an outlook.

2 Survey Subsumption

In search of a suitable system for constructing UIs of UbiComp applications sev-
eral different categories of tools have been researched [8]. The two most promising
approaches are frameworks and model-based systems, which were further inves-
tigated by typical representatives (see Table 1). The consolidated results of [8]
as shown in Table 2 are presented next.

The goal of a simplified UI construction process is currently achieved by
frameworks only. Because of the low abstraction level framework implementa-
tions offer a flat learning curve for the developers and additionally whitebox
frameworks allow easy programmatic extension. MB-UIDEs suffer from the lack
of well established standards in the field of some partial models for UIs, especially
for presentation and dialogue control facets.

It is stated that the clean separation of UI and functional core is achieved by
frameworks as well as by model-based systems. While most frameworks utilize
agent-based architectures like MVC [10] and PAC [11] the MB-UIDEs accomplish
separation in a natural way through their models. The connection between these
two components, relevant for an executable interface, is established by program-

Tool-Supported Interpreter-Based User Interface Architecture 91

Table 2. Subsumed UbiComp-characteristics of the system categories [8]

x/xFrameworks

Adaptation Composition

o(x)

oo

(x)

o

Extensibility
UI / Connection

o/(x)

(x)/(x)

(x): Few systems o: None of the tested systems have the propertyx : Nearly all systems

Model−Based
Systems

UI FlexibilitySeparation
Connection

Simplification

x/(x)

x

o

ming within the framework context, whereas model-based systems use descrip-
tive techniques to link the interface to the functional core. Some of the tested
MB-UIDEs like TRIDENT or FUSE do not establish the connection between UI
and functional core, leading to substantial additional effort for manually linking
the parts.

Frameworks do not address the extensibility with regard to various UI modal-
ities, as there are different frameworks for different purposes, e.g. for web-services
or for interactive systems. Regarding the extensibility with respect to further
implementation techniques, some frameworks address concepts for integrating
database systems. Model-based systems are conceptually qualified for both ex-
tensibility issues. In practice only few of the tested systems exploit the potential
of the model-based approach for supporting different interface modalities, or re-
gard extension mechanisms to integrate more than one implementation technique
(like Janus and Teallach).

When considering the flexibility of frameworks it is obvious that these types of
systems are not able to support easy mechanisms for changing interface modali-
ties, because the glue between UI and functional core has to be programmed. Also
few MB-UIDEs utilize their declarativeness for flexibility (except TADEUS). The
same is true for adaptation and composition aspects, which should be considered
when building constructing systems for UbiComp. MASTERMIND is the only
system, which addresses adaptation with respect to display properties. No tested
framework even tries to cope with one of these aspects.

From this comparison it can be concluded, that the non-declarative ap-
proaches (frameworks) are not well suited for UbiComp UI construction sys-
tems, because they do not offer enough flexibility and are settled on a too low
abstraction level. Model-based systems overcome these conceptual problems and
possess all features which make them appear fully qualified for UbiComp needs.
Within this group the interpreter-based systems (see [12]) seem to be the most
promising, because they are able to handle the UbiComp needs with respect to
dynamic changes of the UI during runtime. Before utilizing model-based sys-
tems for UbiComp some problems have to be solved. One important aspect is
the lack of established UI standards. Further on the support of various interface
modalities must be improved, and the research in the field of adaptation and
composition must be carried on.

92 L. Braubach et al.

(client− vs. serverside)Dependencies

Automation−ToolsSystem features

Presentation Converter
*Internationalization

Events

Constraints
Widgetlibraries

UI−Specification Application ImplementationDesign−time tools

Runtime level

Design level

Presentation Model
Dialogue Model

Domain Model including
−Taskmodel

−Objectmodel

*Database

Code

*Structs

planned uses*

AbstractPresentation
Widgetmapping
*Autolayouter
*Automodel(s)

*Added Services

*GUI−Builder

Model−Converters

*Design Critics / Advisors

CASE−Tools

Standalone

Interpreter

Webapplication

Fig. 1. Vesuf system components

3 Vesuf System

As a starting point for the design of a new system, a wide research in the field of
tool-categories, techniques and architectures and their applicability with regard
to UbiComp has been carried out [8], and a vision of a UbiComp development
environment has been conceived [26]. This section will present the Vesuf system,
a first step towards realizing the vision.

3.1 Vesuf Overview

As pointed out in the last section, interpreter-based MB-UIDEs are potentially
well suited for all UbiComp requirements. Thus the Vesuf system consists of the
components shown in Fig. 1. To realize an application within the Vesuf system
the functional core can be implemented system independent (application imple-
mentation). This means that no system specific code-intrusions are necessary. In
addition the different submodels for the UI-specification have to be created. To
assist the developers in this process several tools can be used (design-time tools).
At runtime the model-information will be evaluated by the interpreter which uti-
lizes different automation tools. It constructs an executable UI by using further
system features which are presented in detail in Sect. 4.

There is no fixed methodology to follow when developing applications with
Vesuf and the models can be defined in an independent manner. The Vesuf sys-
tem is designed to support what in this paper is called “slinky automation”.
This allows to start the development process with minimal specification effort,
and utilize the automation tools to a high degree, in order to have executable
interfaces in early design stages. During the further development the model spec-
ifications will become more elaborated, and therefore the need for automation
will decrease, while the UI quality increases (see [32]). With this approach in-
spired by HUMANOID [33], rapid prototyping is possible.

Tool-Supported Interpreter-Based User Interface Architecture 93

Domain
Model−Elements
Implementation

e.g. Java−classes,
db−tables,

Domain
Instance−Elements

Instance

e.g. Classifier−,
Attribute−, Use Case−

Model−Elements

Implementation
Instance−Elements

e.g. Java−objects,
db−rows

XML−document

Instance−Elements
Dialogue

Dialogue
Model−Elements

Presentation
Model−Elements

Presentation
Instance−Elements

Toolkit
Model−Elements

Toolkit
Instance−Elements

e.g. State, Event,e.g. Classifier,
TransistionAttribute, Use Case Delegate, Label

Transition−Instance
e.g. State−, Event−, e.g. Part−, Container−,

Instances
Delegate−, Label−

e.g. Part, Container,

e.g. Frame−, Panel−,
Choice−, Button−

objects

e.g. Frame−, Panel−,
Choice−, Button−

classes

Runtime

Model

Vesuf Border

XML−DTD

Domain−Specific
Component

Domain−Adaptor
Component Component

Dialogue
Component
Presentation

Component
Interaction−Toolkit

instance of is mapped to uses

Fig. 2. Vesuf architecture

To be of use in a broad UbiComp context the system offers two different
interpreter-modes. Active interpreters such as the GUIRunner and the VesufAp-
plet are suitable for interactive applications and manage the transition between
views by opening and closing application windows. Passive interpreters like the
ApplicationServlet are mediator components which pass on all collected changes
from the UI to the functional core and backwards.

3.2 Runtime Architecture

The layered architecture of the Vesuf system is pictured in Fig. 2. Primarily it
must be stressed that a strict separation in so called model and instance elements
is established in all layers. In [21] Kent et al. propose to introduce this separation
as a foundation of the UML metamodel. Model elements are used to describe
the various models, whereas instance elements represent concrete occurrences of
the model elements at runtime.

Furthermore the horizontal partitioning in five separate components is con-
ceived after the paragon of the Arch model [4]. The corresponding names of
the Arch model components are denoted above each Vesuf layer. The Arch con-
cept assures the independence from the implementation- and toolkit-specific side
through the introduction of two adaptor components. In the domain-adaptor
component all information about tasks and domain entities is encapsulated, while
in the presentation component abstract and concrete display information is held.
A central dialogue component is responsible for managing the global state of the
UI.

In the following the models and their connections will be sketched. The
domain-adaptor component is specified by a composite domain model, which
consists of tasks and domain objects. This domain model is adopted from the
UML metamodel and use cases are used for describing task behaviour.1

1 It is planned to use the ConcurTaskTrees [25] as foundation for the task model in a
subsequent release.

94 L. Braubach et al.

The dialogue layer contains a dialogue model, which currently is built upon
the UML statechart semantics. Each application view is represented by one state.
For concurrency purposes the concept of control flows is established. Each control
flow is an autonomous state machine, which controls one part of the UI. To
determine what will be displayed to the user, states are connected to domain
entities (e.g. tasks or objects) via paths.

To map tuples of domain element and dialogue state to presentation elements
a flexible mapping is used. The presentation metamodel extends the UML and is
based upon functional roles. A presentation element is linked to a toolkit element
which is responsible for its appearance, and to a domain element for realizing
the information flow between implementation and user.

4 System Details

An overview of the proposed architecture has been presented, but it is yet to
show, how it fulfills the identified requirements. Ubiquitous Computing demands
the clean separation of device-specific and device-independent parts of an appli-
cation. The Arch model provides five components, that can be abstractly devel-
oped and reused across a range of different environments for any application, or
be specialized, e.g., to enable the use of device-specific features, according to the
suitability in the application context. The border between context-, device- and
user-independent and -specific parts can be flexibly shifted across the compo-
nents of the Arch model. For easy integration of the components, a combination
of several concepts is proposed.

These concepts heavily rely on the interpreter-style of the architecture, and
therefore have not been found in recent generator-style model based systems (like
Mobi-D, TADEUS, Janus, etc.). They have been inspired by other interpreter-
style model-based systems such as ITS [36], HUMANOID and framework ap-
proaches like Amulet. In the following it is stated how these concepts aid in
fulfilling the requirements presented in Sect. 1.

4.1 Domain-Adaptor Layer

Most model based systems try to solve the problem, how to connect the UI
to the application implementation. In Vesuf the domain-adaptor layer conceals
the implementation layer, and represents the application functionality from the
viewpoint of the user interface.

With a flexible mechanism called “implementation accessor”, any type of
implementation technology (i.e. legacy system) can be integrated into the Vesuf
environment. Currently the system has full support for Java implementations
and prototypical support for implementations in relational databases.

The use of the UML metamodel as foundation of the domain-adaptor layer
establishes a unified view on top of implementation details, and allows the speci-
fication of user interface related meta information (e.g. constraints) as first class
objects together with the domain entities.

Tool-Supported Interpreter-Based User Interface Architecture 95

4.2 Paths

Puerta and Eisenstein [29] describe the mapping problem between what they
call abstract (task, object) and concrete (dialogue, presentation) elements. They
regard the solution to this problem as “essential for the construction of model-
based systems”. In Vesuf the connection between abstract and concrete elements
is established using paths.

The Vesuf path language allows to specify navigational paths across all el-
ements of the metamodel (e.g. classifiers, attributes, constraints). It is compa-
rable to XPath [37] which provides navigational access to different node types
of XML-documents, such as element, attribute and text. XPath introduces the
concept of axes which specify DOM associations to follow (e.g. child, attribute,
descendant).

The associations in the UML metamodel (e.g. attributes of classifiers) pro-
vide the axes of the Vesuf path language. For example to refer to the value
of an attribute (starting from a point object), one would write Point.<attrib-

ute>X.<value>, or refer to the constraints of the attribute by writing Point.<at-

tribute>X.<constraints>. Note that the identifiers in angle brackets are the axes
that denote references of the UML metamodel, while the other identifiers (e.g.
“Point”) denote elements in the domain model of the application.

To be evaluated, a path is instantiated with an instance of the starting ele-
ment (e.g. point). As the references in the object graph may change, the endpoint
element of a path instance may also change. Paths hide the problems of dynam-
ical changes, because they provide a static way to refer to dynamically changing
elements. For example a presentation element uses a path as reference to the
domain element it displays. While the displayed element may change over time
(as described in Sect. 4.4), the path will always be the same.

Although paths are evaluated at runtime they are statically typed, and their
correctness can be checked against the domain model at design time. Since paths
can be used to navigate across all different models (object, task, dialogue and
presentation model), they provide the glue, to stick together the different com-
ponents of an application. Therefore most of the higher level concepts rely on
paths.

4.3 Extended Constraint Semantics

In UML a constraint is a semantic condition or restriction expressed in text,
represented in the metamodel by a boolean expression on an associated model
element [24]. In Vesuf constraints are used to stipulate possible user interactions
and valid user input. As in the Seeheim model [16] this places the validation
of user input into the application interface layer and not into the presentation
layer. This facilitates the reuse of input validation for all interface modalities.

The semantics of constraints are extended to allow the specification of supple-
mentary information, that is utilized by presentation elements. For this purpose
constraints include additional properties with special meanings. The additional

96 L. Braubach et al.

a) values

b) check

c) range

Fig. 3. Use of constraints for presentation elements

properties are specified as constant literals, or as paths referring to domain at-
tributes or operations, which are evaluated dynamically at runtime. Since con-
straints can be realized as operations in the implementation layer, tools can
be used, to generate constraint implementations, e.g., from OCL-specifications.
Currently Vesuf defines five different types of constraint properties which may
be used independently or together. These are described next:

valid specifies the boolean expression to validate user interaction (e.g. for oper-
ations or navigational events) or input (for attribute and parameter values).
This represents the standard UML semantics of constraints.

check specifies via a path an operation, that may throw an exception, when the
constraint is not valid. The exception object can include additional informa-
tion, why the constraint is invalid, e.g. a text message as in Fig. 3b.

values specifies the set of possible values, e.g., for an attribute or parameter.
The set of possible values can for example be used by presentation elements
to create radio buttons or to fill in lists or drop-down boxes (see Fig. 3a).

range alternatively to a set of possible values a range can be specified. All Vesuf
built-in data types (e.g. integer, float, date) support this. Range handling for
application specific data types can be added (e.g. for IP-address). The range
constraint can be used to handle interaction with scrollbars (see Fig. 3c).

active For dynamically prohibiting access to certain elements (e.g. attributes
and operations) of individual objects in the domain-adaptor layer, the active
constraint is used. It causes enabling and disabling of interaction elements
and therefore provides a way for realizing intra-dialogue behaviour in the
domain-adaptor layer, that is “inherited” (i.e. mirrored) by all specialized
interface modalities.

When specified with paths, constraint properties are evaluated dynamically and
internal changes are propagated by events as described in Sect. 4.4 and exempli-
fied in Sect. 5. Besides the predefined types, custom constraint properties can be
specified and then be used by the presentation layer.

The use of constraints enforces a certain level of usability, because they pro-
vide meaningful error messages. When used in conjunction with widget-mapping

Tool-Supported Interpreter-Based User Interface Architecture 97

techniques, appropriate interaction elements are automatically selected based on
the type of constraints specified for domain-adaptor layer elements.

4.4 Events and Dependencies

In Vesuf an event dispatcher component manages the collection, generation and
multicasting of events. Events are initiated by instance elements in the domain
layer (e.g. value of an attribute changed) or dialogue layer (e.g. a state change
in a dialogue state machine). Event handlers can be registered on any type of
instance element, and are used to couple loosely elements from different models.
Besides propagating events to the appropriate handlers, the dispatcher manages
the generation of dependent events. With dependencies the need for explicit
event handlers in the presentation layer, reacting to changes in the other layers,
is reduced. The system manages two types of dependencies, as described next.

Dependencies can be specified explicitly in the domain model using the UML
dependency element. It is augmented by a tagged value, that specifies a path from
the client to the supplier element of the dependency. The path enables the system
to determine at runtime the supplier instance elements, that participate in any
dependencies, and take the appropriate actions, when these supplier elements
initiate events. An example for a dependency that has to be specified explicitly
is the area attribute of a rectangle object, that depends on the values of the
width and height attributes. When the width or the height value is changed, the
dependency will cause an update of any presentation elements displaying the
area attribute.

The second type of dependency arises from the use of paths for specifying
properties of elements. When a section of a path changes, the endpoint of the
path, and therefore the element that specifies the path (e.g. a view) also changes.
When for example in a circle object a new center point is set, presentation
elements displaying the x and y attributes of the old center point object are
automatically adjusted to refer to the new center point. This is handled by Vesuf
internally, and events for any dependent elements are automatically generated
and published in the next event multicast (together with the initial event, that
triggered the dependency).

4.5 Presentation Metamodel Based on Functional Roles

Since the behavioural aspects of the UI are captured in the domain-adaptor
(using constraints and dependencies) and the dialogue layer, the Vesuf system
features a very lightweight presentation layer, thus supporting the flexibility and
extensibility requirements. The UML metamodel is extended with new elements
rooted in an element called part. Besides this generic interface element four
different types of elements are introduced (see Fig. 4). The system utilizes UIML
[18] for specifying presentation models, because of its genericity and tailorability
to specific environments.

The motivation behind the lightweight approach is, that the presentation
elements only provide the glue between the concrete interaction elements in the

98 L. Braubach et al.

ModelElement
(from uml.foundation.core)

Part*
children

parent
0..1 Container Delegate Label Description

Fig. 4. Presentation metamodel

toolkit specific layer, and the application specific elements in the domain-layer.
Therefore, in contrast to other proposals such as UMLi [13], the elements of the
presentation metamodel are not classified by their specific interaction capability
(e.g. input, output, . . .) but rather by the intention behind the element, i.e.,
the functional aspect of the connection between a toolkit element and a domain
element. Three basic functional roles of atomic UI elements have been identified:
Delegates, labels and descriptions. These elements are atomic in the sense, that
they do not contain other elements.

For interaction elements, the concept of UI-delegates as self-contained repre-
sentatives of domain elements, proposed by Holub in [19], is adopted. Delegates
are the most important parts of the UI, as they enable the user to interact with
elements in the other layers. In Vesuf, the actual domain-adaptor and dialogue
layer elements, that are represented by a delegate are referenced via paths, which
can be resolved at runtime to yield the corresponding instance elements. Dele-
gates mediate, e.g., between attributes in the domain-adaptor layer and textfields
in the toolkit layer.

The other two basic part-types (label and description) are not used for in-
teraction, but to provide structural and usage information to the user. Labels
are designations of elements in the other layers, usually placed near delegates, to
designate which domain-adaptor or dialogue layer elements the delegate refers
to. In the toolkit layer, labels are realized by texts, icon images or characteristic
sounds. Description elements provide usage information related to elements in
the domain-adaptor or dialogue layer, and can be used to provide context sen-
sitive help (e.g. as tooltips). In addition to description texts these elements use
information provided by constraints to inform the user about the current state
of the interaction (e.g. invalid input).

To organize presentation elements in groups, container elements are used.
They recursively aggregate the atomic presentation elements (delegates, labels
and descriptions) that are to be displayed as a presentation unit. The container
hierarchy is usually, but not necessarily, reflected by similar structures in the
toolkit layer.

The lightweight presentation metamodel leads to simple, and easy to main-
tain interface descriptions. Furthermore, it allows the system to be easily ex-
tended by new interface modalities.

Tool-Supported Interpreter-Based User Interface Architecture 99

4.6 Interoperation of the Concepts

It has been shown, how the aforementioned concepts aid in fulfilling the require-
ments posed by UbiComp. The domain-adaptor component is the backbone of
the architecture and features a runtime environment which manages model and
instance elements with automatic handling of constraints, events and dependen-
cies. Paths are defined on top of the modelled domain structure, to establish
the connection with the other layers. The presentation elements use the poten-
tially dynamic information of the domain-adaptor layer elements, to extract the
properties of their widgets.

The dependency mechanism allows for intra dialogue control (e.g. en- and
disabling of buttons) to be specified abstractly in the domain model (e.g. allowed
parameter values for method invocations). The event mechanism automatically
updates widgets that are dependent in this way. This mechanism of inheriting
behaviour from the domain-adaptor facilitates robust and consistent behaviour
in all interface modalities, and avoids redundancy in the different presentation
models of an application.

5 Example

To prove the practical utilizability of the Vesuf system, it has been applied in the
context of the GlobalInfo project [20]. It was used to integrate several services
into the PublicationPORTAL [3]. One of these services is the metadictionary
service that allows to query several online dictionary web sites (Fig. 5). The
realization and integration of the services is described in detail in [8].

Using the example of the metadictionary Java application (see Fig. 5b), it is
shown, how the concepts allow behaviour defined in the domain-adaptor layer to
be mirrored in the presentation layer. The first example is the invocation of the
Translate operation that uses the constraint / dependency mechanism. The op-
eration is represented in the presentation layer using a button delegate. Choice
delegates are used to represent the To and From parameters of the operation.
These two delegates are self contained and not connected to each other. Nev-
ertheless, when the user supplies parameter values, that are valid on their own
but invalid in combination (i.e. a translation not supported by any dictionary),
the button representing the operation will be disabled, since an appropriate
constraint is specified in the domain model. This behaviour will appear in all
presentations that support dynamic en- and disabling of operation delegates. In
static presentations (e.g. web forms as in Fig. 5d) the user will be able to in-
voke operations with invalid parameter combinations, and will subsequently be
presented an error page describing the constraint violation.

The second example utilizes the dynamic path concept. Consider the lower
half of the metadictionary window in Fig. 5b, where a left hand side list box
allows for selection of a result set, which is then presented in detail at the right
hand side. This is realized in Vesuf by just using a path to the same attribute
denoting the selected result set for both delegates. When the attribute value

100 L. Braubach et al.

a) b)

c) d)

Fig. 5. Screenshots of the metadictionary service: Executed by the Motorola Mobile
ADK for Voice (a), as Java application (b), displayed in the Yospace SmartPhone
emulator (c), embedded in the PublicationPORTAL (d)

Tool-Supported Interpreter-Based User Interface Architecture 101

represented by the list box is changed, all interaction elements in the detail
panel will be notified that a new result set has been selected and will therefore
update their presentation appropriately. The same behaviour is exhibited in the
web-portlet (Fig. 5d), where the current result set can be selected with the Show
button and is subsequently presented at the bottom of the page.

6 Conclusion and Outlook

In this paper six major goals for UI construction tools in the context of UbiComp
were presented. The proposed model-based architecture has been developed to
address the arising needs. It is now shortly summarized how the architecture
and the system characteristics help to fulfill these requirements.

Simplification of the development process is addressed by using standards
to a high degree. The system is based on UML wherever applicable (domain-,
task- and dialogue model) and uses UIML as a standard notation for the simple
functional role based presentation model. Furthermore the development process
is simplified by using automation tools and applying the slinky automation idea.

The architecture enforces the separation of the UI in five components accord-
ing to the Arch model and introduces a generic mechanism (paths) to connect
elements of these components at runtime. The extensibility with respect to new
UI modalities is supported in a natural way by the underlying architecture and
the usage of the delegate concept. To allow simple extensions with regard to
different implementation techniques the implementation accessor concept is in-
troduced. Flexibility with regard to UIs is achieved by applying constraints and
dependencies. They relieve the presentation components from complex respon-
sibilities such as input validation and intra dialogue behaviour. The resulting
lightweightness of presentation components was one of the main goals with re-
spect to UbiComp, featuring a minimum of redundancy between different UI
specifications and a maximum of reusability of information rich domain models.

For adaptation and composition a sound foundation is set by the architectural
separation of model and runtime layer and the interpreter-style is well suited to
react to dynamical changes imposed by these demands.

Further research within the Vesuf project2 will cover reusability aspects, es-
pecially the construction of UIs in a “Lego” like manner. This becomes possible
by the removal of all behaviour from the presentation layer and allowing UI com-
ponents (Lego bricks) to be placed on the domain-adaptor layer (Lego ground
plane). The connections between the bricks and the plane are established with
paths and therefore allow to build up very complex interface elements from sim-
pler ones in a declarative way.

References

[1] H. Balzert. From OOA to GUIs – the JANUS System. In Proceedings of IFIP
INTERACT’95: Human-Computer Interaction, pages 319–324, 1995.

2 The Vesuf project is available at: http://vesuf.sourceforge.net

http://vesuf.sourceforge.net

102 L. Braubach et al.

[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski.
An Application Model for Pervasive Computing. In Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking (MOBICOM-00),
pages 266–274, N. Y., August 6–11 2000. ACM Press.

[3] A. Bartelt, D. Faensen, L. Faulstich, E. Schallehn, and C. Zirpins. Building In-
frastructures for Digital Libraries. In DELOS Workshop on Interoperability in
Digital Libraries, volume No. 01/W06. ERCIM Workshop Proceedings, 9 2001.

[4] L. Bass, R. Faneuf, R. Little, N. Mayer, B. Pellegrino, S. Reed, R. Seacord, S. Shep-
pard, and M. R. Szczur. A Metamodel for the Runtime Architecture of an Inter-
active System. ACM SIGCHI Bulletin, 24(1):32–37, 1992.

[5] B. Bauer. Generating User Interfaces from Formal Specifications of the Appli-
cation. In F. Bodart and J. Vanderdonckt, editors, Proceedings of DSV-IS’96.
Eurographics, June 1996.

[6] W.-G. Bleek, G. Gryczan, C. Lilienthal, M. Lippert, S. Roock, H. Wolf, and
H. Züllighoven. Frameworkbasierte Anwendungsentwicklung (Teil 2): Die Kon-
struktion interaktiver Anwendungen. OBJEKTSpektrum, February 1999.

[7] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, and J. Vanderdonckt.
A Model-based Approach to Presentation: A Continuum from Task Analysis to
Prototype. In F. Paterno, editor, Proceedings of DSV-IS’94, pages 25–39. Euro-
graphics, June 1994.

[8] L. Braubach and A. Pokahr. Vesuf, eine modellbasierte User Interface Entwick-
lungsumgebung für das Ubiquitous Computing, vorgestellt anhand der Fallstudie
PublicationPORTAL. Master’s thesis, Universität Hamburg, 2001.

[9] T. Browne, D. Davila, S. Rugaber, and K. Stirewalt. Using Declarative De-
scriptions to Model User Interfaces with MASTERMIND. In F. Paterno and
P. Palanque, editors, Formal Methods in Human Computer Interaction. Springer,
1997.

[10] S. Burbeck. Applications Programming in Smalltalk-80(TM): How to use Model-
View-Controller(MVC).
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html, 1992.

[11] J. Coutaz. PAC: An Object Oriented Model for Implementing User Interfaces.
ACM SIGCHI Bulletin, 19(2):37–41, 1987.

[12] P. P. da Silva. User Interface Declarative Models and Development Environments:
A Survey. In P. Palanque and F. Paterno, editors, Proceedings of DSV-IS’2000,
pages 207–226. Springer, 2001.

[13] P. P. da Silva and N. W. Paton. UMLi: The Unified Modeling Language for
Interactive Applications. In A. Evans, S. Kent, and B. Selic, editors, Proceedings
of UML 2000, volume 1939 of LNCS, pages 117–132. Springer, 2000.

[14] T. Elwert and E. Schlungbaum. Modelling and generation of graphical user in-
terfaces in the TADEUS approach. In P. Palanque and R. Bastide, editors, Pro-
ceedings of DSV-IS’95, Eurographics, pages 193–208, Wien, 1995. Springer.

[15] P. Gray, R. Cooper, J. Kennedy, P. Barclay, and T. Griffiths. A Lightweight
Presentation Model for Database User Interfaces. In Proceedings of ERCIM’98.
ERCIM, 1998.

[16] M. Green. Report on Dialogue Specification Tools. In G. E. Pfaff, editor, User
Interface Management Systems: Proceedings of the Seeheim Workshop, pages 9–
20, Berlin, 1985. Springer.

[17] T. Griffiths, J. McKirdy, N. Paton, J. Kennedy, R. Cooper, B. Barclay, C. Goble,
P. Gray, M. Smyth, A. West, and A. Dinn. An Open Model-Based Interface
Development System: The Teallach Approach. In P. Markopoulos and P. Johnson,
editors, Proceedings of DSV-IS’98, pages 32–49. Eurographics, June 1998.

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

Tool-Supported Interpreter-Based User Interface Architecture 103

[18] Harmonia Inc. User Interface Markup Language Specification, version 2.0a, 2000.
[19] A. Holub. Building user interfaces for object-oriented systems, Part 2: The visual-

proxy architecture. JavaWorld, September 1999.
[20] Global Info. Globale Elektronische und Multimediale Informationssysteme für

Naturwissenschaft und Technik des bmb+f. Bundesministerium für Bildung und
Forschung (bmb+f), http://www.global-info.org, 2001.

[21] S. Kent, A. Evans, and B. Rumpe. UML Semantics FAQ. In A. Moreira and
S. Demeyer, editors, ECOOP’99 Workshop Reader, pages 33–56. Springer, 1999.

[22] F. Lonczewski and S. Schreiber. Generating User Interfaces with the FUSE-
System. Technical Report TUM-Info-9612, TU-München, 1996.

[23] B. Myers, R. McDaniel, and R. Miller. The Amulet Prototype-Instance Frame-
work. In M. Fayad and D. Schmidt, editors, Object-Oriented Application Frame-
works. Wiley & Sons, 1999.

[24] Object Modeling Group. Unified Modelling Language Specification, version 1.4,
September 2001.

[25] F. Paterno. Model-Based Design and Evaluation of Interactive Applications. Ap-
plied Computing. Springer, 1999.

[26] A. Pokahr, L. Braubach, A. Bartelt, D. Moldt, and W. Lamersdorf. Vesuf, eine
modellbasierte User Interface Entwicklungsumgebung für das Ubiquitous Com-
puting. In H. Oberquelle, editor, Mensch & Computer 2002. Teubner, September
2002. To appear.

[27] M. Potel. Model-View-Presenter. The Taligent Programming Model for C++ and
Java. http://www-106.ibm.com/developerworks/library/mvp.html, 1996.

[28] A. R. Puerta. A Model-Based Interface Development Environment. IEEE Soft-
ware, 14(4):40–47, July/August 1997.

[29] A. R. Puerta and J. Eisenstein. Towards a General Computational Framework
for Model-Based Interface Development Systems. In Proceedings of the 1999 In-
ternational Conference on Intelligent User Interfaces, pages 171–178, 1999.

[30] R. Sanderson. MVC-Client: Putting Model-View-Controller to work.
http://www.fourbit.com/resources/papers.shtml, 1999.

[31] P. Szekely. Declarative interface models for user interface construction tools :
The MASTERMIND approach. In L. Bass and C. Unger, editors, Engineering for
Human-Computer Interaction. Chapman & Hall, 1996.

[32] P. Szekely. Retrospective and Challenges for Model-Based Interface Development.
In F. Bodart and J. Vanderdonckt, editors, Proceedings of DSV-IS’96, Eurograph-
ics, pages 1–27, Wien, 1996. Springer.

[33] P. Szekely, P. Luo, and R. Neches. Facilitating the Exploration of Interface Design
Alternatives: The Humanoid Model of Interface Design. In CHI, pages 507–515,
May 1992.

[34] P. Tamminga, D. Faidherbe, L. Misciagna, and F. Yuliani. SanFrancisco GUI
Framework: A Primer. http://www.ibm.com/Java/SanFrancisco/, 1999.

[35] H. van Emde Boas-Lubsen. Business Component Prototyper for SanFrancisco:
An experiment in architecture for application development tools. IBM Systems
Journal, 39(2):248–266, February 2000.

[36] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene. ITS: A Tool for
Rapidly Developing Interactive Applications. ACM Transactions on Information
Systems, 8(3):204–236, July 1990.

[37] World Wide Web Consortium (W3C). XML Path Language (XPath), version 1.0,
November 1999.

http://www.global-info.org
http://www-106.ibm.com/developerworks/library/mvp.html
http://www.fourbit.com/resources/papers.shtml
http://www.ibm.com/Java/SanFrancisco/

	Introduction
	Survey Subsumption
	Vesuf System
	Vesuf Overview
	Runtime Architecture

	System Details
	Domain-Adaptor Layer
	Paths
	Extended Constraint Semantics
	Events and Dependencies
	Presentation Metamodel Based on Functional Roles
	Interoperation of the Concepts

	Example
	Conclusion and Outlook

